Difference between revisions of "NTS Spring 2012"
From UW-Math Wiki
(→Spring 2012 Semester) |
(→Spring 2012 Semester: Zev is going to speak on Mar. 8th) |
||
Line 37: | Line 37: | ||
|- | |- | ||
| bgcolor="#E0E0E0"| Mar 8 (Thurs.) | | bgcolor="#E0E0E0"| Mar 8 (Thurs.) | ||
− | | bgcolor="#F0B0B0"| | + | | bgcolor="#F0B0B0"| [http://www.math.wisc.edu/~klagsbru/ Zev Klagsbrun] <br> (Madison) |
| bgcolor="#BCE2FE"|[[NTS Spring 2012/Abstracts#March 8 | <font color="black"><em>TBA</em></font>]] | | bgcolor="#BCE2FE"|[[NTS Spring 2012/Abstracts#March 8 | <font color="black"><em>TBA</em></font>]] | ||
|- | |- |
Revision as of 01:19, 16 February 2012
Number Theory – Representation Theory Seminar, University of Wisconsin–Madison
- When: Thursdays, 2:30pm–3:30pm.
- Where: Van Vleck Hall B129
- Please join the NT/RT mailing list: (you must be on a math department computer to use this link).
Spring 2012 Semester
Date | Speaker | Title (click to see abstract) |
Feb 2 (Thurs.) | Evan Dummit (Madison) |
Kakeya sets over non-archimedean local rings |
Feb 9 (Thurs.) | Who? (Where?) |
TBA |
Feb 16 (Thurs.) | Tonghai Yang (Madison) |
A little linear algebra on CM abelian surfaces |
Feb 23 (Thurs.) | Christelle Vincent (Madison) |
TBA |
Mar 1 (Thurs.) | Shamgar Gurevich (Madison) |
Computing the Matched Filter in Linear Time |
Mar 8 (Thurs.) | Zev Klagsbrun (Madison) |
TBA |
Mar 15 (Thurs.) | Yongqiang Zhao (Madison) |
TBA |
Mar 22 (Thurs.) | Paul Terwilliger (Madison) |
TBA |
Mar 29 (Thurs.) | David P. Roberts (U. of Minnesota Morris) |
TBA |
April 5 (Thurs.) | No seminar (Spring break!) |
Spring break! |
April 12 (Thurs.) | Chenyan Wu (Minnesota) |
TBA |
April 19 (Thurs.) | Robert Guralnick (U. of Southern California) |
TBA |
April 26 (Thurs.) | Frank Thorne (U. South Carolina) |
TBA |
May 3 (Thurs.) | Alina Cojocaru (U. Illinois at Chicago) |
TBA |
May 10 (Thurs.) | Samit Dasgupta (UC Santa Cruz) |
TBA |
Organizer contact information
Also of interest is the Grad student seminar which meets on Tuesdays.
Last semester's seminar page is here.
Return to the Algebra Group Page