Difference between revisions of "NTS ABSTRACTFall2019"

From UW-Math Wiki
Jump to: navigation, search
(Jan 23)
Line 2: Line 2:
  
  
== Jan 23 ==
+
== Sep 5 ==
  
 
<center>
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Yunqing Tang '''
+
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Euclid'''
 
|-
 
|-
| bgcolor="#BCD2EE"  align="center" | Reductions of abelian surfaces over global function fields
+
| bgcolor="#BCD2EE"  align="center" | Infinitely many primes
 
|-
 
|-
| bgcolor="#BCD2EE"  | For a non-isotrivial ordinary abelian surface $A$ over a global function field, under mild assumptions, we prove that there are infinitely many places modulo which $A$ is geometrically isogenous to the product of two elliptic curves. This result can be viewed as a generalization of a theorem of Chai and Oort. This is joint work with Davesh Maulik and Ananth Shankar.
+
| bgcolor="#BCD2EE"  | We introduce the notion of a prime number, and show that there are infinitely many of those.
  
 
|}                                                                         
 
|}                                                                         

Revision as of 10:13, 16 July 2019

Return to [1]


Sep 5

Euclid
Infinitely many primes
We introduce the notion of a prime number, and show that there are infinitely many of those.


</center>