Difference between revisions of "PDE Geometric Analysis seminar"

From UW-Math Wiki
Jump to: navigation, search
(PDE GA Seminar Schedule Fall 2016)
(PDE GA Seminar Schedule Fall 2019-Spring 2020)
 
(402 intermediate revisions by 14 users not shown)
Line 2: Line 2:
  
 
===[[Previous PDE/GA seminars]]===
 
===[[Previous PDE/GA seminars]]===
===[[Fall 2016 | Tentative schedule for Spring 2017]]===
+
===[[Fall 2020-Spring 2021 | Tentative schedule for Fall 2020-Spring 2021]]===
 +
 
 +
== PDE GA Seminar Schedule Fall 2019-Spring 2020 ==
 +
 
  
= PDE GA Seminar Schedule Fall 2016 =
 
 
{| cellpadding="8"
 
{| cellpadding="8"
!align="left" | date   
+
!style="width:20%" align="left" | date   
 
!align="left" | speaker
 
!align="left" | speaker
 
!align="left" | title
 
!align="left" | title
!align="left" | host(s)
+
!style="width:20%" align="left" | host(s)
|-
+
|-
|September 12
+
|Sep 9
| Daniel Spirn (U of Minnesota)
+
| Scott Smith (UW Madison)
|[[#Daniel Spirn Dipole Trajectories in Bose-Einstein Condensates ]]
+
|[[#Scott Smith | Recent progress on singular, quasi-linear stochastic PDE ]]
 +
| Kim and Tran
 +
|- 
 +
|Sep 14-15
 +
|
 +
|[[ # |AMS Fall Central Sectional Meeting https://www.ams.org/meetings/sectional/2267_program.html  ]]
 +
 +
|- 
 +
|Sep 23
 +
| Son Tu (UW Madison)
 +
|[[#Son Tu | State-Constraint static Hamilton-Jacobi equations in nested domains ]]
 +
| Kim and Tran
 +
|-  
 +
|Sep 28-29, VV901
 +
|  https://www.ki-net.umd.edu/content/conf?event_id=993
 +
|  Recent progress in analytical aspects of kinetic equations and related fluid models 
 +
 +
|- 
 +
|Oct 7
 +
| Jin Woo Jang (Postech)
 +
|[[#Jin Woo Jang| On a Cauchy problem for the Landau-Boltzmann equation ]]
 
| Kim
 
| Kim
 +
|- 
 +
|Oct 14
 +
| Stefania Patrizi (UT Austin)
 +
|[[#Stefania Patrizi | Dislocations dynamics: from microscopic models to macroscopic crystal plasticity ]]
 +
| Tran
 +
|- 
 +
|Oct 21
 +
| Claude Bardos (Université Paris Denis Diderot, France)
 +
|[[#Claude Bardos | From d'Alembert paradox to 1984 Kato criteria via 1941 1/3 Kolmogorov law and 1949 Onsager conjecture ]]
 +
| Li
 +
|- 
 +
|Oct 25-27, VV901
 +
| https://www.ki-net.umd.edu/content/conf?event_id=1015
 +
||  Forward and Inverse Problems in Kinetic Theory
 +
| Li
 +
|-
 +
|Oct 28
 +
| Albert Ai (UW Madison)
 +
|[[#Albert Ai | Two dimensional gravity waves at low regularity: Energy estimates  ]]
 +
| Ifrim
 +
|- 
 +
|Nov 4
 +
| Yunbai Cao (UW Madison)
 +
|[[#Yunbai Cao | Vlasov-Poisson-Boltzmann system in Bounded Domains]]
 +
| Kim and Tran
 +
|- 
 +
|Nov 18
 +
| Ilyas Khan (UW Madison)
 +
|[[#Ilyas Khan | The Uniqueness of Asymptotically Conical Self-Shrinkers in High Codimension ]]
 +
| Kim and Tran
 
|-
 
|-
|September 19
+
|Nov 25
| Donghyun Lee  (UW-Madison)
+
| Mathew Langford (UT Knoxville)
|[[#Donghyun Lee | The Boltzmann equation with specular boundary condition in convex domains ]]
+
|[[#Mathew Langford | Concavity of the arrival time ]]
 +
| Angenent
 +
|-
 +
|Dec 9 - Colloquium (4-5PM)
 +
| Hui Yu (Columbia)
 +
|[[#Hui Yu | TBA ]]
 +
| Tran
 +
|-  
 +
|Feb. 3
 +
| Philippe LeFloch (Sorbonne University and CNRS)
 +
|[[#Philippe LeFloch | Nonlinear stability of self-gravitating matter under low decay and weak regularity conditions  ]]
 
| Feldman
 
| Feldman
|-
+
|-  
|September 26
+
|Feb. 10
| Kevin Zumbrun (Indiana)
+
| Joonhyun La (Stanford)
|[[#Kevin Zumbrun |   A Stable Manifold Theorem for a class of degenerate evolution equations ]]
+
|[[#Joonhyun La | On a kinetic model of polymeric fluids ]]
| Kim  
+
| Kim
|-
+
|-
|October 3
+
|Feb 17
| Will Feldman (UChicago )
+
| Yannick Sire (JHU)
|[[#Will Feldman | Liquid Drops on a Rough Surface  ]]
+
|[[#Yannick Sire | Minimizers for the thin one-phase free boundary problem ]]
| Lin & Tran
+
| Tran
|-
+
|-
|October 10
+
|Feb 19 - Colloquium (4-5PM)
| Ryan Hynd (UPenn)
+
| Zhenfu Wang (University of Pennsylvania)
|[[#Ryan Hynd Extremal functions for Morrey’s inequality in convex domains  ]]
+
|[[#Zhenfu Wang | Quantitative Methods for the Mean Field Limit Problem ]]
 +
| Tran
 +
|-  
 +
|Feb 24
 +
| Matthew Schrecker (UW Madison)
 +
|[[#Matthew Schrecker | Existence theory and Newtonian limit for 1D relativistic Euler equations ]]
 
| Feldman
 
| Feldman
 +
|- 
 +
|March 2
 +
| Theodora Bourni (UT Knoxville)
 +
|[[#Speaker | Polygonal Pancakes ]]
 +
| Angenent
 +
|- 
 +
|March 3 -- Analysis seminar
 +
| William Green (Rose-Hulman Institute of Technology)
 +
|[[#William Green  |  Dispersive estimates for the Dirac equation ]]
 +
| Betsy Stovall
 
|-
 
|-
|October 17
+
|March 9
| Gung-Min Gie (Louisville)
+
| Ian Tice (CMU)
|[[#Gung-Min Gie | Boundary layer analysis of some incompressible flows  ]]
+
|[[#Ian Tice| Traveling wave solutions to the free boundary Navier-Stokes equations ]]
 
| Kim
 
| Kim
|-
+
|-
|October 24
+
|March 16
| Tau Shean Lim (UW Madison)
+
| No seminar (spring break)
|[[#Tau Shean Lim | Traveling Fronts of Reaction-Diffusion Equations with Ignition Media and Levy Operators  ]]
+
|[[#Speaker | TBA ]]
| Kim & Tran
+
| Host
|-
+
|- 
|October 31 ('''Special time and room''': B313VV, 3PM-4PM)
+
|March 23 (CANCELLED)
| Tarek Elgindi ( Princeton)
+
| Jared Speck (Vanderbilt)
|[[#Tarek Elgindi | Propagation of Singularities in Incompressible Fluids  ]]
+
|[[#Jared Speck | CANCELLED ]]
| Lee & Kim
+
| Schrecker
|-
+
|- 
|November 7
+
|March 30 (CANCELLED)
| Adrian Tudorascu (West Virginia)
+
| Huy Nguyen (Brown)
|[[#Adrian Tudorascu | Hamilton-Jacobi equations in the Wasserstein space of probability measures  ]]
+
|[[#Huy Nguyen | CANCELLED ]]
 +
| Kim and Tran
 +
|- 
 +
|April 6 (CANCELLED, will be rescheduled)
 +
| Zhiyan Ding (UW Madison)
 +
|[[#Zhiyan Ding | (CANCELLED) Ensemble Kalman Sampling: well-posedness, mean-field limit and convergence analysis ]]
 +
| Kim and Tran
 +
|-
 +
|April 13 (CANCELLED)
 +
| Hyunju Kwon (IAS)
 +
|[[#Hyunju Kwon | CANCELLED ]]
 +
| Kim
 +
|-
 +
|April 20 (CANCELLED)
 +
| Adrian Tudorascu (WVU)
 +
|[[#Adrian Tudorascu | (CANCELLED) On the Lagrangian description of the Sticky Particle flow ]]
 
| Feldman
 
| Feldman
|-
+
|-
|November 14
+
|April 27 
| Alexis Vasseur ( UT-Austin)
+
| Christof Sparber (UIC)
|[[#Alexis Vasseur | Compressible Navier-Stokes equations with degenerate viscosities ]]
+
|[[#Christof Sparber | (CANCELLED) ]]
| Feldman
+
| Host
|-
+
|-
|November 21
+
|May 18-21
| Minh-Binh Tran (UW Madison )
+
| Madison Workshop in PDE 2020
|[[#Minh-Binh Tran | Quantum Kinetic Problems  ]]
+
|[[#Speaker | (CANCELLED) -- Move to 05/2021 ]]
| Hung Tran
+
| Tran
|-
 
|November 28
 
| David Kaspar (Brown)
 
|[[#David Kaspar | Kinetics of shock clustering  ]]
 
|Tran
 
|-
 
|December 5
 
| Brian Weber (University of Pennsylvania)
 
|[[# |  TBA  ]]
 
|Bing Wang
 
|-
 
|December 12
 
|
 
|[[# |    ]]
 
|  
 
 
|}
 
|}
  
=Abstracts=
+
== Abstracts ==
 +
 
 +
===Scott Smith===
 +
 
 +
Title: Recent progress on singular, quasi-linear stochastic PDE
 +
 
 +
Abstract: This talk with focus on quasi-linear parabolic equations with an irregular forcing .  These equations are ill-posed in the traditional sense of distribution theory.  They require flexibility in the notion of solution as well as new a priori bounds.  Drawing on the philosophy of rough paths and regularity structures, we develop the analytic part of a small data solution theory.  This is joint work with Felix Otto, Hendrik Weber, and Jonas Sauer.
 +
 
 +
 
 +
===Son Tu===
  
===Daniel Spirn===
+
Title: State-Constraint static Hamilton-Jacobi equations in nested domains
  
Dipole Trajectories in Bose-Einstein Condensates
+
Abstract: We study state-constraint static Hamilton-Jacobi equations in a sequence of domains $\{\Omega_k\}$ in $\mathbb R^n$ such that $\Omega_k \subset \Omega_{k+1}$ for all $k \in \mathbb N$. We obtain rates of convergence of $u_k$, the solution to the state-constraint problem in $\Omega_k$, to $u$, the solution to the corresponding problem in $\Omega=\bigcup_k \Omega_k$. In many cases,  the rates obtained are proven to be optimal (it's a joint work with Yeoneung Kim and Hung V. Tran).
  
Bose-Einstein condensates (BEC) are a state of matter in which supercooled atoms condense into the lowest possible quantum state.  One interesting important feature of BECs are the presence of vortices that form when the condensate is stirred with lasers.  I will discuss the behavior of these vortices, which interact with both the confinement potential and other vortices.  I will also discuss a related inverse problem in which the features of the confinement can be extracted by the propagation of vortex dipoles.
 
  
===Donghyun Lee===
+
===Jin Woo Jang===
  
The Boltzmann equation with specular reflection boundary condition in convex domains
+
Title: On a Cauchy problem for the Landau-Boltzmann equation
  
I will present a recent work (https://arxiv.org/abs/1604.04342) with Chanwoo Kim on the global-wellposedness and stability of the Boltzmann equation in general smooth convex domains.
+
Abstract: In this talk, I will introduce a recent development in the global well-posedness of the Landau equation (1936) in a general smooth bounded domain, which has been a long-outstanding open problem. This work proves the global stability of the Landau equation in an $L^\infty_{x,v}$ framework with the Coulombic potential in a general smooth bounded domain with the specular reflection boundary condition for initial perturbations of the Maxwellian equilibrium states. Our methods consist of the generalization of the well-posedness theory for the kinetic Fokker-Planck equation (HJV-2014, HJJ-2018) and the extension of the boundary value problem to a whole space problem, as well as the use of a recent extension of De Giorgi-Nash-Moser theory for the kinetic Fokker-Planck equations (GIMV-2016) and the Morrey estimates (BCM-1996) to further control the velocity derivatives, which ensures the uniqueness. This is a joint work with Y. Guo, H. J. Hwang, and Z. Ouyang.
  
===Kevin Zumbrun===
 
  
TITLE: A Stable Manifold Theorem for a class of degenerate evolution equations
+
===Stefania Patrizi===
  
ABSTRACT: We establish a Stable Manifold Theorem, with consequent exponential decay to equilibrium, for a class
+
Title:  
 +
Dislocations dynamics: from microscopic models to macroscopic crystal plasticity
  
of degenerate evolution equations $Au'+u=D(u,u)$ with A bounded, self-adjoint, and one-to-one, but not invertible, and  
+
Abstract: Dislocation theory aims at explaining the plastic behavior of materials by the motion of line defects in crystals. Peierls-Nabarro models consist in approximating the geometric motion of these defects by nonlocal reaction-diffusion equations. We study the asymptotic  limit of  solutions of  Peierls-Nabarro equations. Different scalings lead to different models at microscopic, mesoscopic and macroscopic scale. This is  joint work with E. Valdinoci.
  
$D$ a bounded, symmetric bilinear map.  This is related to a number of other scenarios investigated recently for which the
 
  
associated linearized ODE $Au'+u=0$ is ill-posed with respect to the Cauchy problem.  The particular case studied here
+
===Claude Bardos===
 +
Title: From the d'Alembert paradox to the 1984 Kato criteria via the 1941 $1/3$ Kolmogorov law and the 1949 Onsager conjecture
  
pertains to the steady Boltzmann equation, yielding exponential decay of large-amplitude shock and boundary layers.
+
Abstract: Several of my recent contributions, with Marie Farge, Edriss Titi, Emile Wiedemann, Piotr and Agneska Gwiadza, were motivated by the following issues: The role of boundary effect in mathematical theory of fluids mechanic and the similarity, in presence of these effects, of the weak convergence in the zero viscosity limit and the statistical theory of turbulence. As a consequence, I will recall the Onsager conjecture and compare it to the issue of anomalous energy dissipation.
  
 +
Then I will give a proof of the local conservation of energy under convenient hypothesis in a domain with boundary and give supplementary condition that imply the global conservation of energy in a domain with boundary and the absence of anomalous energy dissipation in the zero viscosity limit of solutions of the Navier-Stokes equation in the presence of no slip boundary condition.
  
 +
Eventually the above results are compared with  several forms of a basic theorem of Kato in the presence of a Lipschitz solution of the Euler equations and one may insist on the fact that in such case the the absence of anomalous energy dissipation is {\bf equivalent} to the persistence of regularity in the zero viscosity limit. Eventually this remark contributes to the resolution of the d'Alembert Paradox.
  
===Will Feldman===
+
===Albert Ai===
 +
Title: Two dimensional gravity waves at low regularity: Energy estimates
  
Liquid Drops on a Rough Surface
+
Abstract: In this talk, we will consider the gravity water wave equations in two space dimensions. Our focus is on sharp cubic energy estimates and low regularity solutions. Precisely, we will introduce techniques to prove a new class of energy estimates, which we call balanced cubic estimates. This yields a key improvement over the earlier cubic estimates of Hunter-Ifrim-Tataru, while preserving their scale invariant character and their position-velocity potential holomorphic coordinate formulation. Even without using Strichartz estimates, these results allow us to significantly lower the Sobolev regularity threshold for local well-posedness. This is joint work with Mihaela Ifrim and Daniel Tataru.
  
I will discuss the problem of determining the minimal energy shape of a liquid droplet resting on a rough solid surface. The shape of a liquid drop on a solid is strongly affected by the micro-structure of the surface on which it rests, where the surface inhomogeneity arises through varying chemical composition and surface roughness.  I will explain a macroscopic regularity theory for the free boundary which allows to study homogenization, and more delicate properties like the size of the boundary layer induced by the surface roughness.  
+
===Ilyas Khan===
 +
Title: The Uniqueness of Asymptotically Conical Self-Shrinkers in High Codimension.
  
The talk is based on joint work with Inwon Kim. A remark for those attending the weekend conference: this talk will attempt to have as little as possible overlap with I. Kim's conference talks.  
+
Abstract: In this talk, we will consider self-shrinking solitons of the mean curvature flow that are smoothly asymptotic to a Riemannian cone in $\mathbb{R}^n$. In 2011, L. Wang proved the uniqueness of self-shrinking ends asymptotic to a cone $C$ in the case of hypersurfaces (codimension 1) by using a backwards uniqueness result for the heat equation due to Escauriaza, Sverak, and Seregin. Later, J. Bernstein proved the same fact using purely elliptic methods. We consider the case of self-shrinkers in high codimension, and outline how to prove the same uniqueness result in this significantly more general case, by using geometric arguments and extending Bernstein’s result.
  
===Ryan Hynd===
+
===Mathew Langford===
 +
Title: Concavity of the arrival time
  
Extremal functions for Morrey’s inequality in convex domains
+
Abstract:  We present a simple connection between differential Harnack inequalities for hypersurface flows and natural concavity properties of their time-of-arrival functions. We prove these concavity properties directly for a large class of flows by applying a novel concavity maximum principle argument to the corresponding level set flow equations. In particular, this yields a short proof of Hamilton’s differential Harnack inequality for mean curvature flow and, more generally, Andrews’ differential Harnack inequalities for certain “$\alpha$-inverse-concave” flows.
  
A celebrated result in the theory of Sobolev spaces is Morrey's inequality, which establishes the continuous embedding of the continuous functions in certain Sobolev spaces. Interestingly enough the equality case of this inequality has not been thoroughly investigated (unless the underlying domain is R^n). We show that if the underlying domain is a bounded convex domain, then the extremal functions are determined up to a multiplicative factor.  We will explain why the assertion is false if convexity is dropped and why convexity is not necessary for this result to hold.
+
===Philippe LeFloch===
 +
Title: Nonlinear stability of self-gravitating matter under low decay and weak regularity conditions
  
===Gung-Min Gie ===
+
Abstract:  I will present recent progress on the global evolution problem for self-gravitating matter. (1) For Einstein's constraint equations, motivated by a scheme proposed by Carlotto and Schoen I will show the existence of asymptotically Euclidean Einstein spaces with low decay; joint work with T. Nguyen.
  
Boundary layer analysis of some incompressible flows
+
(2) For Einstein's evolution equations in the regime near Minkowski spacetime, I will show the global nonlinear stability of massive matter fields; joint work with Y. Ma.  
 
The motions of viscous and inviscid fluids are modeled respectively by the Navier-Stokes and Euler equations. Considering the Navier-Stokes equations at vanishing viscosity as a singular perturbation of the Euler equations, one major problem, still essentially open, is to verify if the Navier-Stokes solutions converge as the viscosity tends to zero to the Euler solution in the presence of physical boundary. In this talk, we study the inviscid limit and boundary layers of some simplified Naiver-Stokes equations by either imposing a certain symmetry to the flow or linearizing the model around a stationary Euler flow. For the examples, we systematically use the method of correctors proposed earlier by J. L. Lions and construct an asymptotic expansion as the sum of the Navier-Stokes solution and the corrector. The corrector, which corrects the discrepancies between the boundary values of the viscous and inviscid solutions, is in fact an (approximating) solution of the corresponding Prandtl type equations. The validity of our asymptotic expansions is then confirmed globally in the whole domain by energy estimates on the difference of the viscous solution and the proposed expansion. This is a joint work with J. Kelliher, M. Lopes Filho, A. Mazzucato, and H. Nussenzveig Lopes.
 
  
===Tau Shean Lim===
+
(3) For the colliding gravitational wave problem, I will show the existence of weakly regular spacetimes containing geometric singularities across which junction conditions are imposed; joint work with B. Le Floch and G. Veneziano.
  
Traveling Fronts of Reaction-Diffusion Equations with Ignition Media and Levy Operators
 
  
We discuss traveling front solutions u(t,x) = U(x-ct) of reaction-diffusion equations u_t = Lu + f(u) with ignition media f and diffusion operators L generated by symmetric Levy processes X_t. Existence and uniqueness of fronts are well-known in the case of classical diffusion (i.e., Lu = Laplacian(u)) and non-local diffusion (Lu = J*u - u). Our work extends these results to general Levy operators. In particular, we show that a strong diffusivity in the underlying process (in the sense that the first moment of X_1 is infinite) prevents formation of fronts, while a weak diffusivity gives rise to a unique (up to translation) front U and speed c>0.
+
===Joonhyun La===
 +
Title: On a kinetic model of polymeric fluids
  
===Tarek M. ELgindi===
+
Abstract: In this talk, we prove global well-posedness of a system describing behavior of dilute flexible polymeric fluids. This model is based on kinetic theory, and a main difficulty for this system is its multi-scale nature. A new function space, based on moments, is introduced to address this issue, and this function space allows us to deal with larger initial data.
  
Propagation of Singularities in Incompressible Fluids
 
  
We will discuss some recent results on the local and global stability of certain singular solutions to the incompressible 2d Euler equation. We will begin by giving a brief overview of the classical and modern results on the 2d Euler equation--particularly related to well-posedness theory in critical spaces. Then we will present a new well-posedness class which allows for merely Lipschitz continuous velocity fields and non-decaying vorticity. This will be based upon some interesting estimates for singular integrals on spaces with L^\infty scaling. After that we will introduce a class of scale invariant solutions to the 2d Euler equation and describe some of their remarkable properties including the existence of pendulum-like quasi periodic solutions and infinite-time cusp formation in vortex patches with corners. This is a joint work with I. Jeong.
+
===Yannick Sire===
 +
Title: Minimizers for the thin one-phase free boundary problem
  
 +
Abstract: We consider the thin one-phase free boundary problem, associated to minimizing a weighted Dirichlet energy of thefunction in the half-space plus the area of the positivity set of that function restricted to the boundary. I will provide a rather complete picture of the (partial ) regularity of the free boundary, providing content and structure estimates on the singular set of the free boundary when it exists. All of these results hold for the full range of the relevant weight related to an anomalous diffusion on the boundary. The approach does not follow the standard one introduced in the seminal work of Alt and Caffarelli. Instead, the nonlocal nature of the distributional measure associated to a minimizer necessitates arguments which are less reliant on the underlying PDE. This opens several directions of research that I will try to describe.
  
===Adrian Tudorascu===
+
===Matthew Schrecker===
 +
Title: Existence theory and Newtonian limit for 1D relativistic Euler equations
 +
 
 +
Abstract: I will present the results of my recent work with Gui-Qiang Chen on the Euler equations in the conditions of special relativity.  I will show how the theory of compensated compactness may be used to obtain the existence of entropy solutions to this system. Moreover, it is expected that as the light speed grows to infinity, solutions to the relativistic Euler equations will converge to their classical (Newtonian) counterparts. The theory we develop is also sufficient to demonstrate this convergence rigorously.
 +
 
 +
===Theodora Bourni===
 +
Title: Polygonal Pancakes
  
Hamilton-Jacobi equations in the Wasserstein space of probability measures
+
Abstract:  We study ancient collapsed solutions to mean curvature flow, $\{M^n_t\}_{t\in(-\infty,0)}$, in terms of their squash down: $\Omega_*=\lim_{t\to-\infty}\frac{1}{-t} M_t$. We show that $\Omega_*$ must be a convex body which circumscribes $S^1$ and for every such $\Omega_*$ we construct a solution with this prescribed squash down. Our analysis includes non-compact examples, in which setting we disprove a conjecture of White stating that all eternal solutions must be translators. This is joint work with Langford and Tinaglia.
  
In 2008 Gangbo, Nguyen and Tudorascu showed that certain variational solutions of the Euler-Poisson system in 1D can be regarded as optimal paths for the value-function giving the viscosity solution of some (infinite-dimensional) Hamilton-Jacobi equation whose phase-space is the Wasserstein space of Borel probability measures with finite second moment. At around the same time, Lasry, Lions, and others became interested in such Hamilton-Jacobi equations (HJE) in connection with their developing theory of Mean-Field games. A different approach (less intrinsic than ours) to the notion of viscosity solution was preferred, one that made an immediate connection between HJE in the Wasserstein space and HJE in Hilbert spaces (whose theory was well-studied and fairly well-understood). At the heart of the difference between these approaches lies the choice of the sub/supper-differential in the context of the Wasserstein space (i.e. the interpretation of ``cotangent space'' to this ``pseudo-Riemannian'' manifold) . In this talk I will start with a brief introduction to Mean-Field games and Optimal Transport, then I will discuss the challenges we encounter in the analysis of (our intrinsic) viscosity solutions of HJE in the Wasserstein space. Based on joint work with W. Gangbo.
+
===Ian Tice===
 +
Title: Traveling wave solutions to the free boundary Navier-Stokes equations
  
===Alexis Vasseur===
+
Abstract: Consider a layer of viscous incompressible fluid bounded below
 +
by a flat rigid boundary and above by a moving boundary.  The fluid is
 +
subject to gravity, surface tension, and an external stress that is
 +
stationary when viewed in coordinate system moving at a constant
 +
velocity parallel to the lower boundary.  The latter can model, for
 +
instance, a tube blowing air on the fluid while translating across the
 +
surface.  In this talk we will detail the construction of traveling wave
 +
solutions to this problem, which are themselves stationary in the same
 +
translating coordinate system.  While such traveling wave solutions to
 +
the Euler equations are well-known, to the best of our knowledge this is
 +
the first construction of such solutions with viscosity.  This is joint
 +
work with Giovanni Leoni.
  
Compressible Navier-Stokes equations with degenerate viscosities 
 
  
We will discuss recent results on the construction of weak solutions for
+
===Zhiyan Ding===
3D compressible Navier-Stokes equations with degenerate viscosities.
+
Title: Ensemble Kalman Sampling: well-posedness, mean-field limit and convergence analysis
The method is based on the Bresch and Desjardins entropy. The main
 
contribution is to derive  MV type inequalities for the weak solutions,
 
even if it is not verified by the first level of approximation. This
 
provides existence of global solutions in time, for the compressible
 
Navier-Stokes equations,  in three dimensional space, with large initial
 
data, possibly vanishing on the vacuum.
 
  
===Minh-Binh Tran===
+
Abstract:  Ensemble Kalman Sampling (EKS) is a method to find iid samples from a target distribution. As of today, why the algorithm works and how it converges is mostly unknown. In this talk, I will focus on the continuous version of EKS with linear forward map, a coupled SDE system. I will talk about its well-posedness and justify its mean-filed limit is a Fokker-Planck equation, whose equilibrium state is the target distribution.
  
Quantum kinetic problems
+
===Adrian Tudorascu===
 +
Title: On the Lagrangian description of the Sticky Particle flow
  
After the production of the first BECs, there has been an explosion of research on the kinetic theory associated to BECs. Later, Gardinier, Zoller and collaborators derived a Master Quantum Kinetic Equation for BECs and introduced the terminology ”Quantum Kinetic Theory”. In 2012, Reichl and collaborators made a breakthrough in discovering a new collision operator, which had been missing in the previous works.
+
Abstract: R. Hynd has recently proved that for absolutely continuous initial velocities the Sticky Particle system admits solutions described by monotone flow maps in Lagrangian coordinates. We present a generalization of this result to general initial velocities and discuss some consequences. (This is based on ongoing work with M. Suder.)
My talk is devoted to the description of our recent mathematical works on quantum kinetic theory. The talk will be based on my joint works with Alonso, Gamba (existence, uniqueness, propagation of moments), Nguyen (Maxwellian lower bound), Soffer (coupling Schrodinger–kinetic equations), Escobedo (convergence to equilibrium), Craciun (the analog between the global attractor conjecture in chemical reaction network and the convergence to equilibrium of quantum kinetic equations), Reichl (derivation).
 

Latest revision as of 20:41, 6 April 2020

The seminar will be held in room 901 of Van Vleck Hall on Mondays from 3:30pm - 4:30pm, unless indicated otherwise.

Previous PDE/GA seminars

Tentative schedule for Fall 2020-Spring 2021

PDE GA Seminar Schedule Fall 2019-Spring 2020

date speaker title host(s)
Sep 9 Scott Smith (UW Madison) Recent progress on singular, quasi-linear stochastic PDE Kim and Tran
Sep 14-15 AMS Fall Central Sectional Meeting https://www.ams.org/meetings/sectional/2267_program.html
Sep 23 Son Tu (UW Madison) State-Constraint static Hamilton-Jacobi equations in nested domains Kim and Tran
Sep 28-29, VV901 https://www.ki-net.umd.edu/content/conf?event_id=993 Recent progress in analytical aspects of kinetic equations and related fluid models
Oct 7 Jin Woo Jang (Postech) On a Cauchy problem for the Landau-Boltzmann equation Kim
Oct 14 Stefania Patrizi (UT Austin) Dislocations dynamics: from microscopic models to macroscopic crystal plasticity Tran
Oct 21 Claude Bardos (Université Paris Denis Diderot, France) From d'Alembert paradox to 1984 Kato criteria via 1941 1/3 Kolmogorov law and 1949 Onsager conjecture Li
Oct 25-27, VV901 https://www.ki-net.umd.edu/content/conf?event_id=1015 Forward and Inverse Problems in Kinetic Theory Li
Oct 28 Albert Ai (UW Madison) Two dimensional gravity waves at low regularity: Energy estimates Ifrim
Nov 4 Yunbai Cao (UW Madison) Vlasov-Poisson-Boltzmann system in Bounded Domains Kim and Tran
Nov 18 Ilyas Khan (UW Madison) The Uniqueness of Asymptotically Conical Self-Shrinkers in High Codimension Kim and Tran
Nov 25 Mathew Langford (UT Knoxville) Concavity of the arrival time Angenent
Dec 9 - Colloquium (4-5PM) Hui Yu (Columbia) TBA Tran
Feb. 3 Philippe LeFloch (Sorbonne University and CNRS) Nonlinear stability of self-gravitating matter under low decay and weak regularity conditions Feldman
Feb. 10 Joonhyun La (Stanford) On a kinetic model of polymeric fluids Kim
Feb 17 Yannick Sire (JHU) Minimizers for the thin one-phase free boundary problem Tran
Feb 19 - Colloquium (4-5PM) Zhenfu Wang (University of Pennsylvania) Quantitative Methods for the Mean Field Limit Problem Tran
Feb 24 Matthew Schrecker (UW Madison) Existence theory and Newtonian limit for 1D relativistic Euler equations Feldman
March 2 Theodora Bourni (UT Knoxville) Polygonal Pancakes Angenent
March 3 -- Analysis seminar William Green (Rose-Hulman Institute of Technology) Dispersive estimates for the Dirac equation Betsy Stovall
March 9 Ian Tice (CMU) Traveling wave solutions to the free boundary Navier-Stokes equations Kim
March 16 No seminar (spring break) TBA Host
March 23 (CANCELLED) Jared Speck (Vanderbilt) CANCELLED Schrecker
March 30 (CANCELLED) Huy Nguyen (Brown) CANCELLED Kim and Tran
April 6 (CANCELLED, will be rescheduled) Zhiyan Ding (UW Madison) (CANCELLED) Ensemble Kalman Sampling: well-posedness, mean-field limit and convergence analysis Kim and Tran
April 13 (CANCELLED) Hyunju Kwon (IAS) CANCELLED Kim
April 20 (CANCELLED) Adrian Tudorascu (WVU) (CANCELLED) On the Lagrangian description of the Sticky Particle flow Feldman
April 27 Christof Sparber (UIC) (CANCELLED) Host
May 18-21 Madison Workshop in PDE 2020 (CANCELLED) -- Move to 05/2021 Tran

Abstracts

Scott Smith

Title: Recent progress on singular, quasi-linear stochastic PDE

Abstract: This talk with focus on quasi-linear parabolic equations with an irregular forcing . These equations are ill-posed in the traditional sense of distribution theory. They require flexibility in the notion of solution as well as new a priori bounds. Drawing on the philosophy of rough paths and regularity structures, we develop the analytic part of a small data solution theory. This is joint work with Felix Otto, Hendrik Weber, and Jonas Sauer.


Son Tu

Title: State-Constraint static Hamilton-Jacobi equations in nested domains

Abstract: We study state-constraint static Hamilton-Jacobi equations in a sequence of domains $\{\Omega_k\}$ in $\mathbb R^n$ such that $\Omega_k \subset \Omega_{k+1}$ for all $k \in \mathbb N$. We obtain rates of convergence of $u_k$, the solution to the state-constraint problem in $\Omega_k$, to $u$, the solution to the corresponding problem in $\Omega=\bigcup_k \Omega_k$. In many cases, the rates obtained are proven to be optimal (it's a joint work with Yeoneung Kim and Hung V. Tran).


Jin Woo Jang

Title: On a Cauchy problem for the Landau-Boltzmann equation

Abstract: In this talk, I will introduce a recent development in the global well-posedness of the Landau equation (1936) in a general smooth bounded domain, which has been a long-outstanding open problem. This work proves the global stability of the Landau equation in an $L^\infty_{x,v}$ framework with the Coulombic potential in a general smooth bounded domain with the specular reflection boundary condition for initial perturbations of the Maxwellian equilibrium states. Our methods consist of the generalization of the well-posedness theory for the kinetic Fokker-Planck equation (HJV-2014, HJJ-2018) and the extension of the boundary value problem to a whole space problem, as well as the use of a recent extension of De Giorgi-Nash-Moser theory for the kinetic Fokker-Planck equations (GIMV-2016) and the Morrey estimates (BCM-1996) to further control the velocity derivatives, which ensures the uniqueness. This is a joint work with Y. Guo, H. J. Hwang, and Z. Ouyang.


Stefania Patrizi

Title: Dislocations dynamics: from microscopic models to macroscopic crystal plasticity

Abstract: Dislocation theory aims at explaining the plastic behavior of materials by the motion of line defects in crystals. Peierls-Nabarro models consist in approximating the geometric motion of these defects by nonlocal reaction-diffusion equations. We study the asymptotic limit of solutions of Peierls-Nabarro equations. Different scalings lead to different models at microscopic, mesoscopic and macroscopic scale. This is joint work with E. Valdinoci.


Claude Bardos

Title: From the d'Alembert paradox to the 1984 Kato criteria via the 1941 $1/3$ Kolmogorov law and the 1949 Onsager conjecture

Abstract: Several of my recent contributions, with Marie Farge, Edriss Titi, Emile Wiedemann, Piotr and Agneska Gwiadza, were motivated by the following issues: The role of boundary effect in mathematical theory of fluids mechanic and the similarity, in presence of these effects, of the weak convergence in the zero viscosity limit and the statistical theory of turbulence. As a consequence, I will recall the Onsager conjecture and compare it to the issue of anomalous energy dissipation.

Then I will give a proof of the local conservation of energy under convenient hypothesis in a domain with boundary and give supplementary condition that imply the global conservation of energy in a domain with boundary and the absence of anomalous energy dissipation in the zero viscosity limit of solutions of the Navier-Stokes equation in the presence of no slip boundary condition.

Eventually the above results are compared with several forms of a basic theorem of Kato in the presence of a Lipschitz solution of the Euler equations and one may insist on the fact that in such case the the absence of anomalous energy dissipation is {\bf equivalent} to the persistence of regularity in the zero viscosity limit. Eventually this remark contributes to the resolution of the d'Alembert Paradox.

Albert Ai

Title: Two dimensional gravity waves at low regularity: Energy estimates

Abstract: In this talk, we will consider the gravity water wave equations in two space dimensions. Our focus is on sharp cubic energy estimates and low regularity solutions. Precisely, we will introduce techniques to prove a new class of energy estimates, which we call balanced cubic estimates. This yields a key improvement over the earlier cubic estimates of Hunter-Ifrim-Tataru, while preserving their scale invariant character and their position-velocity potential holomorphic coordinate formulation. Even without using Strichartz estimates, these results allow us to significantly lower the Sobolev regularity threshold for local well-posedness. This is joint work with Mihaela Ifrim and Daniel Tataru.

Ilyas Khan

Title: The Uniqueness of Asymptotically Conical Self-Shrinkers in High Codimension.

Abstract: In this talk, we will consider self-shrinking solitons of the mean curvature flow that are smoothly asymptotic to a Riemannian cone in $\mathbb{R}^n$. In 2011, L. Wang proved the uniqueness of self-shrinking ends asymptotic to a cone $C$ in the case of hypersurfaces (codimension 1) by using a backwards uniqueness result for the heat equation due to Escauriaza, Sverak, and Seregin. Later, J. Bernstein proved the same fact using purely elliptic methods. We consider the case of self-shrinkers in high codimension, and outline how to prove the same uniqueness result in this significantly more general case, by using geometric arguments and extending Bernstein’s result.

Mathew Langford

Title: Concavity of the arrival time

Abstract: We present a simple connection between differential Harnack inequalities for hypersurface flows and natural concavity properties of their time-of-arrival functions. We prove these concavity properties directly for a large class of flows by applying a novel concavity maximum principle argument to the corresponding level set flow equations. In particular, this yields a short proof of Hamilton’s differential Harnack inequality for mean curvature flow and, more generally, Andrews’ differential Harnack inequalities for certain “$\alpha$-inverse-concave” flows.

Philippe LeFloch

Title: Nonlinear stability of self-gravitating matter under low decay and weak regularity conditions

Abstract: I will present recent progress on the global evolution problem for self-gravitating matter. (1) For Einstein's constraint equations, motivated by a scheme proposed by Carlotto and Schoen I will show the existence of asymptotically Euclidean Einstein spaces with low decay; joint work with T. Nguyen.

(2) For Einstein's evolution equations in the regime near Minkowski spacetime, I will show the global nonlinear stability of massive matter fields; joint work with Y. Ma.

(3) For the colliding gravitational wave problem, I will show the existence of weakly regular spacetimes containing geometric singularities across which junction conditions are imposed; joint work with B. Le Floch and G. Veneziano.


Joonhyun La

Title: On a kinetic model of polymeric fluids

Abstract: In this talk, we prove global well-posedness of a system describing behavior of dilute flexible polymeric fluids. This model is based on kinetic theory, and a main difficulty for this system is its multi-scale nature. A new function space, based on moments, is introduced to address this issue, and this function space allows us to deal with larger initial data.


Yannick Sire

Title: Minimizers for the thin one-phase free boundary problem

Abstract: We consider the thin one-phase free boundary problem, associated to minimizing a weighted Dirichlet energy of thefunction in the half-space plus the area of the positivity set of that function restricted to the boundary. I will provide a rather complete picture of the (partial ) regularity of the free boundary, providing content and structure estimates on the singular set of the free boundary when it exists. All of these results hold for the full range of the relevant weight related to an anomalous diffusion on the boundary. The approach does not follow the standard one introduced in the seminal work of Alt and Caffarelli. Instead, the nonlocal nature of the distributional measure associated to a minimizer necessitates arguments which are less reliant on the underlying PDE. This opens several directions of research that I will try to describe.

Matthew Schrecker

Title: Existence theory and Newtonian limit for 1D relativistic Euler equations

Abstract: I will present the results of my recent work with Gui-Qiang Chen on the Euler equations in the conditions of special relativity. I will show how the theory of compensated compactness may be used to obtain the existence of entropy solutions to this system. Moreover, it is expected that as the light speed grows to infinity, solutions to the relativistic Euler equations will converge to their classical (Newtonian) counterparts. The theory we develop is also sufficient to demonstrate this convergence rigorously.

Theodora Bourni

Title: Polygonal Pancakes

Abstract: We study ancient collapsed solutions to mean curvature flow, $\{M^n_t\}_{t\in(-\infty,0)}$, in terms of their squash down: $\Omega_*=\lim_{t\to-\infty}\frac{1}{-t} M_t$. We show that $\Omega_*$ must be a convex body which circumscribes $S^1$ and for every such $\Omega_*$ we construct a solution with this prescribed squash down. Our analysis includes non-compact examples, in which setting we disprove a conjecture of White stating that all eternal solutions must be translators. This is joint work with Langford and Tinaglia.

Ian Tice

Title: Traveling wave solutions to the free boundary Navier-Stokes equations

Abstract: Consider a layer of viscous incompressible fluid bounded below by a flat rigid boundary and above by a moving boundary.  The fluid is subject to gravity, surface tension, and an external stress that is stationary when viewed in coordinate system moving at a constant velocity parallel to the lower boundary.  The latter can model, for instance, a tube blowing air on the fluid while translating across the surface.  In this talk we will detail the construction of traveling wave solutions to this problem, which are themselves stationary in the same translating coordinate system.  While such traveling wave solutions to the Euler equations are well-known, to the best of our knowledge this is the first construction of such solutions with viscosity.  This is joint work with Giovanni Leoni.


Zhiyan Ding

Title: Ensemble Kalman Sampling: well-posedness, mean-field limit and convergence analysis

Abstract: Ensemble Kalman Sampling (EKS) is a method to find iid samples from a target distribution. As of today, why the algorithm works and how it converges is mostly unknown. In this talk, I will focus on the continuous version of EKS with linear forward map, a coupled SDE system. I will talk about its well-posedness and justify its mean-filed limit is a Fokker-Planck equation, whose equilibrium state is the target distribution.

Adrian Tudorascu

Title: On the Lagrangian description of the Sticky Particle flow

Abstract: R. Hynd has recently proved that for absolutely continuous initial velocities the Sticky Particle system admits solutions described by monotone flow maps in Lagrangian coordinates. We present a generalization of this result to general initial velocities and discuss some consequences. (This is based on ongoing work with M. Suder.)