Difference between revisions of "NTSGrad Spring 2018/Abstracts"
Soumyasankar (Talk  contribs) 
Soumyasankar (Talk  contribs) 

Line 24:  Line 24:  
 bgcolor="#F0A0A0" align="center" style="fontsize:125%"  '''Wanlin Li'''   bgcolor="#F0A0A0" align="center" style="fontsize:125%"  '''Wanlin Li'''  
    
−   bgcolor="#BCD2EE" align="center"  ''  +   bgcolor="#BCD2EE" align="center"  ''Intersection Theory on Modular Curves'' 
    
 bgcolor="#BCD2EE"    bgcolor="#BCD2EE"   
+  My talk is based on the paper by François Charles with title "FROBENIUS DISTRIBUTION FOR PAIRS OF ELLIPTIC CURVES AND EXCEPTIONAL ISOGENIES". I will talk about the main theorem and give some intuition and heuristic behind it. I will also give a sketch of the proof.  
−  
}  } 
Revision as of 23:24, 28 January 2018
This page contains the titles and abstracts for talks scheduled in the Spring 2018 semester. To go back to the main NTSGrad page, click here.
Jan 23
Solly Parenti 
RankinSelberg Lfunctions 
What do you get when you cross an Eisenstein series with a cuspform? An Lfunction! Since there's no modular forms course this semester, I will try to squeeze in an entire semester's course on modular forms during the first part of this talk, and then I'll explain the RankinSelberg method of establishing analytic continuation of certain Lfunctions. 
Jan 30
Wanlin Li 
Intersection Theory on Modular Curves 
My talk is based on the paper by François Charles with title "FROBENIUS DISTRIBUTION FOR PAIRS OF ELLIPTIC CURVES AND EXCEPTIONAL ISOGENIES". I will talk about the main theorem and give some intuition and heuristic behind it. I will also give a sketch of the proof.

Feb 6
Dongxi Ye 
Modular Forms, Borcherds Lifting and GrossZagier Type CM Value Formulas 
During the course of past decades, modular forms and Borcherds lifting have been playing an increasingly central role in number theory. In this talk, I will partially justify these by discussing some recent progress on some topics in number theory, such as representations by quadratic forms and GrossZagier type CM value formulas. 