Difference between revisions of "Probability"

From UW-Math Wiki
Jump to: navigation, search
(Graduate Courses in Probability)
(Graduate students)
 
(81 intermediate revisions by 14 users not shown)
Line 9: Line 9:
 
[http://www.math.wisc.edu/~anderson/ David Anderson] (Duke, 2005) applied probability, numerical methods, mathematical biology.
 
[http://www.math.wisc.edu/~anderson/ David Anderson] (Duke, 2005) applied probability, numerical methods, mathematical biology.
  
[http://www.math.wisc.edu/~roch/ Sebastien Roch] (UC Berkeley, 2007) applied probability, mathematical biology, theoretical computer science.
+
[http://www.math.wisc.edu/~vadicgor/ Vadim Gorin] (Moscow, 2011) integrable probability, random matrices, asymptotic representation theory
  
[http://www.math.wisc.edu/~seppalai/ Timo Seppäläinen] (Minnesota, 1991) interacting particle systems, random walks in random environments, large deviation theory.
+
[http://www.math.wisc.edu/~roch/ Sebastien Roch] (UC Berkeley, 2007) applied discrete probability, mathematical and computational biology, networks.
  
[http://www.math.wisc.edu/~valko/ Benedek Valko] (Budapest, 2004) interacting particle systems, random matrices.
+
[http://www.math.wisc.edu/~seppalai/ Timo Seppäläinen] (Minnesota, 1991) motion in a random medium, random growth models, interacting particle systems, large deviation theory.
  
[http://www.math.wisc.edu/~pmwood/ Philip Matchett Wood] (Rutgers, 2009) combinatorics, random matrices
+
[http://www.math.wisc.edu/??? Tatyana Shcherbyna] (Kharkiv, 2012) mathematical physics, random matrices
  
[http://www.math.wisc.edu/~jyin/ Jun Yin] (Princeton, 2008) random matrices
+
[http://www.math.wisc.edu/~hshen3/ Hao Shen] (Princeton, 2013) stochastic partial differential equations, mathematical physics, integrable probability
  
== Postdoctoral fellows ==
+
[http://www.math.wisc.edu/~valko/ Benedek Valko] (Budapest, 2004) interacting particle systems, random matrices.
 
 
[http://www.math.wisc.edu/~gshinault Gregory Shinault] (UC Davis, 2012) interacting particle systems, random growth models.
 
  
 
== Emeriti ==
 
== Emeriti ==
Line 32: Line 30:
  
 
Peter Ney (Columbia, 1961)
 
Peter Ney (Columbia, 1961)
 +
 +
== Postdocs ==
 +
 +
Erik Bates (Stanford, 2019)
 +
 +
Scott Smith (Maryland, 2016)
  
 
== Graduate students ==
 
== Graduate students ==
  
[http://www.math.wisc.edu/~emrah/ Elnur Emrah]
 
  
[http://www.math.wisc.edu/~holcomb/ Diane Holcomb]  
+
Max Bacharach
 +
 
 +
Yun Li
 +
 
 +
[http://sites.google.com/a/wisc.edu/tung-nguyen/ Tung Nguyen]
 +
 
 +
[https://www.math.wisc.edu/~xshen/ Xiao Shen]
  
[http://www.math.wisc.edu/~janjigia Chris Janjigian]
+
[https://sites.google.com/wisc.edu/evan-sorensen Evan Sorensen]
  
[http://www.math.wisc.edu/~kang Dae Han Kang]
+
Yu Sun
  
[http://www.math.wisc.edu/~koyama Masanori Koyama]
+
Jiaming Xu
  
Christian Noack
+
Shuqi Yu
  
Yu Sun, ysun@math.wisc.edu
+
== [[Probability Seminar]] ==
  
Jason Wang
+
Thursdays at 2:30pm, VV901
  
[http://www.math.wisc.edu/~skubak Beth Skubak Wolf]
+
[https://groups.google.com/a/g-groups.wisc.edu/forum/#!forum/probsem General email list]
  
Yun Zhai
+
[https://groups.google.com/a/g-groups.wisc.edu/forum/#!forum/lunchwithprobsemspeaker Email list for lunch/dinner with a speaker]
  
== [[Probability Seminar]] ==
+
==[[Graduate student reading seminar]]==
  
Thursdays at 2:25pm, VV901
+
[https://groups.google.com/a/g-groups.wisc.edu/forum/#!forum/grad_prob_seminar Email list]
  
 +
Tuesdays, 2:30pm, 901 Van Vleck
  
 
== [[Probability group timetable]]==
 
== [[Probability group timetable]]==
  
 +
== [[Undergraduate courses in probability]]==
  
 +
== Graduate Courses in Probability ==
  
== Graduate Courses in Probability ==
 
  
'''2014 Spring'''
 
  
[http://www.math.wisc.edu/~valko/courses/734/734.html  Math/Stat 734 Theory of Probability II (formerly 832)]
+
'''2020 Fall'''
 +
 
 +
Math/Stat 733 Theory of Probability I
 +
 
 +
Math/Stat 735 Stochastic Analysis
 +
 
 +
Math 833 Topics in Probability: Modern Discrete Probability
  
[http://www.math.wisc.edu/~valko/courses/833/833.html  Math/Stat 833 Topics in Probability Spring 2014: Continuous Time Markov Processes]
 
  
'''2013 Fall'''
 
  
[http://www.math.wisc.edu/~  Math/Stat 733 Theory of Probability I (formerly 831)]
+
'''2021 Spring'''
  
==[[Graduate student reading seminar]]==
+
Math/Stat 734 Theory of Probability II
  
Tuesdays, 2:25pm
+
Math 833 Topics in Probability: Integrable probability

Latest revision as of 21:38, 22 March 2021


Probability at UW-Madison


Tenured and tenure-track faculty

David Anderson (Duke, 2005) applied probability, numerical methods, mathematical biology.

Vadim Gorin (Moscow, 2011) integrable probability, random matrices, asymptotic representation theory

Sebastien Roch (UC Berkeley, 2007) applied discrete probability, mathematical and computational biology, networks.

Timo Seppäläinen (Minnesota, 1991) motion in a random medium, random growth models, interacting particle systems, large deviation theory.

Tatyana Shcherbyna (Kharkiv, 2012) mathematical physics, random matrices

Hao Shen (Princeton, 2013) stochastic partial differential equations, mathematical physics, integrable probability

Benedek Valko (Budapest, 2004) interacting particle systems, random matrices.

Emeriti

David Griffeath (Cornell, 1976)

Jim Kuelbs (Minnesota, 1965)

Tom Kurtz (Stanford, 1967)

Peter Ney (Columbia, 1961)

Postdocs

Erik Bates (Stanford, 2019)

Scott Smith (Maryland, 2016)

Graduate students

Max Bacharach

Yun Li

Tung Nguyen

Xiao Shen

Evan Sorensen

Yu Sun

Jiaming Xu

Shuqi Yu

Probability Seminar

Thursdays at 2:30pm, VV901

General email list

Email list for lunch/dinner with a speaker

Graduate student reading seminar

Email list

Tuesdays, 2:30pm, 901 Van Vleck

Probability group timetable

Undergraduate courses in probability

Graduate Courses in Probability

2020 Fall

Math/Stat 733 Theory of Probability I

Math/Stat 735 Stochastic Analysis

Math 833 Topics in Probability: Modern Discrete Probability


2021 Spring

Math/Stat 734 Theory of Probability II

Math 833 Topics in Probability: Integrable probability