Difference between revisions of "NTSGrad Fall 2020/Abstracts"

From UW-Math Wiki
Jump to: navigation, search
 
(6 intermediate revisions by 2 users not shown)
Line 23: Line 23:
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Johnny Han''
+
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Johnny Han'''
 
|-
 
|-
 
| bgcolor="#BCD2EE"  align="center" | ''Bounding Numbers Fields up to Discriminant''
 
| bgcolor="#BCD2EE"  align="center" | ''Bounding Numbers Fields up to Discriminant''
Line 29: Line 29:
 
| bgcolor="#BCD2EE"  |   
 
| bgcolor="#BCD2EE"  |   
 
For those interested in arithmetic statistics, I'll present a quick proof of Schmidt's bound on numbers fields of given degree and bounded discriminant, as well as giving a quick overview of recent improvements on this bound by Ellenberg and Venkatesh.   
 
For those interested in arithmetic statistics, I'll present a quick proof of Schmidt's bound on numbers fields of given degree and bounded discriminant, as well as giving a quick overview of recent improvements on this bound by Ellenberg and Venkatesh.   
 +
|}                                                                       
 +
</center>
 +
 +
<br>
 +
 +
== Sep 29 ==
 +
 +
<center>
 +
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 +
|-
 +
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Brandon Boggess'''
 +
|-
 +
| bgcolor="#BCD2EE"  align="center" | ''Dial M_{1,1} for moduli''
 +
|-
 +
| bgcolor="#BCD2EE"  | 
 +
We'll try to give a brief introduction to moduli problems, with an eye towards moduli of elliptic curves.
 +
|}                                                                       
 +
</center>
 +
 +
<br>
 +
 +
== Oct 6 ==
 +
 +
<center>
 +
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 +
|-
 +
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Eiki Norizuki'''
 +
|-
 +
| bgcolor="#BCD2EE"  align="center" | ''Character Ratio of the Transvection in GL_n(F_q)''
 +
|-
 +
| bgcolor="#BCD2EE"  | 
 +
This will be a prep talk for Wednesday's NTS talk by Shamgar Gurevich. We will talk about the character ratio of the transvection in GL_n(F_q) and results concerning this quantity.
 +
|}                                                                       
 +
</center>
 +
 +
== Oct 13 ==
 +
 +
<center>
 +
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 +
|-
 +
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Di Chen'''
 +
|-
 +
| bgcolor="#BCD2EE"  align="center" | ''Recent applications of geometry of numbers.''
 +
|-
 +
| bgcolor="#BCD2EE"  | 
 +
I will review geometry of numbers and then discuss its applications to bounds of 2-torsion in class groups of number fields (2017) in detail. If time permits, I will also discuss its application to counting number fields with bounded discriminant (2019) briefly.
 +
|}                                                                       
 +
</center>
 +
 +
== Oct 20 ==
 +
 +
<center>
 +
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 +
|-
 +
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Yu Fu'''
 +
|-
 +
| bgcolor="#BCD2EE"  align="center" | ''Representation stability and the Cohen- Lenstra Conjecture.''
 +
|-
 +
| bgcolor="#BCD2EE"  | 
 +
I will talk about the tool of representation stability in cohomology and how can one use this to do some algebraic counting over finite field, how it works in the proof of the Cohen- Lenstra conjecture over function field in Jordan's 2015 paper if time permits.
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>
  
 
<br>
 
<br>

Latest revision as of 16:59, 19 October 2020

This page contains the titles and abstracts for talks scheduled in the Fall 2020 semester. To go back to the main GNTS page, click here.


Sep 15

Qiao He
Local Arithmetic Siegel-Weil Formula at Ramified Prime
In this talk, I will describe a local arithmetic Siegel-Weil formula which relates certain intersection number on U(1,1) Rapoport-Zink space with local density. Via p-adic uniformization, this can be used to establish a global Siegel-Weil formula. The main novelty of this work is that we consider the ramified case. This is a joint work with Yousheng Shi and Tonghai Yang.


Sep 22

Johnny Han
Bounding Numbers Fields up to Discriminant

For those interested in arithmetic statistics, I'll present a quick proof of Schmidt's bound on numbers fields of given degree and bounded discriminant, as well as giving a quick overview of recent improvements on this bound by Ellenberg and Venkatesh.


Sep 29

Brandon Boggess
Dial M_{1,1} for moduli

We'll try to give a brief introduction to moduli problems, with an eye towards moduli of elliptic curves.


Oct 6

Eiki Norizuki
Character Ratio of the Transvection in GL_n(F_q)

This will be a prep talk for Wednesday's NTS talk by Shamgar Gurevich. We will talk about the character ratio of the transvection in GL_n(F_q) and results concerning this quantity.

Oct 13

Di Chen
Recent applications of geometry of numbers.

I will review geometry of numbers and then discuss its applications to bounds of 2-torsion in class groups of number fields (2017) in detail. If time permits, I will also discuss its application to counting number fields with bounded discriminant (2019) briefly.

Oct 20

Yu Fu
Representation stability and the Cohen- Lenstra Conjecture.

I will talk about the tool of representation stability in cohomology and how can one use this to do some algebraic counting over finite field, how it works in the proof of the Cohen- Lenstra conjecture over function field in Jordan's 2015 paper if time permits.