Difference between revisions of "NTSGrad Fall 2018/Abstracts"

From UW-Math Wiki
Jump to: navigation, search
Line 45: Line 45:
 
| bgcolor="#BCD2EE"  |   
 
| bgcolor="#BCD2EE"  |   
 
I will explain how class numbers grow in a certain increasing sequence of number fields, why one should expect it based on an analogy with the function field case and the broad context in which this result sits. Time permitting, I will sketch a proof.
 
I will explain how class numbers grow in a certain increasing sequence of number fields, why one should expect it based on an analogy with the function field case and the broad context in which this result sits. Time permitting, I will sketch a proof.
 +
|}                                                                       
 +
</center>
 +
 +
<br>
 +
 +
== Sept 25 ==
 +
 +
<center>
 +
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 +
|-
 +
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Soumya Sankar'''
 +
|-
 +
| bgcolor="#BCD2EE"  align="center" | ''Etale Cohomology: the Streets''
 +
|-
 +
| bgcolor="#BCD2EE"  | 
 +
The streets are often dangerous and to survive them one must pick up some basic skills. I will talk about some basic survival skills for the streets of Etale Cohomology.
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>
  
 
<br>
 
<br>

Revision as of 08:31, 1 October 2018

This page contains the titles and abstracts for talks scheduled in the Fall 2018 semester. To go back to the main GNTS page, click here.

Sept 11

Brandon Boggess
Praise Genus

We will explore topological constraints on the number of rational solutions to a polynomial equation, giving a sketch of Faltings's proof of the Mordell conjecture.


Sept 18

Solly Parenti
Asymptotic Equidistribution of Hecke Eigenvalues

We will talk about Serre's results of the equidistribution of Hecke eigenvalues, wading very slowly through the analysis.


Sept 25

Asvin Gothandaraman
Growth of class numbers in [math]\mathbb{Z}_p[/math] extensions

I will explain how class numbers grow in a certain increasing sequence of number fields, why one should expect it based on an analogy with the function field case and the broad context in which this result sits. Time permitting, I will sketch a proof.


Sept 25

Soumya Sankar
Etale Cohomology: the Streets

The streets are often dangerous and to survive them one must pick up some basic skills. I will talk about some basic survival skills for the streets of Etale Cohomology.