Difference between revisions of "PDE Geometric Analysis seminar"

From UW-Math Wiki
Jump to: navigation, search
(Abstracts)
(PDE GA Seminar Schedule Fall 2020-Spring 2021)
 
(408 intermediate revisions by 11 users not shown)
Line 2: Line 2:
  
 
===[[Previous PDE/GA seminars]]===
 
===[[Previous PDE/GA seminars]]===
===[[Fall 2016 | Tentative schedule for Fall 2017]]===
+
===[[Fall 2021-Spring 2022 | Tentative schedule for Fall 2021-Spring 2022]]===
  
= PDE GA Seminar Schedule Spring 2017 =
 
  
{| cellpadding="8"
 
!style="width:20%" align="left" | date 
 
!align="left" | speaker
 
!align="left" | title
 
!style="width:20%" align="left" | host(s)
 
|-
 
|January 23<br>Special time and location:<br> 3-3:50pm, B325 Van Vleck
 
| Sigurd Angenent (UW)
 
|[[#Sigurd Angenent | Ancient convex solutions to Mean Curvature Flow]]
 
| Kim & Tran
 
|-
 
  
|-
+
== PDE GA Seminar Schedule Fall 2020-Spring 2021 ==
|January 30
+
Welcome to the new mode of our PDEGA seminar this semester. Each week, we'll introduce to you two talks that are interesting and related to our interests. As the videos are already on Youtube or other platforms, you could choose to watch them whenever you want to; our goal here is merely to pick our favorite ones out of thousands of already available recorded talks. 
| Serguei Denissov (UW)
+
 
|[[#Serguei Denissov | Instability in 2D Euler equation of incompressible inviscid fluid]]
+
'''Week 1 (9/1/2020-9/5/2020)'''
| Kim & Tran
+
 
|-  
+
1. Paul Rabinowitz - The calculus of variations and phase transition problems.
 +

https://www.youtube.com/watch?v=vs3rd8RPosA
 +
 
 +
2. Frank Merle - On the implosion of a three dimensional compressible fluid.
 +
https://www.youtube.com/watch?v=5wSNBN0IRdA&feature=youtu.be 
 +
 
 +
'''Week 2 (9/6/2020-9/12/2020)'''
 +
 
 +
1. Yoshikazu Giga - On large time behavior of growth by birth and spread.
 +
https://www.youtube.com/watch?v=4ndtUh38AU0
 +
 
 +
2. Tarek Elgindi - Singularity formation in incompressible fluids. https://youtu.be/29zUjm7xFlI
 +
 
 +
 
 +
 
 +
'''Week 3 (9/13/2020-9/19/2020)'''
 +
 
 +
1. Eugenia Malinnikova - Two questions of Landis and their applications. https://www.youtube.com/watch?v=lpTsW1noWTQ
 +
 
 +
2. Pierre Germain - On the derivation of the kinetic wave equation. https://youtu.be/ZbCjKwQ3KcE
 +
 
 +
 
 +
 
 +
'''Week 4 (9/20/2020-9/26/2020)'''
 +
 
 +
1. Robert M. Strain - Global mild solutions of the Landau and non-cutoff Boltzmann equation. https://www.youtube.com/watch?v=UWrCItk2euo&feature=youtu.be
 +
 
 +
2. Elena Kosygina - Stochastic homogenization of a class of nonconvex viscous HJ equations in one space dimension https://www.youtube.com/watch?v=tVZv0ftT3PM
 +
 
 +
 
 +
 
 +
'''Week 5 (9/27/2020-10/03/2020)'''
 +
 
 +
1. Isabelle Gallagher - From Newton to Boltzmann, fluctuations and large deviations. https://www.youtube.com/watch?v=BkrKkUVadDo
 +
 
 +
2.  Connor Mooney - The Bernstein problem for elliptic functionals, https://www.youtube.com/watch?v=lSfnyfCL74c
 +
 
 +
 
 +
'''Week 6 (10/04/2020-10/10/2020)'''
 +
 
 +
1. Felix Otto - The thresholding scheme for mean curvature flow and De Giorgi's ideas for gradient flows. https://www.youtube.com/watch?v=7FQsiZpQA7E
 +
 
 +
2. Inwon Kim - Evolution of star-shaped sets in Mean curvature flow with forcing
 +
http://www.birs.ca/events/2018/5-day-workshops/18w5033/videos/watch/201806190900-Kim.html
 +
 
 +
 
 +
'''Week 7 (10/11/2020-10/17/2020)'''
 +
 
 +
1. Benoit Perthame - Multiphase models of living tissues and the Hele-Shaw limit. https://www.youtube.com/watch?v=UGVJnJCfw5s
 +
 
 +
2. Yifeng Yu - Properties of Effective Hamiltonians. https://www.youtube.com/watch?v=U06G4wjF-Hg
 +
 
 +
 
 +
'''Week 8 (10/18/2020-10/24/2020)'''
 +
 
 +
1. Carlos Kenig - Asymptotic simplification for solutions of the energy critical nonlinear wave equation. https://youtu.be/jvzUqAxU8Xg
 +
 
 +
2. Kyeongsu Choi - Ancient mean curvature flows and singularity analysis. https://www.youtube.com/watch?v=Iu1iLjdFjKQ
 +
 
 +
Virtual Analysis and PDE Seminar (VAPS): https://sites.uci.edu/pdeonlineseminar/. First talk by Ovidiu Savin.
 +
 
 +
 
 +
'''Week 9 (10/25/2020-10/31/2020)'''
 +
 
 +
1. John Ball - Some energy minimization problems for liquid crystals. https://www.youtube.com/watch?v=-j0jc-y7JzE
 +
 
 +
2. Tristan Buckmaster - Stable shock wave formation for the isentropic compressible Euler equations. https://stanford.zoom.us/rec/play/DwuT8rE-K1uJC0LghYPtsoaNmPBk9-P5EK4ZeWh1mVNJELRHn-ay-gOVXHSTRz_0X3iUZDBoUVYq8zfd.Tuqy8urKY4jESivm?continueMode=true&_x_zm_rtaid=GiRX307iT7encyYgIEgh9Q.1603308889393.b4a9b3af5c64cc9ca735cffbe25d8b7b&_x_zm_rhtaid=764
 +
 
 +
 
 +
 
 +
'''Week 10 (11/1/2020-11/7/2020)'''
 +
 
 +
1. Sylvia Serfaty - Mean-Field limits for Coulomb-type dynamics. https://www.youtube.com/watch?v=f7iSTnAe808&feature=youtu.be
 +
 
 +
2. Luc Nguyen - Symmetry and multiple existence of critical points in 2D Landau-de Gennes Q-tensor theory http://www.birs.ca/events/2017/5-day-workshops/17w5110/videos/watch/201705041518-Nguyen.html
 +
 
 +
 
 +
 
 +
'''Week 11 (11/8/2020-11/14/2020)'''
 +
 
 +
1. Andrzej Święch - Finite dimensional approximations of Hamilton-Jacobi-Bellman equations in spaces of probability measures https://www.youtube.com/watch?v=KC514krtWAc
 +
 
 +
2. Alexandru Ionescu - On the nonlinear stability of shear flows and vortices, https://youtu.be/Zt_Izzi87V0
 +
 
 +
 
 +
'''Week 12 (11/15/2020-11/21/2020)'''
 +
 
 +
1. Irene M. Gamba - Boltzmann type equations in a general framework: from the classical elastic flow, to gas mixtures, polyatomic gases, and more, https://youtu.be/fPlhAMGULtY
 +
 
 +
2.  Andrej Zlatos - Euler Equations on General Planar Domains, https://www.youtube.com/watch?v=FdyyMZirRwk
 +
 
 +
 
 +
'''Week 13 (11/22/2020-11/28/2020)'''
 +
 
 +
1. Camillo De Lellis - Flows of vector fields: classical and modern, https://www.youtube.com/watch?v=dVXSC3rtvok&feature=youtu.be
 +
 
 +
2. Wilfrid Gangbo - Analytical Aspect of Mean Field Games (Part 1/2), https://www.youtube.com/watch?v=KI5n6OYzzW8
 +
 
 +
'''Week 14 (11/29/2020-12/5/2020)'''
 +
 
 +
1. Juan Dávila - Leapfrogging vortex rings and other solutions with concentrated vorticity for the Euler equations,
 +
https://youtu.be/xfAKGc0IEUw
 +
 
 +
2. Yao Yao - Aggregation-diffusion equation: symmetry, uniqueness and non-uniqueness of steady states, https://www.youtube.com/watch?v=C_4qCimIMYc
 +
 
 +
 
 +
 
 +
'''Week 15 (12/6/2020-12/12/2020)'''
 +
 
 +
1. Pierre Gilles Lemarié-Rieusset - On weak solutions of the Navier-Stokes equations with infinite energy, https://www.youtube.com/watch?v=OeFJ6r-GLJc&feature=youtu.be
 +
 
 +
2. Albert Fathi - Weak KAM Theory: the connection between Aubry-Mather theory and viscosity solutions of the Hamilton-Jacobi equation, https://www.youtube.com/watch?v=0y8slhbQlTU
 +
 
 +
 
 +
'''Spring 2021'''
 +
 
 +
'''Week 1 (1/31/2021- 2/6/2021)'''
 +
 
 +
1. Emmanuel Grenier -  instability of viscous shear layers https://www.youtube.com/watch?v=0_EG4VWIYvU&feature=youtu.be
 +
 
 +
2. Robert Pego - Dynamics and oscillations in models of coagulation and fragmentation https://www.youtube.com/watch?v=3712lImYP84
 +
 
 +
 
 +
'''Week 2 ( 2/7/2021- 2/13/2021)'''
 +
 
 +
1. Ryan Hynd, The Hamilton-Jacobi equation, past and present https://www.youtube.com/watch?v=jR6paJf7aek
 +
 
 +
2. Jacob Bedrossian - Chaotic mixing of the Lagrangian flow map and the power spectrum of passive scalar turbulence in the Batchelor regime https://youtu.be/3lNQNsdlGTE
 +
 
 +
Colloquium (2/12/2021): Bobby Wilson (University of Washington). More information can be found here http://www.math.wisc.edu/wiki/index.php/Colloquia.
 +
 
 +
'''Week 3 ( 2/14/2021- 2/20/2021)'''
 +
 
 +
1. Diogo A. Gomes - Monotone MFGs - theory and numerics https://www.youtube.com/watch?v=lj1L7AHHY3s
 +
 
 +
2. Hao Jia -  nonlinear asymptotic stability in two dimensional incompressible Euler equations https://youtu.be/KMf7K2sTLXg
 +
 
 +
 
 +
 
 +
'''Week 4 ( 2/21/2021- 2/27/2021)'''
 +
 
 +
1. Anne-Laure Dalibard -  Boundary layer methods in semilinear fluid equations https://www.msri.org/workshops/944/schedules/29309
 +
 
 +
2. Gui-Qiang G. Chen - On Nonlinear PDEs of Mixed Elliptic-Hyperbolic Type: Analysis and Connections https://www.youtube.com/watch?v=W3sa-8qtw68
 +
 
 +
'''Week 5 ( 2/28/2021- 3/6/2021)'''
 +
 
 +
1. Inwon Kim -  A variational scheme for Navier-Stokes Equations https://www.msri.org/workshops/944/schedules/29317
 +
 
 +
2. Robert L. Jerrard - Solutions of the Ginzburg–Landau equatons with vorticity concentrating near a nondegenerate geodesic https://www.youtube.com/watch?v=M0NQh2PET_k
 +
 
 +
'''Week 6 (3/7/2021-3/13/2021)'''
  
 +
1. Ondřej Kreml -  Non-uniqueness of admissible weak solutions to the compressible Euler equations with smooth initial datas https://www.birs.ca/events/2020/5-day-workshops/20w5188/videos/watch/202011231027-Kreml.html
  
|-
+
2. Rita Ferreira - Homogenization of a stationary mean-field game via two-scale convergence https://www.youtube.com/watch?v=EICMVmt5o9c
|February 6 - Wasow lecture
 
| Benoit Perthame (University of Paris VI)
 
|[[#| ]]
 
| Jin
 
|-  
 
  
  
|-
+
'''Week 7 (3/14/2021-3/20/2021)'''
|February 13
 
| Bing Wang (UW)
 
|[[#Bing Wang | The extension problem of the mean curvature flow]]
 
| Kim & Tran
 
|-
 
  
|-
+
1. Sergey Denisov - Small scale formation in 2D Euler dynamics https://www.youtube.com/watch?v=7ffUgTC34tM
|February 20
 
| Eric Baer (UW)
 
|[[#Eric Baer | Isoperimetric sets inside almost-convex cones]]
 
| Kim & Tran
 
|-  
 
  
|-
+
2. Alexis Vasseur - Instability of finite time blow-ups for incompressible Euler https://www.birs.ca/events/2020/5-day-workshops/20w5188/videos/watch/202011231000-Vasseur.html
|February 27
 
| Ben Seeger (University of Chicago)
 
|[[#Ben Seeger | Homogenization of pathwise Hamilton-Jacobi equations ]]
 
| Tran
 
|-  
 
  
|-
 
|March 7 - Mathematics Department Distinguished Lecture
 
| Roger Temam (Indiana University) 
 
|[[#Roger Temam | On the mathematical modeling of the humid atmosphere]]
 
| Smith 
 
|-
 
  
  
|-
+
'''Week 8 (3/21/2021- 3/27/2021)'''
|March 8 - Analysis/Applied math/PDE seminar
 
| Roger Temam (Indiana University)
 
|[[#Roger Temam | Weak solutions of the Shigesada-Kawasaki-Teramoto system ]]
 
| Smith
 
|-
 
  
|-
+
1. Peter Sternberg - Variational Models for Phase Transitions in Liquid Crystals Based Upon Disparate Values of the Elastic Constants https://www.youtube.com/watch?v=4rSPsDvkTYs
|March 13
 
| Sona Akopian (UT-Austin)
 
|[[#Sona Akopian | ]]
 
| Kim
 
  
|-
+
2. François Golse - Half-space problem for the Boltzmann equation with phase transition at the boundary https://mysnu-my.sharepoint.com/:v:/g/personal/bear0117_seoul_ac_kr/ETGjasFQ7ylHu04qUz4KomYB98uMHLd-q96DOJGwbbEB0A
|March 27 - Analysis/PDE seminar
 
| Sylvia Serfaty (Courant)
 
|[[#Sylvia Serfaty | Mean-Field Limits for Ginzburg-Landau vortices ]]
 
| Tran
 
  
|-
 
|March 29 - Wasow lecture
 
| Sylvia Serfaty (Courant)
 
|[[#Sylvia Serfaty | Microscopic description of Coulomb-type systems ]]
 
|
 
  
|-
 
|April 3
 
| Zhenfu Wang (Maryland)
 
|[[#Zhenfu Wang | ]]
 
| Kim
 
  
|-
+
'''Week 9 (3/28/2021- 4/3/2021)'''
|April 10
 
| Andrei Tarfulea (Chicago)
 
|[[#Andrei Tarfulea | Improved estimates for thermal fluid equations]]
 
| Baer
 
  
|-
+
1. Susan Friedlander - Kolmogorov, Onsager and a stochastic model for turbulence https://www.youtube.com/watch?v=xk3KZQ-anDM
|April 17
 
| Siao-Hao Guo (Rutgers)
 
|[[# Siao-Hao Guo | TBA]]
 
| Lu Wang
 
  
 +
2. Sergei Chernyshenko - Auxiliary functionals: a path to solving the problem of turbulence https://www.youtube.com/watch?v=NrF7n3MyCy4&list=PLf_ipOSbWC86n18q4JMn_1J04S90FpdeE&index=9
  
|-
 
|April 24
 
| Jianfeng Lu
 
|[[#Jianfeng Lu | TBA]]
 
| Li
 
  
|-
+
'''Week 10 (4/4/2021- 4/10/2021)'''
|April 25- joint Analysis/PDE seminar
 
| Chris Henderson (Chicago)
 
|[[#Chris Henderson | TBA]]
 
| Lin
 
  
|-
+
1. Camillo De Lellis - Transport equations and ODEs with nonsmooth coefficients https://www.msri.org/workshops/945/schedules/29235
|May 1st
 
| Jeffrey Streets (UC-Irvine)
 
|[[#Jeffrey Streets | ]]
 
| Bing Wang
 
|}
 
  
=Abstracts=
+
2. Weinan E - PDE problems that arise from machine learning https://www.youtube.com/watch?v=5rb8DJkxfg8
  
===Sigurd Angenent===
+
'''Week 11(4/11/2021- 4/17/2021)'''
The Huisken-Hamilton-Gage theorem on compact convex solutions to MCF shows that in forward time all solutions do the same thing, namely, they shrink to a point and become round as they do so.  Even though MCF is ill-posed in backward time there do exist solutions that are defined for all t<0 , and one can try to classify all such &ldquo;Ancient Solutions.&rdquo;  In doing so one finds that there is interesting dynamics associated to ancient solutions.  I will discuss what is currently known about these solutions.  Some of the talk is based on joint work with Sesum and Daskalopoulos.
 
  
===Serguei Denissov===
+
1. Marian Gidea - Topological methods and Hamiltonian instability https://youtu.be/aMN7zJZavDo
We consider the patch evolution under the 2D Euler dynamics and study how the geometry of the boundary can deteriorate in time.
 
  
 +
2. David Gerard-Varet - On the effective viscosity of suspensions http://www.birs.ca/events/2020/5-day-workshops/20w5188/videos/watch/202011230644-Gerard-Varet.html
  
===Bing Wang===
 
We show that the mean curvature blows up at the first finite singular time for a closed smooth embedded mean curvature flow in R3. This is a joint work with H.Z. Li.
 
  
===Eric Baer===
 
We discuss a recent result showing that a characterization of isoperimetric sets (that is, sets minimizing a relative perimeter functional with respect to a fixed volume constraint) inside convex cones as sections of balls centered at the origin (originally due to P.L. Lions and F. Pacella) remains valid for a class of "almost-convex" cones.  Key tools include compactness arguments and the use of classically known sharp characterizations of lower bounds for the first nonzero Neumann eigenvalue associated to (geodesically) convex domains in the hemisphere.  The work we describe is joint with A. Figalli.
 
  
===Ben Seeger===
+
{| cellpadding="8"
I present a homogenization result for pathwise Hamilton-Jacobi equations with "rough" multiplicative driving signals. In doing so, I derive a new well-posedness result when the Hamiltonian is smooth, convex, and positively homogenous. I also demonstrate that equations involving multiple driving signals may homogenize or exhibit blow-up.
+
!style="width:20%" align="left" | date 
 +
!align="left" | speaker
 +
!align="left" | title
 +
!style="width:20%" align="left" | host(s)
 +
|-  
 +
|}
  
===Sylvia Serfaty===
+
== Abstracts ==
Mean-Field Limits for Ginzburg-Landau vortices
 
  
Ginzburg-Landau type equations are models for superconductivity, superfluidity, Bose-Einstein condensation. A crucial feature is the presence of quantized vortices, which are topological zeroes of the complex-valued solutions. This talk will review some results on the derivation of effective models to describe the statics and dynamics of these vortices, with particular attention to the situation where the number of vortices blows up with the parameters of the problem. In particular we will present new results on the derivation of mean field limits for the dynamics of many vortices starting from the parabolic Ginzburg-Landau equation or the Gross-Pitaevskii (=Schrodinger Ginzburg-Landau) equation.
+
===  ===
  
 +
Title: 
  
===Andrei Tarfulea===
+
Abstract:
We consider a model for three-dimensional fluid flow on the torus that also keeps track of the local temperature. The momentum equation is the same as for Navier-Stokes, however the kinematic viscosity grows as a function of the local temperature. The temperature is, in turn, fed by the local dissipation of kinetic energy. Intuitively, this leads to a mechanism whereby turbulent regions increase their local viscosity and
 
dissipate faster. We prove a strong a priori bound (that would fall within the Ladyzhenskaya-Prodi-Serrin criterion for ordinary Navier-Stokes) on the thermally weighted enstrophy for classical solutions to the coupled system.
 

Latest revision as of 14:38, 11 April 2021

The seminar will be held in room 901 of Van Vleck Hall on Mondays from 3:30pm - 4:30pm, unless indicated otherwise.

Previous PDE/GA seminars

Tentative schedule for Fall 2021-Spring 2022

PDE GA Seminar Schedule Fall 2020-Spring 2021

Welcome to the new mode of our PDEGA seminar this semester. Each week, we'll introduce to you two talks that are interesting and related to our interests. As the videos are already on Youtube or other platforms, you could choose to watch them whenever you want to; our goal here is merely to pick our favorite ones out of thousands of already available recorded talks. 

Week 1 (9/1/2020-9/5/2020)

1. Paul Rabinowitz - The calculus of variations and phase transition problems. 
https://www.youtube.com/watch?v=vs3rd8RPosA

2. Frank Merle - On the implosion of a three dimensional compressible fluid. https://www.youtube.com/watch?v=5wSNBN0IRdA&feature=youtu.be 

Week 2 (9/6/2020-9/12/2020)

1. Yoshikazu Giga - On large time behavior of growth by birth and spread. https://www.youtube.com/watch?v=4ndtUh38AU0

2. Tarek Elgindi - Singularity formation in incompressible fluids. https://youtu.be/29zUjm7xFlI


Week 3 (9/13/2020-9/19/2020)

1. Eugenia Malinnikova - Two questions of Landis and their applications. https://www.youtube.com/watch?v=lpTsW1noWTQ

2. Pierre Germain - On the derivation of the kinetic wave equation. https://youtu.be/ZbCjKwQ3KcE


Week 4 (9/20/2020-9/26/2020)

1. Robert M. Strain - Global mild solutions of the Landau and non-cutoff Boltzmann equation. https://www.youtube.com/watch?v=UWrCItk2euo&feature=youtu.be

2. Elena Kosygina - Stochastic homogenization of a class of nonconvex viscous HJ equations in one space dimension https://www.youtube.com/watch?v=tVZv0ftT3PM


Week 5 (9/27/2020-10/03/2020)

1. Isabelle Gallagher - From Newton to Boltzmann, fluctuations and large deviations. https://www.youtube.com/watch?v=BkrKkUVadDo

2. Connor Mooney - The Bernstein problem for elliptic functionals, https://www.youtube.com/watch?v=lSfnyfCL74c


Week 6 (10/04/2020-10/10/2020)

1. Felix Otto - The thresholding scheme for mean curvature flow and De Giorgi's ideas for gradient flows. https://www.youtube.com/watch?v=7FQsiZpQA7E

2. Inwon Kim - Evolution of star-shaped sets in Mean curvature flow with forcing http://www.birs.ca/events/2018/5-day-workshops/18w5033/videos/watch/201806190900-Kim.html


Week 7 (10/11/2020-10/17/2020)

1. Benoit Perthame - Multiphase models of living tissues and the Hele-Shaw limit. https://www.youtube.com/watch?v=UGVJnJCfw5s

2. Yifeng Yu - Properties of Effective Hamiltonians. https://www.youtube.com/watch?v=U06G4wjF-Hg


Week 8 (10/18/2020-10/24/2020)

1. Carlos Kenig - Asymptotic simplification for solutions of the energy critical nonlinear wave equation. https://youtu.be/jvzUqAxU8Xg

2. Kyeongsu Choi - Ancient mean curvature flows and singularity analysis. https://www.youtube.com/watch?v=Iu1iLjdFjKQ

Virtual Analysis and PDE Seminar (VAPS): https://sites.uci.edu/pdeonlineseminar/. First talk by Ovidiu Savin.


Week 9 (10/25/2020-10/31/2020)

1. John Ball - Some energy minimization problems for liquid crystals. https://www.youtube.com/watch?v=-j0jc-y7JzE

2. Tristan Buckmaster - Stable shock wave formation for the isentropic compressible Euler equations. https://stanford.zoom.us/rec/play/DwuT8rE-K1uJC0LghYPtsoaNmPBk9-P5EK4ZeWh1mVNJELRHn-ay-gOVXHSTRz_0X3iUZDBoUVYq8zfd.Tuqy8urKY4jESivm?continueMode=true&_x_zm_rtaid=GiRX307iT7encyYgIEgh9Q.1603308889393.b4a9b3af5c64cc9ca735cffbe25d8b7b&_x_zm_rhtaid=764


Week 10 (11/1/2020-11/7/2020)

1. Sylvia Serfaty - Mean-Field limits for Coulomb-type dynamics. https://www.youtube.com/watch?v=f7iSTnAe808&feature=youtu.be

2. Luc Nguyen - Symmetry and multiple existence of critical points in 2D Landau-de Gennes Q-tensor theory http://www.birs.ca/events/2017/5-day-workshops/17w5110/videos/watch/201705041518-Nguyen.html


Week 11 (11/8/2020-11/14/2020)

1. Andrzej Święch - Finite dimensional approximations of Hamilton-Jacobi-Bellman equations in spaces of probability measures https://www.youtube.com/watch?v=KC514krtWAc

2. Alexandru Ionescu - On the nonlinear stability of shear flows and vortices, https://youtu.be/Zt_Izzi87V0


Week 12 (11/15/2020-11/21/2020)

1. Irene M. Gamba - Boltzmann type equations in a general framework: from the classical elastic flow, to gas mixtures, polyatomic gases, and more, https://youtu.be/fPlhAMGULtY

2. Andrej Zlatos - Euler Equations on General Planar Domains, https://www.youtube.com/watch?v=FdyyMZirRwk


Week 13 (11/22/2020-11/28/2020)

1. Camillo De Lellis - Flows of vector fields: classical and modern, https://www.youtube.com/watch?v=dVXSC3rtvok&feature=youtu.be

2. Wilfrid Gangbo - Analytical Aspect of Mean Field Games (Part 1/2), https://www.youtube.com/watch?v=KI5n6OYzzW8

Week 14 (11/29/2020-12/5/2020)

1. Juan Dávila - Leapfrogging vortex rings and other solutions with concentrated vorticity for the Euler equations, https://youtu.be/xfAKGc0IEUw

2. Yao Yao - Aggregation-diffusion equation: symmetry, uniqueness and non-uniqueness of steady states, https://www.youtube.com/watch?v=C_4qCimIMYc


Week 15 (12/6/2020-12/12/2020)

1. Pierre Gilles Lemarié-Rieusset - On weak solutions of the Navier-Stokes equations with infinite energy, https://www.youtube.com/watch?v=OeFJ6r-GLJc&feature=youtu.be

2. Albert Fathi - Weak KAM Theory: the connection between Aubry-Mather theory and viscosity solutions of the Hamilton-Jacobi equation, https://www.youtube.com/watch?v=0y8slhbQlTU


Spring 2021

Week 1 (1/31/2021- 2/6/2021)

1. Emmanuel Grenier - instability of viscous shear layers https://www.youtube.com/watch?v=0_EG4VWIYvU&feature=youtu.be

2. Robert Pego - Dynamics and oscillations in models of coagulation and fragmentation https://www.youtube.com/watch?v=3712lImYP84


Week 2 ( 2/7/2021- 2/13/2021)

1. Ryan Hynd, The Hamilton-Jacobi equation, past and present https://www.youtube.com/watch?v=jR6paJf7aek

2. Jacob Bedrossian - Chaotic mixing of the Lagrangian flow map and the power spectrum of passive scalar turbulence in the Batchelor regime https://youtu.be/3lNQNsdlGTE

Colloquium (2/12/2021): Bobby Wilson (University of Washington). More information can be found here http://www.math.wisc.edu/wiki/index.php/Colloquia.

Week 3 ( 2/14/2021- 2/20/2021)

1. Diogo A. Gomes - Monotone MFGs - theory and numerics https://www.youtube.com/watch?v=lj1L7AHHY3s

2. Hao Jia - nonlinear asymptotic stability in two dimensional incompressible Euler equations https://youtu.be/KMf7K2sTLXg


Week 4 ( 2/21/2021- 2/27/2021)

1. Anne-Laure Dalibard - Boundary layer methods in semilinear fluid equations https://www.msri.org/workshops/944/schedules/29309

2. Gui-Qiang G. Chen - On Nonlinear PDEs of Mixed Elliptic-Hyperbolic Type: Analysis and Connections https://www.youtube.com/watch?v=W3sa-8qtw68

Week 5 ( 2/28/2021- 3/6/2021)

1. Inwon Kim - A variational scheme for Navier-Stokes Equations https://www.msri.org/workshops/944/schedules/29317

2. Robert L. Jerrard - Solutions of the Ginzburg–Landau equatons with vorticity concentrating near a nondegenerate geodesic https://www.youtube.com/watch?v=M0NQh2PET_k

Week 6 (3/7/2021-3/13/2021)

1. Ondřej Kreml - Non-uniqueness of admissible weak solutions to the compressible Euler equations with smooth initial datas https://www.birs.ca/events/2020/5-day-workshops/20w5188/videos/watch/202011231027-Kreml.html

2. Rita Ferreira - Homogenization of a stationary mean-field game via two-scale convergence https://www.youtube.com/watch?v=EICMVmt5o9c


Week 7 (3/14/2021-3/20/2021)

1. Sergey Denisov - Small scale formation in 2D Euler dynamics https://www.youtube.com/watch?v=7ffUgTC34tM

2. Alexis Vasseur - Instability of finite time blow-ups for incompressible Euler https://www.birs.ca/events/2020/5-day-workshops/20w5188/videos/watch/202011231000-Vasseur.html


Week 8 (3/21/2021- 3/27/2021)

1. Peter Sternberg - Variational Models for Phase Transitions in Liquid Crystals Based Upon Disparate Values of the Elastic Constants https://www.youtube.com/watch?v=4rSPsDvkTYs

2. François Golse - Half-space problem for the Boltzmann equation with phase transition at the boundary https://mysnu-my.sharepoint.com/:v:/g/personal/bear0117_seoul_ac_kr/ETGjasFQ7ylHu04qUz4KomYB98uMHLd-q96DOJGwbbEB0A


Week 9 (3/28/2021- 4/3/2021)

1. Susan Friedlander - Kolmogorov, Onsager and a stochastic model for turbulence https://www.youtube.com/watch?v=xk3KZQ-anDM

2. Sergei Chernyshenko - Auxiliary functionals: a path to solving the problem of turbulence https://www.youtube.com/watch?v=NrF7n3MyCy4&list=PLf_ipOSbWC86n18q4JMn_1J04S90FpdeE&index=9


Week 10 (4/4/2021- 4/10/2021)

1. Camillo De Lellis - Transport equations and ODEs with nonsmooth coefficients https://www.msri.org/workshops/945/schedules/29235

2. Weinan E - PDE problems that arise from machine learning https://www.youtube.com/watch?v=5rb8DJkxfg8

Week 11(4/11/2021- 4/17/2021)

1. Marian Gidea - Topological methods and Hamiltonian instability https://youtu.be/aMN7zJZavDo

2. David Gerard-Varet - On the effective viscosity of suspensions http://www.birs.ca/events/2020/5-day-workshops/20w5188/videos/watch/202011230644-Gerard-Varet.html


date speaker title host(s)

Abstracts

Title:

Abstract: