Difference between revisions of "NTSGrad Fall 2020/Abstracts"
Line 89: | Line 89: | ||
| bgcolor="#BCD2EE" | | | bgcolor="#BCD2EE" | | ||
I will talk about the tool of representation stability in cohomology and how can one use this to do some algebraic counting over finite field, how it works in the proof of the Cohen- Lenstra conjecture over function field in Jordan's 2015 paper if time permits. | I will talk about the tool of representation stability in cohomology and how can one use this to do some algebraic counting over finite field, how it works in the proof of the Cohen- Lenstra conjecture over function field in Jordan's 2015 paper if time permits. | ||
+ | |} | ||
+ | </center> | ||
+ | |||
+ | |||
+ | == Oct 27 == | ||
+ | |||
+ | <center> | ||
+ | {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | ||
+ | |- | ||
+ | | bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Yu Fu''' | ||
+ | |- | ||
+ | | bgcolor="#BCD2EE" align="center" | ''Belyi’s Theorem and Grothendieck’s dessins d’enfants (children’s drawings)'' | ||
+ | |- | ||
+ | | bgcolor="#BCD2EE" | | ||
+ | Belyi’s theorem claims that a complex smooth projective curve X can be defined over a number field, if and only if, there exists a non-constant morphism from X to P^1 as a branched cover with at most three ramification locus. The term dessins d’enfants was coined by Grothendieck in Esquisse d’un programme where he started studying dessins with the knowledge of the “obvious” if part of Belyi’s theorem. I will sketch most of the proof of Belyi’s theorem. If time permits, I will talk more about how Grothendieck was inspired by Belyi’s theorem and the subsequent studies of the faithful action of absolute Galois group Gal(Q^{\bar}/Q) on dessins. | ||
|} | |} | ||
</center> | </center> | ||
<br> | <br> |
Revision as of 15:29, 26 October 2020
This page contains the titles and abstracts for talks scheduled in the Fall 2020 semester. To go back to the main GNTS page, click here.
Sep 15
Qiao He |
Local Arithmetic Siegel-Weil Formula at Ramified Prime |
In this talk, I will describe a local arithmetic Siegel-Weil formula which relates certain intersection number on U(1,1) Rapoport-Zink space with local density. Via p-adic uniformization, this can be used to establish a global Siegel-Weil formula. The main novelty of this work is that we consider the ramified case. This is a joint work with Yousheng Shi and Tonghai Yang. |
Sep 22
Johnny Han |
Bounding Numbers Fields up to Discriminant |
For those interested in arithmetic statistics, I'll present a quick proof of Schmidt's bound on numbers fields of given degree and bounded discriminant, as well as giving a quick overview of recent improvements on this bound by Ellenberg and Venkatesh. |
Sep 29
Brandon Boggess |
Dial M_{1,1} for moduli |
We'll try to give a brief introduction to moduli problems, with an eye towards moduli of elliptic curves. |
Oct 6
Eiki Norizuki |
Character Ratio of the Transvection in GL_n(F_q) |
This will be a prep talk for Wednesday's NTS talk by Shamgar Gurevich. We will talk about the character ratio of the transvection in GL_n(F_q) and results concerning this quantity. |
Oct 13
Di Chen |
Recent applications of geometry of numbers. |
I will review geometry of numbers and then discuss its applications to bounds of 2-torsion in class groups of number fields (2017) in detail. If time permits, I will also discuss its application to counting number fields with bounded discriminant (2019) briefly. |
Oct 20
Yu Fu |
Representation stability and the Cohen- Lenstra Conjecture. |
I will talk about the tool of representation stability in cohomology and how can one use this to do some algebraic counting over finite field, how it works in the proof of the Cohen- Lenstra conjecture over function field in Jordan's 2015 paper if time permits. |
Oct 27
Yu Fu |
Belyi’s Theorem and Grothendieck’s dessins d’enfants (children’s drawings) |
Belyi’s theorem claims that a complex smooth projective curve X can be defined over a number field, if and only if, there exists a non-constant morphism from X to P^1 as a branched cover with at most three ramification locus. The term dessins d’enfants was coined by Grothendieck in Esquisse d’un programme where he started studying dessins with the knowledge of the “obvious” if part of Belyi’s theorem. I will sketch most of the proof of Belyi’s theorem. If time permits, I will talk more about how Grothendieck was inspired by Belyi’s theorem and the subsequent studies of the faithful action of absolute Galois group Gal(Q^{\bar}/Q) on dessins. |