Difference between revisions of "NTS Spring 2014/Abstracts"

From UW-Math Wiki
Jump to: navigation, search
(Created page with "== January 23 == <center> {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" |- | bgcolor="#F0A0A0" align="center" style="f...")
 
(January 23)
Line 4: Line 4:
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''who?''' (where?)
+
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''John Voight''' (Dartmouth)
 
|-
 
|-
| bgcolor="#BCD2EE"  align="center" | Title: what?
+
| bgcolor="#BCD2EE"  align="center" | Title: Numerical calculation of three-point branched covers of the projective line
 
|-
 
|-
 
| bgcolor="#BCD2EE"  |   
 
| bgcolor="#BCD2EE"  |   
Abstract: ...
+
Abstract: We exhibit a numerical method to compute three-point branched covers of the complex projective line. We develop algorithms for working explicitly with Fuchsian triangle groups and their finite index subgroups, and we use these algorithms to compute power series expansions of modular forms on these groups. This is joint work with Michael Klug, Michael Musty, and Sam Schiavone.
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>

Revision as of 07:49, 7 January 2014

January 23

John Voight (Dartmouth)
Title: Numerical calculation of three-point branched covers of the projective line

Abstract: We exhibit a numerical method to compute three-point branched covers of the complex projective line. We develop algorithms for working explicitly with Fuchsian triangle groups and their finite index subgroups, and we use these algorithms to compute power series expansions of modular forms on these groups. This is joint work with Michael Klug, Michael Musty, and Sam Schiavone.


Organizer contact information

Robert Harron

Sean Rostami


Return to the Number Theory Seminar Page

Return to the Algebra Group Page