# Difference between revisions of "Symplectic Geometry Seminar"

(→Abstracts) |
|||

Line 82: | Line 82: | ||

Abstract: | Abstract: | ||

− | + | I will briefly review the definition of Seidel representation, then introduce parametrized group action, Kuranishi structure, equivariant Kuranishi structure and parametrized equivariant Kuranishi structure, and use these to prove the triviality axiom of Seidel representation. To prove the composition axiom, I will construct a Lefschetz fibration, then consider then moduli spaces this space and their Kuranishi structures. Finally, if time permitted, I will mention the extra ingredients needed for orbifold Seidel representation. | |

==Past Semesters == | ==Past Semesters == | ||

*[[ Spring 2011 Symplectic Geometry Seminar]] | *[[ Spring 2011 Symplectic Geometry Seminar]] | ||

*[[ Fall 2011 Symplectic Geometry Seminar]] | *[[ Fall 2011 Symplectic Geometry Seminar]] |

## Revision as of 07:19, 28 March 2012

Wednesday 2:15pm-4:30pm VV B139

- If you would like to talk in the seminar but have difficulty with adding information here, please contact Dongning Wang

date | speaker | title | host(s) |
---|---|---|---|

Feb. 8th | Lino | Title | |

Feb. 15th | Kaileung Chan | Title | |

Feb. 22st | Chit Ma | Title | |

Feb. 29th | Dongning Wang | Seidel elements and mirror transformations | |

March. 7th | Jie Zhao | Title | |

March. 14th | Peng Zhou | Title | |

March. 21th | Jae-ho Lee | Title | |

March. 28th | Dongning Wang | Proof of the Triviality Axiom and Composition Axiom of Seidel Representation | |

April. 11th | Cheol-Hyun Cho | Title | |

April. 18th | Louis Lau | Title | |

April. 25th | Erkao Bao | Title |

## Abstracts

**Dongning Wang** *Seidel elements and mirror transformations*

Abstract:

I will talk about the following paper by Eduardo Gonzalez, Hiroshi Iritani:

Seidel elements and mirror transformations

http://arxiv.org/abs/1103.4171

**Dongning Wang** "Proof of the Triviality Axiom and Composition Axiom of Seidel Representation"

Abstract:

I will briefly review the definition of Seidel representation, then introduce parametrized group action, Kuranishi structure, equivariant Kuranishi structure and parametrized equivariant Kuranishi structure, and use these to prove the triviality axiom of Seidel representation. To prove the composition axiom, I will construct a Lefschetz fibration, then consider then moduli spaces this space and their Kuranishi structures. Finally, if time permitted, I will mention the extra ingredients needed for orbifold Seidel representation.