Difference between revisions of "Probability Seminar"

From UW-Math Wiki
Jump to: navigation, search
(Monday, November 26, Vadim Gorin, MIT)
(November 21, 2019, Tung Nguyen, UW Madison)
 
(124 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
  
= Fall 2018 =
+
= Fall 2019 =
  
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted.  
+
<b>Thursdays in 901 Van Vleck Hall at 2:30 PM</b>, unless otherwise noted.  
<b>We  usually end for questions at 3:15 PM.</b>
+
<b>We  usually end for questions at 3:20 PM.</b>
  
 
If you would like to sign up for the email list to receive seminar announcements then please send an email to  
 
If you would like to sign up for the email list to receive seminar announcements then please send an email to  
 
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]
 
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]
  
 
 
==<span style="color:red"> Friday, August 10, 10am, B239 Van Vleck </span> András Mészáros, Central European University, Budapest ==
 
 
 
Title: '''The distribution of sandpile groups of random regular graphs'''
 
 
Abstract:
 
We study the distribution of the sandpile group of random <math>d</math>-regular graphs. For the directed model we prove that it follows the Cohen-Lenstra heuristics, that is, the probability that the <math>p</math>-Sylow subgroup of the sandpile group is a given <math>p</math>-group <math>P</math>, is proportional to <math>|\operatorname{Aut}(P)|^{-1}</math>. For finitely many primes, these events get independent in limit. Similar results hold for undirected random regular graphs, there for odd primes the limiting distributions are the ones given by Clancy, Leake and Payne.
 
 
Our results extends a recent theorem of Huang saying that the adjacency matrices of random <math>d</math>-regular directed graphs are invertible with high probability to the undirected case.
 
 
<!-- ==September 13, TBA == -->
 
 
==September 20, [http://math.columbia.edu/~hshen/ Hao Shen], [https://www.math.wisc.edu/ UW-Madison] ==
 
 
Title: '''Stochastic quantization of Yang-Mills'''
 
 
Abstract:
 
"Stochastic quantization” refers to a formulation of quantum field theory as stochastic PDEs. Interesting progress has been made these years in understanding these SPDEs, examples including Phi4 and sine-Gordon. Yang-Mills is a type of quantum field theory which has gauge symmetry, and its stochastic quantization is a Yang-Mills flow perturbed by white noise.
 
In this talk we start by an Abelian example where we take a symmetry-preserving lattice regularization and study the continuum limit. We will then discuss non-Abelian Yang-Mills theories and introduce a symmetry-breaking smooth regularization and restore the symmetry using a notion of gauge-equivariance. With these results we can construct dynamical Wilson loop and string observables. Based on [S., arXiv:1801.04596] and [Chandra,Hairer,S., work in progress].
 
 
 
 
==September 27, [https://www.math.wisc.edu/~seppalai/  Timo Seppäläinen] [https://www.math.wisc.edu/ UW-Madison] ==
 
 
Title:'''Random walk in random environment and the Kardar-Parisi-Zhang class'''
 
 
   
 
   
Abstract:This talk concerns a relationship between two much-studied classes of models  of motion in a random medium, namely random walk in random environment (RWRE) and the Kardar-Parisi-Zhang (KPZ) universality class. Barraquand and Corwin (Columbia)  discovered that in 1+1 dimensional RWRE in a dynamical beta environment the correction to the quenched large deviation principle obeys KPZ behavior.  In this talk we condition the beta walk to escape at an atypical velocity and show that the resulting Doob-transformed RWRE obeys the KPZ wandering exponent 2/3.  Based on joint work with Márton Balázs (Bristol) and Firas Rassoul-Agha (Utah).
+
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS and University of Rennes 1 ==
 +
'''Furstenberg theorem: now with a parameter!'''
  
==October 4, [https://people.math.osu.edu/paquette.30/  Elliot Paquette], [https://math.osu.edu/ OSU] ==
+
The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter.  
 +
It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters where the lower limit for the Lyapunov exponent vanishes.
 +
Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. I will also speak about some generalizations and related open questions.
  
Title: '''Distributional approximation of the characteristic polynomial of a Gaussian beta-ensemble'''
+
== September 19, 2019, [http://math.columbia.edu/~xuanw  Xuan Wu], Columbia University==
  
Abstract:
+
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''
The characteristic polynomial of the Gaussian beta--ensemble can be represented, via its tridiagonal model, as an entry in a product of independent random two--by--two matrices.  For a point z in the complex plane, at which the transfer matrix is to be evaluated, this product of transfer matrices splits into three independent factors, each of which can be understood as a different dynamical system in the complex plane.  Conjecturally, we show that the characteristic polynomial is always represented as product of at most three terms, an exponential of a Gaussian field, the stochastic Airy function, and a diffusion similar to the stochastic sine equation.
 
We explain the origins of this decomposition, and we show partial progress in establishing part of it.
 
  
Joint work with Diane Holcomb and Gaultier Lambert.
+
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.
  
==October 11, [https://www.math.utah.edu/~janjigia/ Chris Janjigian], [https://www.math.utah.edu/ University of Utah] ==
+
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==
  
 +
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==
  
Title: '''Busemann functions and Gibbs measures in directed polymer models on Z^2'''
+
''' Simplified dynamics for noisy systems with delays.'''
  
Abstract: We consider the model of a nearest-neighbor random walk on the planar square lattice in a general iid space-time potential, which is also known as a directed polymer in a random environment. We prove results on existence, uniqueness (and non-uniqueness), and the law of large numbers for semi-infinite path measures. Our main tools are the Busemann functions, which are families of stochastic processes obtained through limits of ratios of partition functions.
+
Many biological and physical systems include some type of random noise with a temporal delay. For example, many sperm cells travel in a random motion where their velocity changes according to a chemical signal. This chemotaxis is transmitted through a delay in the system. That is, the sperm notices chemical gradients after a certain time has elapsed. In this case, the delay causes the sperm to aggregate around the egg. In this talk I will consider a general stochastic differential delay equation (SDDE) with state-dependent colored noises and derive its limit as the time delays and the correlation times of the noises go to zero. The analysis leads to a much simpler Stochastic Differential Equation to study. The work is motivated by an experiment involving an electrical circuit with noisy, delayed feedback. The main methods used in the proof are a theorem about convergence of solutions of stochastic differential equations by Kurtz and Protter and a maximal inequality for sums of a stationary sequence of random variables by Peligrad and Utev.
  
Based on joint work with Firas Rassoul-Agha
+
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==
  
==October 18-20, [http://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium], No Seminar ==
+
'''A general beta crossover ensemble'''
  
==October 25, [http://stat.columbia.edu/department-directory/name/promit-ghosal/ Promit Ghosal], Columbia ==
+
I'll describe an operator limit for a family of general beta ensembles which exhibit a double-scaling. In particular, a free parameter in the system provides for a crossover between the more well-known  "soft" and "hard"  edge point processes. This new limit operator takes as input the Riccati diffusion associated with the Stochastic Airy Operator. I like to suggest that this hints at a hierarchy of random operators analogous to the Painlevé hierarchy observed at the level of correlation functions for double-scaling ensembles most widely studied at beta = 2. Full disclosure: the result remains partially conjectural due to an unresolved  uniqueness question, but I’ll provide lots of evidence to convince you we have the right answer. Joint work with Jose Ramírez (Univ. Costa Rica).
  
 +
== October 31, 2019, Vadim Gorin, UW Madison==
  
Title: '''Tails of the KPZ equation'''
+
'''Shift invariance for the six-vertex model and directed polymers.'''
     
 
Abstract: The KPZ equation is a fundamental stochastic PDE related to modeling random growth processes, Burgers turbulence, interacting particle system, random polymers etc. It is related to another important SPDE, namely, the stochastic heat equation (SHE). In this talk, we focus on the tail probabilities of the solution of the KPZ equation. For instance, we investigate the probability of the solution being smaller or larger than the expected value. Our analysis is based on an exact identity between the KPZ equation and the Airy point process (which arises at the edge of the spectrum of the random Hermitian matrices) and the Brownian Gibbs property of the KPZ line ensemble.
 
  
This talk will be based on a joint work with my advisor Prof. Ivan Corwin.
+
I will explain a recently discovered mysterious property in a variety of stochastic systems ranging  from the six-vertex model and to the directed polymers, last passage percolation, Kardar-Parisi-Zhang equation, and Airy sheet. Vaguely speaking, the property says that the multi-point joint distributions are unchanged when some (but not necessarily all!) points of observations are shifted. The property leads to explicit computations for the previously inaccessible joint distributions in all these settings.
  
==November 1, [https://math.umn.edu/directory/james-melbourne James Melbourne], [https://math.umn.edu/ University of Minnesota] ==
+
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==
 +
'''Domino tilings of the Aztec diamond with doubly periodic weightings​'''
  
Title: '''Upper bounds on the density of independent vectors under certain linear mappings'''
+
This talk will be centered around domino tilings of the Aztec diamond with doubly periodic weightings. In particular asymptotic results of the $ 2 \times k $-periodic Aztec diamond will be discussed, both in the macroscopic and microscopic scale. The macroscopic picture is described using a close connection to a Riemann surface. For instance, the number of smooth regions (also called gas regions) is the same as the genus of the mentioned Riemann surface.
 
+
Abstract:  Using functional analytic techniques and rearrangement, we prove anti-concentration results for the linear images of independent random variables, in the form of density upper bounds. For continuous variables the results unify and sharpen Bobkov-Chistyakov's for independent sums of vectors and Rudelson-Vershynin's bounds on projections of independent coordinates.  For integer valued variables the techniques reduce finding the maximum of the probability mass function of a sum of independent variables, to the case that each variable is uniform on a contiguous interval.  This problem is approached through analysis of characteristic functions and new $L^p$ bounds on the Dirichlet and Fejer Kernel are obtained and used to derive a discrete analog of Bobkov-Chistyakov.
+
The starting point of the asymptotic analysis is a non-intersecting path formulation and a double integral formula for the correlation kernel. The proof of this double integral formula is based on joint work with M. Duits, which will be discuss briefly if time permits.
 
 
==November 8, [https://cims.nyu.edu/~thomasl/ Thomas Leblé], [https://cims.nyu.edu/ NYU] ==
 
 
 
Title: '''The Sine-beta process: DLR equations and applications'''
 
 
 
Abstract:
 
One-dimensional log-gases, or Beta-ensembles, are statistical physics models finding an incarnation in random matrix theory. Their limit behavior at microscopic scale is known as the Sine-beta process, its original description involves systems of coupled SDE's. In a joint work with D. Dereudre, A. Hardy, and M. Maïda, we give a new description of Sine-beta as an "infinite volume Gibbs measure", using the Dobrushin-Lanford-Ruelle (DLR) formalism, and we use it to prove the rigidity of the process, in the sense of Ghosh-Peres. Another application is a CLT for fluctuations of linear statistics.
 
 
 
<!-- ==November 15, TBA == -->
 
 
 
==November 22, [https://en.wikipedia.org/wiki/Thanksgiving Thanksgiving] Break, No Seminar ==
 
 
 
==Monday, November 26, [http://math.mit.edu/directory/profile.php?pid=1415 Vadim Gorin], [http://math.mit.edu/index.php MIT]  ==
 
  
 +
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==
 +
'''Universality of extremal eigenvalue statistics of random matrices'''
  
Title: '''Macroscopic fluctuations through Schur generating functions'''
+
The past decade has seen significant progress on the understanding of universality of various eigenvalue statistics of random matrix theory.  However, the behavior of certain ``extremal'' or ``critical'' observables is not fully understood.  Towards the former, we discuss progress  on the universality of the largest gap between consecutive eigenvalues.  With regards to the latter, we discuss the central limit theorem for the eigenvalue counting function, which can be viewed as a linear spectral statistic with critical regularity and has logarithmically growing variance.
  
Abstract:
+
== November 21, 2019, Tung Nguyen, UW Madison ==
I will talk about a special class of large-dimensional stochastic systems with
 
strong correlations. The main examples will be random tilings, non-colliding random walks, eigenvalues of random matrices,
 
and measures governing decompositions of group representations into irreducible components.
 
  
It is believed that macroscopic fluctuations in such systems are universally
+
'''Prevalence of deficiency zero reaction networks under an Erdos-Renyi framework
described by log-correlated Gaussian fields. I will present an approach to
+
'''
handle this question based on the notion of the Schur generating function of a probability
 
distribution, and explain how it leads to a rigorous confirmation of this belief in
 
a variety of situations.
 
  
==November 29, TBA ==
+
Reaction network models, which are used to model many types of systems in biology, have grown dramatically in popularity over the past decade. This popularity has translated into a number of mathematical results that relate the topological features of the network to different qualitative behaviors of the associated dynamical system. One of the main topological features studied in the field is ''deficiency'' of a network. A reaction network which has strong connectivity in its connected components and a deficiency of zero is stable in both the deterministic and stochastic dynamical models.
  
== Wednesday December 5, [http://www.mit.edu/~ssen90/ Subhabrata Sen], [https://math.mit.edu/ MIT] and [https://www.microsoft.com/en-us/research/lab/microsoft-research-new-england/ Microsoft Research New England] ==
+
This leads to the question: how prevalent are deficiency zero models among all such network models. In this talk, I will quantify the prevalence of deficiency zero networks among random reaction networks generated under an Erdos-Renyi framework. Specifically, with n being the number of species, I will uncover a threshold function r(n) such that the probability of the random network being deficiency zero converges to 1 if the edge probability p_n << r(n) and converges to 0 if p_n >> r(n).
  
 +
== November 28, 2019, Thanksgiving (no seminar) ==
  
==December 6, TBA ==
 
  
== ==
+
==December 5, 2019 ==
  
 
[[Past Seminars]]
 
[[Past Seminars]]

Latest revision as of 09:17, 20 November 2019


Fall 2019

Thursdays in 901 Van Vleck Hall at 2:30 PM, unless otherwise noted. We usually end for questions at 3:20 PM.

If you would like to sign up for the email list to receive seminar announcements then please send an email to join-probsem@lists.wisc.edu


September 12, 2019, Victor Kleptsyn, CNRS and University of Rennes 1

Furstenberg theorem: now with a parameter!

The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter. It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters where the lower limit for the Lyapunov exponent vanishes. Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. I will also speak about some generalizations and related open questions.

September 19, 2019, Xuan Wu, Columbia University

A Gibbs resampling method for discrete log-gamma line ensemble.

In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.

October 10, 2019, NO SEMINAR - Midwest Probability Colloquium

October 17, 2019, Scott Hottovy, USNA

Simplified dynamics for noisy systems with delays.

Many biological and physical systems include some type of random noise with a temporal delay. For example, many sperm cells travel in a random motion where their velocity changes according to a chemical signal. This chemotaxis is transmitted through a delay in the system. That is, the sperm notices chemical gradients after a certain time has elapsed. In this case, the delay causes the sperm to aggregate around the egg. In this talk I will consider a general stochastic differential delay equation (SDDE) with state-dependent colored noises and derive its limit as the time delays and the correlation times of the noises go to zero. The analysis leads to a much simpler Stochastic Differential Equation to study. The work is motivated by an experiment involving an electrical circuit with noisy, delayed feedback. The main methods used in the proof are a theorem about convergence of solutions of stochastic differential equations by Kurtz and Protter and a maximal inequality for sums of a stationary sequence of random variables by Peligrad and Utev.

October 24, 2019, Brian Rider, Temple University

A general beta crossover ensemble

I'll describe an operator limit for a family of general beta ensembles which exhibit a double-scaling. In particular, a free parameter in the system provides for a crossover between the more well-known "soft" and "hard" edge point processes. This new limit operator takes as input the Riccati diffusion associated with the Stochastic Airy Operator. I like to suggest that this hints at a hierarchy of random operators analogous to the Painlevé hierarchy observed at the level of correlation functions for double-scaling ensembles most widely studied at beta = 2. Full disclosure: the result remains partially conjectural due to an unresolved uniqueness question, but I’ll provide lots of evidence to convince you we have the right answer. Joint work with Jose Ramírez (Univ. Costa Rica).

October 31, 2019, Vadim Gorin, UW Madison

Shift invariance for the six-vertex model and directed polymers.

I will explain a recently discovered mysterious property in a variety of stochastic systems ranging from the six-vertex model and to the directed polymers, last passage percolation, Kardar-Parisi-Zhang equation, and Airy sheet. Vaguely speaking, the property says that the multi-point joint distributions are unchanged when some (but not necessarily all!) points of observations are shifted. The property leads to explicit computations for the previously inaccessible joint distributions in all these settings.

November 7, 2019, Tomas Berggren, KTH Stockholm

Domino tilings of the Aztec diamond with doubly periodic weightings​

This talk will be centered around domino tilings of the Aztec diamond with doubly periodic weightings. In particular asymptotic results of the $ 2 \times k $-periodic Aztec diamond will be discussed, both in the macroscopic and microscopic scale. The macroscopic picture is described using a close connection to a Riemann surface. For instance, the number of smooth regions (also called gas regions) is the same as the genus of the mentioned Riemann surface.

The starting point of the asymptotic analysis is a non-intersecting path formulation and a double integral formula for the correlation kernel. The proof of this double integral formula is based on joint work with M. Duits, which will be discuss briefly if time permits.

November 14, 2019, Benjamin Landon, MIT

Universality of extremal eigenvalue statistics of random matrices

The past decade has seen significant progress on the understanding of universality of various eigenvalue statistics of random matrix theory. However, the behavior of certain ``extremal or ``critical observables is not fully understood. Towards the former, we discuss progress on the universality of the largest gap between consecutive eigenvalues. With regards to the latter, we discuss the central limit theorem for the eigenvalue counting function, which can be viewed as a linear spectral statistic with critical regularity and has logarithmically growing variance.

November 21, 2019, Tung Nguyen, UW Madison

Prevalence of deficiency zero reaction networks under an Erdos-Renyi framework

Reaction network models, which are used to model many types of systems in biology, have grown dramatically in popularity over the past decade. This popularity has translated into a number of mathematical results that relate the topological features of the network to different qualitative behaviors of the associated dynamical system. One of the main topological features studied in the field is deficiency of a network. A reaction network which has strong connectivity in its connected components and a deficiency of zero is stable in both the deterministic and stochastic dynamical models.

This leads to the question: how prevalent are deficiency zero models among all such network models. In this talk, I will quantify the prevalence of deficiency zero networks among random reaction networks generated under an Erdos-Renyi framework. Specifically, with n being the number of species, I will uncover a threshold function r(n) such that the probability of the random network being deficiency zero converges to 1 if the edge probability p_n << r(n) and converges to 0 if p_n >> r(n).

November 28, 2019, Thanksgiving (no seminar)

December 5, 2019

Past Seminars