
SIAM J. SCI. COMPUT. © 2022 Society for Industrial and Applied Mathematics
Vol. 44, No. 2, pp. A993–A1019

CONDITIONAL MONTE CARLO FOR REACTION NETWORKS∗

DAVID F. ANDERSON† AND KURT W. EHLERT†

Abstract. Reaction networks are often used to model interacting species in fields such as
biochemistry and ecology. When the counts of the species are sufficiently large, the dynamics of
their concentrations are typically modeled via a system of differential equations. However, when the
counts of some species are small, the dynamics of the counts are typically modeled stochastically
via a discrete state, continuous time Markov chain. A key quantity of interest for such models is
the probability mass function of the process at some fixed time. Since paths of such models are
relatively straightforward to simulate, we can estimate the probabilities by constructing an empirical
distribution. However, the support of the distribution is often diffuse across a high-dimensional state
space, where the dimension is equal to the number of species. Therefore generating an accurate
empirical distribution can come with a large computational cost. We present a new Monte Carlo
estimator that fundamentally improves on the “classical” Monte Carlo estimator described above.
It also preserves much of classical Monte Carlo’s simplicity. The idea is basically one of conditional
Monte Carlo. Our conditional Monte Carlo estimator has two parameters, and their choice critically
affects the performance of the algorithm. Hence, a key contribution of the present work is that
we demonstrate how to approximate optimal values for these parameters in an efficient manner.
Moreover, we provide a central limit theorem for our estimator, which leads to approximate confidence
intervals for its error.

Key words. Monte Carlo, continuous time Markov chain, chemical master equation, nonpara-
metric density estimation, reaction networks

AMS subject classifications. 65C05, 60J28, 62G07

DOI. 10.1137/21M144267X

1. Introduction. Systems of interacting species appear often in nature. To
better understand the dynamics of such systems, we can model them as reaction
networks with deterministic or stochastic dynamics [12, 28, 35, 58]. If the counts
of the constituent species are high, then the dynamics are commonly modeled by a
system of differential equations [12, 24, 58]. However, if the count of any species
is small, then a stochastic model with a discrete state space is more appropriate
[11, 12, 42, 50, 55, 58].

Since the amount of each species is necessarily nonnegative and discrete, the state
space of the stochastic process is a subset of Zd

≥0, where d is the number of species
types. Let ν be the distribution of the initial state, which is often a point mass
distribution, and suppose we are interested in the distribution of the state of the
process at some fixed time t > 0. That is, if X(t) is the state of the process at time
t, then we would like to know the value of

pνt (x)
def
= Pν(X(t) = x), x ∈ Zd

≥0.

In general, finding the exact values of pνt (·) is extremely difficult. More precisely,
the authors are not aware of any general class of models for which pνt can be solved for

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section August 27,
2021; accepted for publication (in revised form) December 29, 2021; published electronically April
25, 2022.

https://doi.org/10.1137/21M144267X
Funding: This work was supported by the Army Research Office through grant W911NF-18-1-

0324 and by the National Science Foundation through grant DMS-2051498.
†Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin, USA

(anderson@math.wisc.edu, kehlert@math.wisc.edu).

A993

https://doi.org/10.1137/21M144267X
mailto:anderson@math.wisc.edu
mailto:kehlert@math.wisc.edu

A994 DAVID F. ANDERSON AND KURT W. EHLERT

explicitly, with the exception of linear, or first-order, models [33] or, more generally,
models that satisfy a dynamical and restricted complex-balanced condition and admit
a time-dependent product form Poisson distribution [13]. However, there are many
numerical methods that give an estimate. One type of approach is to approximately
solve Kolmogorov’s forward equation, which is called the chemical master equation
(CME) in much of the biology and chemistry literature. The CME can be written as

d

dt
pνt (x) =

R∑
r=1

[
pνt (x− ζr)λr(x− ζr)− pνt (x)λr(x)

]
, x ∈ Zd

≥0,(1.1)

where R is the number of reactions in the system, λr : Zd
≥0 → R≥0 is the intensity (or

propensity) function for the rth reaction, ζr ∈ Zd gives the net change in the counts
of the species due to an occurrence of the rth reaction, and the initial distribution
pν0(·) is given by ν. See section 2 for the precise specification of the model, including
terminology.

For most models of interest, solving (1.1) entails solving a high-dimensional (often
infinite-dimensional) system of linear ordinary differential equations (ODEs). Solving
such a system directly is almost always very difficult, so there has been a considerable
amount of research devoted to the development of fast and accurate approximate
algorithms. The general approach for many such algorithms is to first truncate the
state space of the system to a smaller subset. This truncation makes solving the
problem computationally feasible, at the cost of introducing a controllable error to
the solution. After truncation, the new system of ODEs must be solved.

There is currently a wide variety of methods for performing both the truncation
step and solution step. In particular, there is the finite state projection algorithm
[45, 56], the uniformization method [21], sliding window methods [32, 59], the sparse
grid method [31], the radial basis function approximation [37], a class of spectral
methods [23, 34], and methods that specialize to systems with multiple scales [16,
19, 39, 40, 48]. Moreover, there are tensor methods [36, 53, 57] that represent the
truncated CME with tensors.

As an alternative to approximating (1.1) directly via the methods above, we can
take a Monte Carlo approach. That is, we can generate n independent and identically
distributed (i.i.d.) realizations of the process X, denoted by {Xi}ni=1, and use the
Monte Carlo estimator

1

n

n∑
i=1

1(Xi(t) = x) ≈ Eν,0 [1(X(t) = x)] = pνt (x),(1.2)

where Eν,0 is the expectation under the initial distribution ν and a starting time of
zero. By the strong law of large numbers, the approximation becomes an equality as
n goes to infinity.

To utilize the above estimator, we need to simulate exact realizations of the
process X over the time interval [0, t], and there are many methods to choose from.
In particular, there is the Gillespie algorithm, also called the stochastic simulation
algorithm, [26], the next reaction method [25], and the modified next reaction method
[1], which are all straightforward to implement and often have similar efficiencies. For
our numerical results in the later sections, we used the modified next reaction method.

One drawback of using the Monte Carlo estimator (1.2) to approximate the solu-
tion to the CME (1.1) is that huge numbers of simulations are generally required to
achieve a high level of accuracy. That said, the Monte Carlo estimator has at least

CONDITIONAL MONTE CARLO FOR REACTION NETWORKS A995

two distinct advantages when compared against the methods that approximately solve
the CME directly: it is very simple to implement and it is substantially less sensitive
to the dimension of the state space.

There are two natural ways to improve upon a Monte Carlo estimator. The
first way is to decrease the time required to generate realizations of the random
samples (i.e., the process X in our case). Lowering the time required to generate
paths of the processes that we are interested in has been an active area of research for
almost two decades [1, 25, 41, 43, 49, 54]. Moreover, researchers have also designed
efficient algorithms that generate approximate paths that trade some accuracy for
speed [2, 10, 17, 18, 22, 27, 30, 51].

The second way to improve upon a Monte Carlo estimator, and the focus of
this article, is to instead lower the variance of the estimator itself. There are many
broadly applicable variance reduction techniques, including coupling methods, control
variates, stratified sampling, antithetic random variables, quasi-Monte Carlo, and
conditional Monte Carlo [29, 47].

In this paper, we utilize a form of conditional Monte Carlo to reduce the variance.
Briefly, conditional Monte Carlo follows from the observation that for one-dimensional
random variables X and Y , defined on the same probability space, we have E[X] =
E[E[X|Y]], and Var(E[X|Y]) ≤ Var(X), so long as all the expectations are well
defined [14]. That is, one can always reduce variance by conditioning. Of course, the
“art” is in the selection of an appropriate random variable Y .

Returning to our situation, define Eν,s[f(X(t)] as the expectation of f(X(t)) taken
with respect to the initial state distribution ν and starting time 0 ≤ s ≤ t. That is,
P (X(s) = x) = ν(x). If ν is a point-mass distribution at y ∈ Zd

≥0, then we write
Ey,s[f(X(t))]. Fix h ∈ [0, t], then

pνt (x) = Eν,0 [1(X(t) = x)]

= Eν,0 [Eν,0 [1(X(t) = x)|X(t− h)]]

= Eν,0

[
EX(t−h),t−h [1(X(t) = x)]

]
(Markov property)

= lim
n→∞

1

n

n∑
i=1

EXi(t−h),t−h [1(X(t) = x)] , a.s. (strong law of large numbers),

(1.3)

where the {Xi(t − h)}ni=1 are i.i.d. realizations of X(t − h). A natural estimator for
the right-hand side of the above equation is

p̂νt (x;n,m, h)
def
=

1

n

n∑
i=1

1

m

m∑
j=1

1(Xij(t) = x),(1.4)

where we generate the Xij in the following manner:
• simulate n independent realizations of the process X over the time interval

[0, t − h], each with an initial value determined by ν, and denote the ith
realization by Xi;

• for each i ∈ {1, . . . , n}, generate m conditionally independent realizations
over the time interval [t − h, t], each of which has initial state Xi(t − h).
Denote the jth such realization by Xij .

Note that for each j ∈ {1, . . . ,m}, the process Xij is equal to Xi over the interval
[0, t− h]. See Figure 1.

Since {Xi1j(t)}mj=1 and {Xi2j}mj=1 are independent for i1 ̸= i2, the strong law of
large numbers implies that with probability one we have

A996 DAVID F. ANDERSON AND KURT W. EHLERT

0 0.5 1 1.5 2
0

20

40

60

80

100

120

(a) Two independent realizations of
the process over the time interval
[0, 2].

0 0.5 1 1.5 2
0

20

40

60

80

100

120

m

h

(b) Two independent realizations of
the process generated over [0, 1.5].
Each is then followed by m con-
ditionally independent “branches”
simulated over [1.5, 2].

Fig. 1. Paths generated for the birth model X → 2X.

lim
n→∞

p̂νt (x;n,m, h) = Eν,0

 1

m

m∑
j=1

1(Xij(t) = x)

 = pνt (x).

Hereafter we will refer to the original estimator (1.2) as classical Monte Carlo, and
the new estimator (1.4) as conditional Monte Carlo. The conditional Monte Carlo
estimator has two unspecified parameters, denoted m and h. The number of branches
is determined by m, and the time at which branching occurs is controlled by h. If
m and h are fixed, then the remaining parameter n is simply chosen large enough
such that the estimator’s variance is below some desired threshold. If m = 1, h = 0,
or h = t, then the conditional and classical Monte Carlo estimators are the same.
If m > 1 and h ∈ (0, t), then for the same computational cost as classical Monte
Carlo, the conditional Monte Carlo estimator obtains more observations of X(t).
We would like to choose the values of m and h such that, in some sense, our new
estimator is more efficient than classical Monte Carlo. In section 3, we provide an
algorithm for finding optimal values of m and h, which is the key contribution of this
article.

The distributions produced by our conditional Monte Carlo method can, of course,
be used to construct unbiased estimates of moments and other expectations. How-
ever, we stress here that our new estimator is optimized for estimating the entire
distribution of the process and not for estimating expectations. Estimating expec-
tations is a separate–and very important–problem that has seen a large amount of
research activity over the past decade (see [5, 6, 7, 8, 9, 17, 18, 44] for a subset of
works focusing on this problem). In fact, in Appendix B we prove that the type of
conditioning we carry out here (optimized for estimating the entire distribution) can-
not be more efficient than standard Monte Carlo for the estimation of the expected
value of a linear birth process at some future time t > 0. This may seem surprising at
first since conditioning always reduces the variance (as discussed above). However, in
the present method we also use Monte Carlo to solve for the conditional expectation,
which has its own cost. Determining better, and perhaps optimal, ways to estimate
expectations via conditional Monte Carlo in the present context is a worthy direction
of future research and will be discussed further in section 6 and Appendix B.

CONDITIONAL MONTE CARLO FOR REACTION NETWORKS A997

The remainder of the article is organized as follows. In section 2, we define the
continuous time Markov chain model of reaction networks. Then in section 3, we
present an algorithm for finding the optimal values of m and h, and also the full
algorithm, Algorithm 3.3, for the implementation of the conditional Monte Carlo
estimator. Next, in section 4, we give numerical results demonstrating the order
of magnitude improvement that can be obtained with the use of conditional Monte
Carlo in the current context. In section 5, we derive a central limit theorem for
the error of the conditional Monte Carlo estimator and then test it on examples.
Finally, in section 6, we summarize our results and suggest ideas for future work. The
proofs of the main results are in Appendix A. The supplementary material contain
more figures related to numerical results. An example MATLAB implementation of
the conditional Monte Carlo algorithm is at https://github.com/kehlert/conditional
monte carlo example.

2. Mathematical model. Suppose our reaction network has d types of species
and R reactions. For 1 ≤ r ≤ R,

(i) we will denote by ζr the reaction vector for the rth reaction, meaning that
if the rth reaction occurs at time t, and the process is currently in state
x ∈ Zd

≥0, then the new state becomes x+ ζr;

(ii) we will denote by λr : Zd
≥0 → [0,∞) the intensity, or propensity, function of

the rth reaction.
A standing assumption is that λr(x) = 0 if x + ζr /∈ Zd

≥0, which preserves the non-
negativity of the components. We let X be a continuous time Markov chain (CTMC)
whose transition rate from state x to x′ is

q(x, x′) =

R∑
r=1

λr(x)1(x
′ − x = ζr).

Hence, X is a Markov process and Af(x) =
∑R

r=1 λr(x)(f(x + ζr) − f(x)) is its
infinitesimal generator, where f : Zd

≥0 → R is a bounded function with compact

support. We will denote our process by X, so that X(t) ∈ Zd
≥0 is the vector whose

ith component gives the count of species i at time t ≥ 0.
The most common choice of intensity function is stochastic mass action kinetics.

Suppose that we require yi copies of species i for the rth reaction to occur. Then we
say that λr has stochastic mass action kinetics if

λr(x) = κr

d∏
i=1

xi!

(xi − yi)!
1(xi ≥ yi)(2.1)

for some κr > 0, which is called the rate constant of the reaction. For example,
for the reaction 2A + B → A + C, where A, B, and C are the species types in our
model system, the reaction vector is (−1,−1, 1)T and y = (2, 1, 0)T , in which case
λr(x) = κrx1(x1 − 1)x2, where we have ordered the species alphabetically.

None of our theoretical results assume that the λr has the above mass action
form, but the models we tested do use it unless otherwise noted.

One well–known representation for the stochastic process X is the random time
change representation of Thomas Kurtz [11, 12, 38]

X(t) = X(0) +

R∑
r=1

Yr

(∫ t

0

λr (X(s)) ds

)
ζr,(2.2)

https://github.com/kehlert/conditional_monte_carlo_example
https://github.com/kehlert/conditional_monte_carlo_example

A998 DAVID F. ANDERSON AND KURT W. EHLERT

where X(0) is the initial state and the Yr are independent unit-rate Poisson processes.
We will make use of the above representation in some of our proofs.

2.1. Examples. In the subsequent sections, we intersperse numerical results,
and below is a list of all the example models we used. The species to the left of the
arrows are the reactants (giving the counts of the species consumed in the reaction),
and those to the right are the products. The numbers above the arrows are the rate
constants κr. Unless otherwise noted, for every model and reaction we define the
intensities λr with (2.1).

(i) Birth:
The initial state is X(0) = 10 and t = 2. The single reaction is

X
1−→ 2X.

Following (2.1), the rate of the reaction is λ(x) = x.
(ii) Birth–death:

The initial state is X(0) = 100 and t = 2. There are two reactions

∅ 50−→ X, X
1−→ ∅.

Following (2.1), the rates of the reactions are λ1(x) = 50, and λ2(x) = x,
respectively.

(iii) Lotka–Volterra:
This model is also often called the predator-prey model. The initial state is
A(0) = 200 and B(0) = 100. We set t = 4. The reactions are

A
2−→ 2A, A+B

0.01−−→ 2B, B
2−→ ∅.

Following (2.1), and after ordering the species as (A,B), the rates of the
reactions are λ1(x) = 2x1, λ2(x) = 0.01x1x2, and λ3(x) = 2x2, respectively.

(iv) Dimerization:
In this model, mRNA is translated into the protein P , which then dimerizes
into D, and the dimer D accumulates over time. The initial state for every
species is zero except for G(0) = 1. We set t = 1. The reactions are

G
25−→ G+mRNA, mRNA

100−−→ mRNA+ P,

2P
0.001−−−→ D, mRNA

0.1−−→ ∅, P 1−→ ∅.

Following (2.1), and after ordering the species as (G,mRNA,P,D), the rates
of the reactions are λ1(x) = 25x1, λ2(x) = 100x2, λ3(x) = 0.001x3(x3 − 1),
λ4(x) = 0.1x2, and λ5(x) = x3, respectively.

(v) Toggle:
Each species represses the production of the other, which leads to a probabil-
ity mass function that is multimodal. The initial state is A(0) = B(0) = 0.
We set t = 100. The reactions are

∅ −→ A, A −→ ∅, ∅ −→ B, B −→ ∅.

For this model, the first and third intensity functions are not chosen to be
mass action. Specifically, we let

λ1(x) =
50

1 + 2x2
, λ2(x) = x1, λ3(x) =

50

1 + 2x1
, λ4(x) = x2,

where we again ordered the species as (A,B).

CONDITIONAL MONTE CARLO FOR REACTION NETWORKS A999

(vi) Fast/slow:
A and B quickly convert into one another, and B slowly turns into C. The
initial state is A(0) = B(0) = 100 and C(0) = 0. We set t = 10. The reactions
are

A
10−→ B, B

10−→ A, B
0.1−−→ C.

Following (2.1), and after ordering the species as (A,B,C), the rates are
λ1(x) = 10x1, λ2(x) = 10x2, and λ3(x) = 0.1x2, respectively.

3. Determining the values of m and h via optimization. The conditional
Monte Carlo estimator (1.4) is of little value without knowledge of which values of m
and h to use. In this section, we will show that appropriate values can be found by
numerically solving an easy optimization problem.

Recall that the distribution of the process is denoted by pνt , and we denote an
estimate of this distribution by p̂νt . We will measure the quality of the estimation via
the mean integrated squared error (MISE), which is

MISE(p̂νt)
def
= Eν,0

 ∑
x∈Zd

≥0

(
p̂νt (x)− pνt (x)

)2 .(3.1)

Note that if p̂νt is constructed via our conditional Monte Carlo estimator, then it,
and by extension MISE(p̂νt), is a function of n,m, and h. Suppose we have a fixed
computational budget, which we denote as b. We then want to choose the values of
n, m, and h so that we minimize MISE(p̂νt) subject to our budget constraint b. We
choose the squared error in (3.1), as opposed to the total variation norm or some other
Lp error, as this choice was more amenable to analysis, especially in the derivation of
the central limit theorem in section 5.

3.1. Computational cost model. Assuming that our model is nonexplosive1

the expected number of reactions required to generate {X1j}mj=1 is given by

Eν,0

[∫ t−h

0

λ0(X(s)) ds

]
︸ ︷︷ ︸

expected # of reactions in [0,t−h]

+ m · Eν,0

[∫ t

t−h

λ0(X(s)) ds

]
︸ ︷︷ ︸

expected # of reactions in [t−h,t]

,

where λ0(x) =
∑R

r=1 λr(x) (see Theorem A.1). Hence, the expected computational
cost for our conditional Monte Carlo estimator is

n · c

(
Eν,0

[∫ t−h

0

λ0(X(s)) ds

]
+m · Eν,0

[∫ t

t−h

λ0(X(s)) ds

])
,(3.2)

where c > 0 is an unknown constant.
Since we cannot generally evaluate the expectations in the cost model (3.2), as this

would be as difficult as the problem we are attempting tosolve, we need to estimate

1A process is said to explode if there are an infinite number of transitions in a finite amount of
time. A process is said to be nonexplosive if the probability of an explosion is zero for all initial
distributions [3, 46].

A1000 DAVID F. ANDERSON AND KURT W. EHLERT

them. To do so, fix a relatively small ñ and simulate ñ i.i.d. paths {Xi}ñi=1. Then the
expectations are approximately equal to

1

ñ

ñ∑
i=1

∫ t−h

0

λ0(Xi(s)) ds and
1

ñ

ñ∑
i=1

∫ t

t−h

λ0(Xi(s)) ds.(3.3)

Importantly, for the fixed set of ñ paths, the values (3.3) can be computed for a
variety of different h values. The process Xi is piecewise constant, and therefore so is
λ0(Xi). Thus, for any value of h, we can easily compute the integrals so long as we
have stored the jump times of Xi and the value of λ0(Xi) at each jump.

3.2. Optimization problem. Given a reaction network, our goal is to find
values of n, m, and h that minimize the MISE (3.1) for our conditional Monte Carlo
estimator (1.4) while staying within our computational budget of b. More precisely,
we want to solve the following optimization problem,

min
n,m,h

Eν,0

 ∑
x∈Zd

≥0

(
p̂νt (x;n,m, h)− pνt (x)

)2
︸ ︷︷ ︸

MISE

,
(3.4)

subject to

n · c

(
Eν,0

[∫ t−h

0

λ0(X(s)) ds

]
+m · Eν,0

[∫ t

t−h

λ0(X(s)) ds

])
≤ b,

n,m ∈ Z≥1 and 0 ≤ h ≤ t.

(3.5)

The following theorem will allow us to transform the above optimization problem
into a more solvable form.

Theorem 3.1. Suppose the process X is nonexplosive. For any fixed n,m ∈ Z≥1

and h ∈ [0, t]

Eν,0

 ∑
x∈Zd

≥0

(
p̂νt (x;n,m, h)− pνt (x)

)2
=

1

n

 1

m
+

(
1− 1

m

)
Pν(X11(t) = X12(t))−

∑
x∈Zd

≥0

pνt (x)
2

 .

The proof of Theorem 3.1 can be found in Appendix A.2.
If we allow n to be continuous, then we can use the constraint (3.5) to solve

for n−1, and subsequently eliminate the constraint by substitution. This leads to a
simpler optimization problem. In particular, let

f(m,h)
def
=

(
1

m
Eν,0

[∫ t−h

0

λ0(X(s)) ds

]
+ Eν,0

[∫ t

t−h

λ0(X(s)) ds

])

×

1 + (m− 1)Pν(X11(t) = X12(t))−m
∑

x∈Zd
≥0

pνt (x)
2

 .

CONDITIONAL MONTE CARLO FOR REACTION NETWORKS A1001

Then the original optimization problem (3.4) and (3.5) is equivalent to

min
m,h

f(m,h),

m ∈ Z≥1, 0 ≤ h ≤ t.
(3.6)

Note that both c and b have dropped out of the optimization problem.
There are three terms in f that we must know, or be able to approximate, in

order to solve (3.6).
• The expectations of the integrals. We discussed how to approximate these in
subsection 3.1.

• The sum
∑

x p
ν
t (x)

2. However, we note that
∑

x p
ν
t (x)

2 is the probability that
two independent paths end up in the same state at time t. For many models,
including the ones we tested, that sum is much smaller than Pν(X11(t) =
X12(t)) and is close to zero. Thus for our examples, we replace the sum with
zero and make that our general recommendation.

• The term Pν(X11(t) = X12(t)), whose approximation is the subject of the
next section.

Note that there are many models for which
∑

x p
ν
t (x)

2 will not be near zero. How-
ever, for such models a small number of states will necessarily have a large probability.
An example of such a model would be a birth-death model, as in section 2.1, with
input rate 1 and output rate 1. Such a model has a stationary distribution that is
Poisson with a parameter of 1 [4], and so for large t the distribution pνt will concen-
trate on the set {0, 1, 2, 3}. Other examples where

∑
x p

ν
t (x)

2 is not small include
those with extinction events. For such models, it would not be appropriate to set
this term to zero. However, for models with diffuse probability mass functions, i.e.,
those models for which estimating pνt is difficult and are the focus of this paper, the
assumption will often be valid.

3.3. Approximating the joint probability. In order to optimize the objective
function f(m,h) in (3.6), we need to know, or be able to quickly approximate, the
term Pν(X11(t) = X12(t)). The following theorem, proven in Appendix A.3, will allow
us to make a good approximation, without requiring any additional simulations. The
theorem makes use of the Skellam(µ1, µ2) distribution, which is the distribution of
the difference between two independent Poisson random variables with parameters µ1

and µ2, respectively.

Theorem 3.2. Let S be the d×R matrix whose rth column is ζr and let null(S)
be the right nullspace of S restricted to integer values. Let X and Z satisfy

X(t) = X(0) +

R∑
r=1

Y X
r

(∫ t

0

λr(X(s))ds

)
ζr,

Z(t) = X(0) +

R∑
r=1

Y Z
r

(∫ t

0

λr(X(s))ds

)
ζr,

where the Y X
r and Y Z

r are independent, unit-rate Poisson processes. Assume that X
is nonexplosive. For each 1 ≤ r ≤ R and 0 ≤ a ≤ b ≤ t, denote

Λa,b
r =

∫ b

a

λr(X(s))ds,

A1002 DAVID F. ANDERSON AND KURT W. EHLERT

and let Ka,b
r have the Skellam(Λa,b

r ,Λa,b
r) distribution. Then

Pν(X(t) = Z(t)) =
∑

k∈null(S)

Eν,0

[
R∏

r=1

P
(
K0,t

r = kr
∣∣ Λ0,t

r

)]
.(3.7)

Note that X is the process (2.2) that is of interest to us. Returning to our setup, if
we assume that ∫ t

t−h

λr(X11(s)) ds ≈
∫ t

t−h

λr(X12(s)) ds,

which should be valid for small h, then Theorem 3.2 leads to an approximation of
Pν(X11(t) = X12(t)). In particular, we may sample ñ paths and for the ith such path
define

Λt−h,t
r,i =

∫ t

t−h

λr(Xi(s)) ds, 1 ≤ i ≤ ñ.

Then Pν(X11(t) = X12(t)) ≈ P̂ν(X11(t) = X12(t)), where

P̂ν(X11(t) = X12(t))
def
=
∑
k∈Ñ

1

ñ

ñ∑
i=1

R∏
r=1

P
(
Kt−h,t

r = kr
∣∣ Λt−h,t

r,i

)
,(3.8)

and Ñ is a finite subset of null(S).
To find Ñ , we use the “algorithm for solving the linear diophantine equation

problem” from section 1.5.2 of [20]. In general, the algorithm finds solutions x ∈ Zd

to linear equations of the form Ax = b for rational A and b. In our case, we enumerate
solutions to Sk = 0 for k ∈ Zd. Generally, there are infinitely many solutions, however,
the right-hand side of (3.8) is always maximized at k = 0, and decreases as k moves
away from 0. Thus we approximate (3.8) by starting at k = 0 and enumerating all
“nearby” solutions. Algorithm 3.1 shows how to apply the algorithm from [20] to our
particular problem. In all of our numerical examples, we chose C = 4 in Algorithm 3.1.

3.4. Approximation to the optimization problem. By using the joint prob-
ability approximation (3.8), we can approximate the function f in the optimization
problem (3.6). In particular, let

Algorithm 3.1. Algorithm for enumerating a finite subset of null(S) ∈ Zd×R.

Require: the stoichiometry matrix S and C ∈ Z>0

1: if S does not have full row rank then
2: Remove redundant equations from the system and replace S.
3: end if
4:

5: Transform S into its Hermite normal form H, and store the matrix U that satisfies
H = SU .

6: r ← R− rank(S)
7: Let Ũ be the matrix containing the last r columns of U .
8:

9: Ñ ← {Ũz|z ∈ Zr, ||z||∞ ≤ C}

CONDITIONAL MONTE CARLO FOR REACTION NETWORKS A1003

Algorithm 3.2. Algorithm for computing P̂ν(X11(t) = X12(t)).

Require: ñ i.i.d. samples of X, denoted {Xi}ñi=1 ▷ ñ = 500 was more than sufficient.
Require: the stoichiometry matrix S, and a finite Ñ ⊂ null(S)
1: for all r in 1, . . . , R and i in 1, . . . , ñ do
2: Λt−h,t

r,i ←
∫ t

t−h
λr(Xi(s)) ds

3: end for
4:

5: P̂ ← 0
6: for all k in Ñ and i in 1, . . . , ñ do
7: P̂ ← P̂ +

∏R
r=1 P (Kt−h,t

r = kr |Λt−h,t
r,i) ▷ Kt−h,t

r ∼ Skellam(Λt−h,t
r,i ,Λt−h,t

r,i)
8: end for
9:

10: P̂ν(X11(t) = X12(t))← P̂ /ñ

f̂(m,h)
def
=

(
1

m

∫ t−h

0

λ̄0(X(s)) ds+

∫ t

t−h

λ̄0(X(s)) ds

)

×

1 + (m− 1)P̂ν(X11(t) = X12(t))−m

���
���*

0∑
x∈Zd

≥0

pνt (x)
2

 ,

(3.9)

where λ̄0(X(s)) = 1
ñ

∑ñ
i=1

∑R
r=1 λr(Xi(s)), and the {Xi}ñi=1 are independent paths

of X. Then we may substitute f with f̂ and our new optimization problem is the
following:

min
m,h

f̂(m,h),

m ∈ R≥1, 0 ≤ h ≤ t.
(3.10)

Note that above we have allowed m to be real valued, as opposed to integer valued.
This allows us to use continuous optimization algorithms, which generally converge
more rapidly. According to Figure SM1, which shows f̂(m,h) for many values of m

and h, f̂ does not change too quickly with m, so allowing m to range over the reals
instead of the integers should not change the optimal values of m and h appreciably.

It is important to know when the optimization problem (3.10) has a finite solution.
In the proposition below, we show that a solution necessarily exists when P̂ν(X11(t) =
X12(t)) is larger than the approximation used for

∑
x p

ν
t (x)

2. Since we approximate
the sum with zero, we may conclude that a finite solution always exists in our setup.

Proposition 3.3. Let p̂2 be our approximation to
∑

x p
ν
t (x)

2. If P̂ν(X11(t) =

X12(t)) > p̂2 for all h ∈ [0, t], then (3.10) has a finite solution.

Proof. Since the integrals are nonnegative, h is in a compact domain, f̂ depends
continuously on h and m, and limm→∞ f̂(m,h) =∞, a finite solution exists.

Algorithm 3.3 outlines the full conditional Monte Carlo algorithm, which brings
together all of the individual pieces of the algorithm that we previously discussed.

4. Numerical results. In this section, we present numerical results demon-
strating the improvement in accuracy, quantified via the MISE (3.1), that comes from
using our conditional Monte Carlo estimator instead of the classical Monte Carlo esti-
mator. In particular, when near-optimal values of m and h are utilized, the accuracy

A1004 DAVID F. ANDERSON AND KURT W. EHLERT

Algorithm 3.3. Conditional Monte Carlo algorithm

Require: ñ i.i.d. samples of X, denoted {Xi}ñi=1 ▷ ñ = 500 was more than sufficient.

1: m,h← argminm∈R≥1

0≤h≤t

f̂(m,h)

2: ▷ Use {Xi}ñi=1, (3.9), and Algorithm 3.2 to evaluate f̂ .
3: for all i in 1, . . . , n do
4: Sample Xi(t− h). ▷ The Xi(t− h) are i.i.d.
5: for all j in 1, . . . ,m do
6: Sample Xij(t) conditioned on Xij(t− h) = Xi(t− h).
7: ▷ See section 1 for details about Xij .
8: end for
9: end for

10:

11: p̂νt (x;n,m, h)← 1
n

∑n
i=1

1
m

∑m
j=1 1(Xij(t) = x)

often improves by an order of magnitude for a fixed computational budget. Moreover,
we show that the function f̂ of (3.10) is indeed a very good approximation for f of
(3.6) for the examples we considered, allowing us to conclude that the values of m
and h our method produces are near-optimal.

The following steps were carried out on each of our test examples. First, we fixed
an integer n1 and computed the classical Monte Carlo estimator

pMC
t (x;n1) =

1

n1

n1∑
i=1

1(Xi(t) = x), x ∈ Zd
≥0.

For all models, we used n1 = 104. We also recorded the number of random variates
used in generating pMC

t (· ;n1), which served as the budget b in the computational
cost constraint (3.5).

After obtaining pMC
t (· ;n1), we computed the conditional Monte Carlo estimator

pCMC
t (x;n2,m, h) =

1

n2

n2∑
i=1

1

m

m∑
j=1

1(Xij(t) = x), x ∈ Zd
≥0,

for various pairs of m and h, and n2 was allowed to increase until the conditional
estimator used essentially the same number of random variates as the classical Monte
Carlo estimator. All random variates generated for the conditional estimators were
independent of those utilized for the classical estimator.

Next, for both classical and conditional Monte Carlo, we computed the integrated
squared error

ISE =
∑
S̃

(p̂(x)− pνt (x))
2
,(4.1)

where S̃ was a large fixed subset of the state space, and p̂(x) was either the classical
or conditional Monte Carlo estimate. The ISE is itself a random variable, and so we
approximated the MISE by averaging 100 independent samples of the ISE.

The exact values of pνt (x) were unknown. Thus the values were estimated with
conditional Monte Carlo with a large value of n1 (we used n1 = 109), and with m and
h chosen so that they approximately minimize the MISE.

CONDITIONAL MONTE CARLO FOR REACTION NETWORKS A1005

Finally, we denote by MISEMC our estimate of the classical Monte Carlo MISE,
and, for a given m and h, we denote by MISECMC(m,h) the conditional version. For
each model, and for each choice of m and h, an “empirical error improvement” was
computed as the following ratio

MISEMC

MISECMC(m,h)
,

where a number greater than one implies that conditional Monte Carlo has a lower
MISE than classical Monte Carlo when given the same computational budget. These
values, one for each pair of m and h, can then be plotted. In the top half of Fig-
ures 2 and 3 (and Figures SM2 to SM5), we display these values with a heatmap.
Of particular interest is the order of magnitude improvement in computational effi-
ciency we see with the conditional Monte Carlo estimator as compared to classical
Monte Carlo when well-chosen values of h and m are utilized. In particular, for the
Lotka–Volterra model we see a 40-fold improvement, for the dimerization model we
see a 20-fold improvement, for the toggle model we see a 20-fold improvement, and
for the fast/slow model we see a 20-fold improvement. For the birth and birth-death
models we see more modest improvements in computational efficiency, but this can
be explained by the simplicity of these models which makes classical Monte Carlo
sufficient for the task at hand. In particular, one promising aspect of the present
work comes into focus with these numerical results: the more complicated the model,

0.0
01

0.0
017

0.0
028

0.0
048

0.0
081

0.0
136

0.0
23

0.0
387

0.0
653

0.1
101

0.1
856

0.3
13

0.5
277

0.8
897 1.5

h

1

2

3

5

8

12

20

32

52

85

139

228

373

611

1000

m

Empirical error improvement

1.00

1.78

2.40

3.33

4.25

5.02

5.87

6.48

6.92

7.18

7.25

7.19

6.95

6.53

5.90

1.00

1.88

2.64

3.94

5.45

6.90

8.76

10.27

11.52

12.32

12.72

12.53

11.96

10.87

9.43

1.00

1.93

2.79

4.33

6.29

8.40

11.47

14.35

16.97

18.88

19.85

19.69

18.40

16.08

13.27

1.00

1.96

2.87

4.59

6.90

9.58

13.85

18.47

23.19

27.12

29.02

28.81

26.21

22.09

17.28

1.00

1.97

2.91

4.71

7.23

10.28

15.42

21.34

28.13

27.13

20.41

1.00

1.98

2.93

4.78

7.38

10.58

16.19

22.91

30.86

29.96

21.78

1.00

1.98

2.93

4.77

7.38

10.58

16.17

22.84

30.76

29.90

22.10

1.00

1.97

2.91

4.71

7.22

10.22

15.33

21.24

27.88

27.20

20.75

1.00

1.96

2.87

4.58

6.88

9.55

13.82

18.38

23.08

26.96

29.19

29.29

26.87

23.02

18.37

1.00

1.93

2.80

4.37

6.37

8.56

11.76

14.86

17.72

19.92

21.18

21.20

20.12

17.98

14.89

1.00

1.89

2.69

4.06

5.68

7.30

9.46

11.30

12.88

13.99

14.55

14.62

14.09

13.14

11.56

1.00

1.83

2.54

3.66

4.87

5.96

7.28

8.27

9.08

9.59

9.88

9.92

9.70

9.31

8.53

1.00

1.76

2.35

3.21

4.05

4.73

5.48

6.00

6.39

6.63

6.76

6.80

6.72

6.57

6.31

1.00

1.66

2.14

2.77

3.32

3.73

4.13

4.40

4.60

4.72

4.77

4.80

4.78

4.76

4.66

1.00

1.55

1.90

2.33

2.65

2.88

3.10

3.22

3.31

3.37

3.40

3.41

3.40

3.39

3.38

34.16

37.50

37.13

33.20

38.29

42.76

42.43

37.27

38.14

42.63

42.48

37.65

33.80

37.30

37.31

33.61

0.0
01

0.0
017

0.0
028

0.0
048

0.0
081

0.0
136

0.0
23

0.0
387

0.0
653

0.1
101

0.1
856

0.3
13

0.5
277

0.8
897 1.5

h

1

2

3

5

8

12

20

32

52

85

139

228

373

611

1000

m

Scaled reciprocal of the objective function

1.00

1.62

2.03

2.55

2.98

3.29

3.58

3.76

3.87

3.91

3.90

3.82

3.68

3.44

3.11

1.00

1.79

2.43

3.41

4.39

5.23

6.16

6.82

7.27

7.51

7.54

7.34

6.93

6.28

5.41

1.00

1.89

2.68

4.02

5.61

7.17

9.20

10.89

12.25

13.06

13.29

12.87

11.86

10.35

8.46

1.00

1.94

2.82

4.43

6.53

8.85

12.31

15.72

18.86

21.09

21.91

21.14

18.97

15.76

12.22

1.00

1.97

2.90

4.65

7.05

9.88

14.50

19.55

24.83

26.06

20.91

15.47

1.00

1.97

2.90

4.65

7.05

9.88

14.51

19.56

24.85

26.06

20.89

15.47

1.00

1.98

2.93

4.76

7.34

10.49

15.90

22.27

25.58

18.37

1.00

1.98

2.92

4.74

7.28

10.36

15.62

21.72

28.57

25.62

18.75

1.00

1.96

2.88

4.59

6.91

9.59

13.89

18.45

23.15

26.94

28.85

28.42

25.73

21.45

16.62

1.00

1.94

2.81

4.40

6.45

8.70

12.03

15.27

18.29

20.56

21.67

21.44

19.98

17.30

14.19

1.00

1.90

2.70

4.07

5.72

7.36

9.54

11.41

12.98

14.06

14.53

14.48

13.75

12.45

10.79

1.00

1.84

2.54

3.68

4.90

6.01

7.33

8.35

9.13

9.64

9.83

9.83

9.48

8.87

7.93

1.00

1.76

2.36

3.24

4.10

4.80

5.56

6.10

6.48

6.73

6.80

6.77

6.69

6.37

5.83

1.00

1.67

2.15

2.78

3.34

3.76

4.17

4.44

4.63

4.74

4.78

4.77

4.69

4.59

4.35

1.00

1.56

1.91

2.34

2.68

2.91

3.12

3.26

3.34

3.39

3.42

3.43

3.36

3.32

3.16

29.03

30.95

29.81

29.04

30.88

29.81

29.53

35.90

39.11

37.86

32.66

34.59

37.73

36.94

32.31

Fig. 2. Lotka–Volterra model. The first heatmap shows MISEMC/MISECMC(m,h) for different
values of m and h. The method we used to obtain the ratio is described in section 4. The second
heatmap shows the value of f̂(1, 0)/f̂(m,h). The definition of f̂ is given by (3.9).

A1006 DAVID F. ANDERSON AND KURT W. EHLERT

0.0
01

0.0
015

0.0
022

0.0
033

0.0
048

0.0
072

0.0
107

0.0
158

0.0
235

0.0
348

0.0
516

0.0
766

0.1
136

0.1
685

0.2
5

h

1

2

3

5

8

12

20

32

52

85

139

228

373

611

1000

m

Empirical error improvement

1.00

1.85

2.57

3.74

5.02

6.19

7.54

8.51

9.08

9.18

8.75

7.85

6.60

5.20

3.84

1.00

1.90

2.70

4.09

5.74

7.38

9.50

11.15

12.24

12.46

11.76

10.28

8.33

6.29

4.46

1.00

1.93

2.79

4.34

6.29

8.37

11.26

13.79

15.58

16.11

15.10

12.92

10.15

7.40

5.12

1.00

1.95

2.84

4.50

6.68

9.11

12.74

16.13

15.63

12.02

8.60

5.84

1.00

1.96

2.87

4.57

6.85

9.47

13.48

13.53

9.61

6.50

1.00

1.95

2.87

4.57

6.86

9.48

13.54

14.65

10.56

7.21

1.00

1.95

2.84

4.50

6.69

9.14

12.87

16.48

14.98

11.21

7.88

1.00

1.93

2.79

4.36

6.36

8.51

11.64

14.50

16.93

16.90

14.41

11.32

8.36

1.00

1.90

2.72

4.14

5.87

7.62

9.99

12.03

13.69

14.66

14.82

14.17

12.73

10.62

8.38

1.00

1.86

2.61

3.85

5.24

6.57

8.21

9.53

10.53

11.13

11.30

11.02

10.31

9.19

7.74

1.00

1.80

2.46

3.48

4.54

5.45

6.49

7.25

7.81

8.16

8.25

8.16

7.89

7.31

6.56

1.00

1.73

2.28

3.06

3.79

4.37

4.96

5.38

5.66

5.83

5.90

5.86

5.75

5.49

5.14

1.00

1.63

2.06

2.61

3.07

3.39

3.72

3.93

4.07

4.14

4.18

4.18

4.13

4.01

3.84

1.00

1.51

1.81

2.16

2.42

2.59

2.76

2.85

2.91

2.95

2.96

2.96

2.94

2.92

2.84

1.00

1.37

1.56

1.75

1.89

1.97

2.04

2.08

2.11

2.13

2.13

2.13

2.12

2.11

2.07

18.83

19.76

18.54

17.40

20.71

22.10

20.89

17.65

17.55

21.05

22.73

21.88

18.80

19.62

21.28

20.87

18.53

18.36

18.32

0.0
01

0.0
015

0.0
022

0.0
033

0.0
048

0.0
072

0.0
107

0.0
158

0.0
235

0.0
348

0.0
516

0.0
766

0.1
136

0.1
685

0.2
5

h

1

2

3

5

8

12

20

32

52

85

139

228

373

611

1000

m

Scaled reciprocal of the objective function

1.00

1.31

1.46

1.63

1.68

1.72

1.75

1.73

1.67

1.58

1.46

1.27

1.05

0.81

0.60

1.00

1.41

1.64

1.86

2.03

2.16

2.15

2.10

2.05

1.88

1.66

1.39

1.10

0.81

0.58

1.00

1.49

1.77

2.08

2.28

2.40

2.49

2.43

2.33

2.11

1.79

1.49

1.12

0.81

0.55

1.00

1.49

1.76

2.08

2.29

2.42

2.49

2.45

2.32

2.09

1.82

1.47

1.11

0.81

0.55

1.00

1.64

2.05

2.58

2.98

2.95

2.51

2.06

1.51

1.08

0.72

0.47

1.00

1.69

2.18

2.83

3.17

2.65

2.00

1.43

0.99

0.65

0.42

1.00

1.74

2.31

3.06

2.57

1.91

1.31

0.85

0.54

0.35

1.00

1.76

2.35

3.16

3.19

2.53

1.78

1.15

0.78

0.49

0.30

1.00

1.78

2.38

3.21

2.98

2.23

1.50

1.00

0.65

0.42

0.26

1.00

1.77

2.34

3.14

2.76

2.08

1.34

0.89

0.55

0.36

0.22

1.00

1.75

2.27

2.96

3.17

2.45

1.76

1.18

0.78

0.50

0.32

0.19

1.00

1.68

2.17

2.84

3.11

3.08

2.89

2.15

1.58

1.11

0.73

0.48

0.50

0.25

1.00

1.60

2.01

2.42

2.81

2.78

2.73

2.44

1.96

1.54

1.08

0.74

0.50

0.33

0.25

1.00

1.49

1.77

2.11

2.25

2.29

2.61

2.07

1.98

1.45

1.49

0.79

0.73

0.47

0.23

1.00

1.36

1.54

1.72

1.88

1.96

1.92

1.92

1.80

1.39

1.10

0.93

0.86

0.42

0.38

3.22

3.30

3.23

3.29

3.63

3.76

3.64

3.66

4.11

4.20

3.87

3.35

3.79

4.25

4.31

3.92

3.85

4.25

4.26

3.83

3.81

4.01

3.95

3.54

3.47

3.82

3.50

3.41

Fig. 3. Dimerization model. The first heatmap shows MISEMC/MISECMC(m,h) for different
values of m and h. The method we used to obtain the ratio is described in section 4. The second
heatmap shows the value of f̂(1, 0)/f̂(m,h). The definition of f̂ is given by (3.9).

and the larger and more diffuse the distribution of the model (which is where other
methods, including those that approximately solve the CME directly, struggle), the
better the performance of the conditional Monte Carlo estimator.

In practice, we are not given the optimal values of the parameters m and h, so
we find them via the optimization problem (3.10). In each of the bottom portions

of Figures 2 and 3 (and Figures SM2 to SM5), we provide the values of f̂(m,h) for
the different pairs of m and h. We report the inverse so that the heatmap will agree
qualitatively with the top portion of the figures (higher values are desirable). We also

normalized the values by multiplying them by f̂(1, 0), which does not affect the results

of the optimization problem in any way. To generate each value 1/f̂(m,h) we first
sampled ñ = 500 paths, which then allowed us to compute λ̄0 and P̂ν(X11(t) = X12(t))

as detailed in the previous section. We could then use these values to compute f̂(m,h)
via (3.9).

Note that the empirical error improvement and f̂ do not need to have the same
value for a pair ofm and h. The important thing is that the maximizer of the empirical
error improvement is similar to the minimizer of f̂ . The heatmaps do indeed suggest
that the true and approximate optimization problems have similar solutions. What
is also clear from these numerical results is that even if m and h slightly deviate from
their optimal values, we still get a substantial improvement.

We stress that such heatmaps do not need to be made by anyone who uses the
conditional Monte Carlo algorithm. They are only used here to demonstrate that

CONDITIONAL MONTE CARLO FOR REACTION NETWORKS A1007

the optimization problem (3.10) can be safely used to find the near-optimal values
of m and h, which can then be used to construct the desired estimator (1.4) via
Algorithm 3.3.

5. A central limit theorem. In this section, we will show how to obtain an
approximate one-sided confidence interval for the integrated squared error (4.1) with-
out running more simulations. Specifically, for a fixed (presumably large) finite subset
of the state space S̃, a fixed α ∈ (0, 1), and large n, we want to find a sequence of
positive constants {Cn} and a constant u > 0 such that

lim
n→∞

P

(
Cn

∑
x∈S̃

(
p̂νt (x;n,m, h)− pνt (x)

)2
︸ ︷︷ ︸

integrated squared error

≤ u

)
= 1− α,(5.1)

where Cn is allowed to depend on m and h. The following central limit theorem will
lead us to values for {Cn} and u.

Theorem 5.1. Fix m ∈ Z≥1 and h ∈ [0, t]. Let S ⊂ Zd
≥0 be the state space of the

CTMC, and let S̃ be a finite subset of S. Choose an enumeration of S̃ and denote it

{xi}|S̃|
i=1. Let pνt , p̂

ν
t ∈ R|S̃| with their ith elements equal to pνt (xi) and p̂νt (xi;n,m, h),

respectively. Let

Σ
def
= m diag(pνt) +m(m− 1)A−m2pνt (p

ν
t)

T ,(5.2)

where diag(pνt) is the diagonal matrix with pνt along its diagonal, and A is an |S̃|× |S̃|
matrix, where Aij = Pν(X11(t) = xi, X12(t) = xj). Then

nm2
∑
x∈S̃

(
p̂νt (x;n,m, h)− pνt (x)

)2 d→
|S̃|∑
ℓ=1

λℓZ
2
ℓ , as n→∞,(5.3)

where {λℓ}|S̃|
ℓ=1 are the eigenvalues of Σ and Zℓ

i.i.d.∼ N(0, 1).

Σ is usually an enormous matrix, so we do not want to store it, much less compute
its eigenvalues. The Satterthwaite approximation [52] says that

∑
ℓ

λℓZ
2
ℓ

d
≈
∑

ℓ λ
2
ℓ∑

ℓ λℓ
χ2

(
(
∑

ℓ λℓ)
2∑

ℓ λ
2
ℓ

)
=

tr
(
Σ2
)

tr (Σ)
χ2

(
tr (Σ)

2

tr (Σ2)

)
,(5.4)

where χ2(v) denotes a χ2 random variable with v degrees of freedom. The approxima-
tion is obtained by matching the first two moments of the linear combination (above
left-hand side) and the chi-squared distribution (above right-hand side). The advan-
tage of the approximation is that we can estimate tr (Σ) and tr

(
Σ2
)
without storing

Σ explicitly or computing its eigenvalues.

Theorem 5.2. Fix n,m ∈ Z≥1 and h ∈ [0, t]. Let S̃, {xk}|S̃|
k=1, and p̂νt be defined

as in Theorem 5.1. For 1 ≤ i ≤ n, let Mi ∈ Z|S̃|
≥0, and set its kth element to Mi(xk)

def
=∑m

j=1 1(Xij = xk) (the {Xij} are defined in section 1). Let Σ̂n be the usual sample
covariance matrix of {Mi}ni=1. Specifically,

Σ̂n
def
=

1

n− 1

n∑
i=1

(
Mi −M

) (
Mi −M

)T
,

A1008 DAVID F. ANDERSON AND KURT W. EHLERT

where M = n−1
∑n

i=1 Mi. Then

tr
(
Σ̂n

)
=

1

n− 1

n∑
i=1

MT
i Mi −

nm2

n− 1
(p̂νt)

T p̂νt(5.5)

and

(5.6) tr
(
Σ̂2

n

)
=

1

(n− 1)2

n∑
i=1

[
MT

i Mi − 2M
T
Mi +m2(p̂νt)

T p̂νt

]2
+

2

(n− 1)2

∑
1≤i<j≤n

[
MT

i Mj −M
T
Mi −M

T
Mj +m2(p̂νt)

T p̂νt

]2
.

Furthermore

tr
(
Σ̂n

)
a.s.→ tr (Σ) and tr

(
Σ̂2

n

)
a.s.→ tr

(
Σ2
)
as n→∞.

For the models we tested, the optimal value of m was only moderately large (on
the order of 10 to 100), and the indicator in the summand of Mi(x) is zero for many
values of x. Whenever those two conditions hold, Mi is sparse. Consequently, storing

{Mi}ni=1 does not require too much memory, and the terms MT
i Mj and M

T
Mi are

cheap to compute. Algorithm 5.1 summarizes how we compute the traces. Using the
sparsity of the Mi is important, because otherwise the vectors are too large to store
and the operations are slow.

Corollary 5.3. Fix n,m ∈ Z≥1 and h ∈ [0, t]. Also fix an α ∈ (0, 1), and let
χ2
α(v) be the 1−α quantile of the χ2 distribution with v degrees of freedom. An approx-

imate 1 − α confidence interval for
∑

x∈S̃
(
p̂νt (x;n,m, h) − pνt (x)

)2
is [0, Un/(nm

2)],
where

Un
def
=

tr
(
Σ̂2

n

)
tr
(
Σ̂n

)χ2
α

 tr
(
Σ̂n

)2
tr
(
Σ̂2

n

)
 .(5.7)

Algorithm 5.1. Algorithm for computing p̂νt , tr(Σ̂n), and tr(Σ̂2
n).

Require: n,m ∈ Z≥1 and h ∈ [0, t]
1: for i in {1, . . . , n} do
2: Sample Xi(t− h).
3: Given Xi(t− h), sample {Xij(t)}mj=1.

4: for x in S̃ do
5: Mi(x)←

∑m
j=1 1(Xij(t) = x) ▷ Store Mi as a sparse vector.

6: end for
7: end for
8:

9: p̂νt ← 1
nm

∑n
i=1 Mi

10: Compute tr(Σ̂n) according to (5.5).
11: Compute tr(Σ̂2

n) according to (5.6).

CONDITIONAL MONTE CARLO FOR REACTION NETWORKS A1009

Figure 4(a)–(b) (and also Figures SM6 to SM9), compare the empirical distribution
of

nm2
∑
x∈S̃

(
p̂νt (x;n,m, h)− pνt (x)

)2
(5.8)

to the approximate asymptotic distribution (5.4), where the true traces are replaced
with the sample traces from Algorithm 5.1. The figures also compare the sample 95%
quantile to the same quantile based on Corollary 5.3, which turned out to be close.

6. Directions for future research. We demonstrated how to implement a ver-
sion of conditional Monte Carlo in the context of CTMC models for reaction networks.
There are many possible directions for future research; we list three.

1. The method could be extended so it provides estimates of the distribution at
multiple fixed time points. The method we developed, and in particular the
optimization problem we utilize to find the values of m and h, is tailored to
the single time-point case.

2. In the method developed here the conditional expectation in (1.3),

EXi(t−h),t−h [1(X(t) = x)] ,

is approximated by Monte Carlo with m conditionally independent realiza-
tions. However, it could be approximated by solving the CME directly, per-
haps via the finite state projection algorithm [45]. Because the solver need
only integrate the system of ODEs over the time interval [t− h, t], the prob-
ability mass should not become too diffuse, thereby solving one of the major
difficulties related to these solvers.
We implemented this approach and observed some increase in efficiency over
the conditional Monte Carlo algorithm Algorithm 3.3, around a factor of
three. However, the gains were only realized when an optimal value of h
was chosen, and we needed to test many different h values in order to find
the optimal value. In practice, we would need a faster method for finding
the optimal parameters, similar to the optimization problem detailed in this
paper.

3. As discussed in the introduction and Appendix B, the present method is not
optimized for the estimation of expectations. Developing a new conditional
Monte Carlo estimator tailored to that problem is a natural focus of future
work.

Appendix A. Proofs.

A.1. Theorem regarding the expected number of reactions.

Theorem A.1. Suppose that the process X is nonexplosive and fix h ∈ [0, t] and
m ∈ Z≥1. Then the expected number of reactions required to sample {X1j}mj=1 is

Eν,0

[∫ t−h

0

λ0(X(s)) ds

]
+mEν,0

[∫ t

t−h

λ0(X(s)) ds

]
.

Proof. The number of reactions required to sample {X(s)}s∈[a,b] is

R∑
r=1

[
Yr

(∫ b

0

λr (X(s)) ds

)
− Yr

(∫ a

0

λr (X(s)) ds

)]
,

A1010 DAVID F. ANDERSON AND KURT W. EHLERT

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05
339.07

338.86

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05
335.88

338.86

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05
335.88

338.86

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05
338.90

338.86

(a) Lotka-Volterra model.

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

1.2

10
-3

2168.62

2239.30

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

1.2

10
-3

2180.26

2239.30

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

1.2

10
-3

2181.25

2239.30

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

1.2

10
-3

2199.28

2239.30

(b) Dimerization model.

Fig. 4. The dashed blue density is the empirical density of the ISE (5.8), whereas the solid
red density is the Satterwaithe approximation to the asymptotic density (5.4). The blue cross and
red circle are the 95% quantiles of their respective densities. To generate the blue curve, first we

sampled 104 values of nm2
∑

x∈S̃
(
p̂νt (x;n,m, h) − pνt (x)

)2
(which we call the “scaled integrated

squared error”) for different values of n. Given those samples, we used the MATLAB ksdensity
function to generate the blue curve. The traces of Σ and Σ2 were estimated with an independent set
of 105 simulations and Algorithm 5.1.

CONDITIONAL MONTE CARLO FOR REACTION NETWORKS A1011

where the Yr are independent unit-rate Poisson processes [38]. For each r,

Yr

(∫ t

0

λr (X(s)) ds

)
−
∫ t

0

λr (X(s)) ds

is a martingale [12, Theorem 1.22], so the result follows.

A.2. Proof of Theorem 3.1. For simplicity, denote Xij(t) as Xij . We start
with the left-hand side of the desired equality. The monotone convergence theorem
implies that we can move the expectation inside the sum, by which we mean

Eν,0

[∑
x

(
p̂νt (x;n,m, h)− pνt (x)

)2]
=
∑
x

Eν,0

[(
p̂νt (x;n,m, h)− pνt (x)

)2]
=
∑
x

Var[p̂νt (x;n,m, h)].

The last line follows from the fact that the estimator p̂νt is unbiased. From the
definition of p̂νt , and also basic properties of variance, the above is equal to

=
∑
x

Var

 1

nm

n∑
i=1

m∑
j=1

1(Xij = x)


=

1

nm2

∑
x

 m∑
j=1

Var[1(X1j = x)] + 2
∑

1≤i<j≤m

Cov
(
1(X1i = x),1(X1j = x)

)
=

1

nm2

∑
x

[mVar[1(X11 = x)] +m(m− 1)Cov(1(X11 = x),1(X12 = x))]

=
1

nm

∑
x

[
pνt (x)(1−pνt (x)) + (m−1)

(
Eν,0 [1(X11 = x)1(X12 = x)]− pνt (x)

2
)]

=
1

nm

∑
x

[
pνt (x) + (m− 1)Pν(X11 = x,X12 = x)−mpνt (x)

2
]

=
1

n

[
1

m
+

(
1− 1

m

)
Pν(X11 = X12)−

∑
x

pνt (x)
2

]
.

We can also take pνt (x) to be a marginal distribution. In that case, interpret sums
over x as sums over the lower-dimensional marginal variables. Also, view X11 = X12

as being true if their coordinates corresponding to the marginal variables are equal.

A.3. Proof of Theorem 3.2. Let Λ0,t ∈ RR
≥0 be the vector whose rth element

is Λ0,t
r , and let Y X , Y Z ∈ ZR

≥0 be the vectors whose rth elements are Y X
r (Λ0,t

r) and

Y Z
r (Λ0,t

r), respectively. Then

Pν(X(t) = Z(t)) = Pν

(
SY X = SY Z

)
= Pν

(
S
(
Y X − Y Z

)
= 0
)

=
∑

k∈null(S)

Pν

(
Y X − Y Z = k

)
=
∑

k∈null(S)

Eν,0

[
P
(
Y X − Y Z = k

∣∣ Λ0,t
)]

.

A1012 DAVID F. ANDERSON AND KURT W. EHLERT

The elements of Y X and Y Z are independent when conditioned on Λ0,t. Therefore
we can expand the conditional probability into a product of probabilities, by which
we mean

P
(
Y X − Y Z = k |Λ0,t

)
=

R∏
r=1

P
(
Y X
r − Y Z

r = kr
∣∣ Λ0,t

r

)
.

When conditioned on Λ0,t
r , Y X

r − Y Z
r is the difference of two independent Poissons

with the same intensity Λ0,t
r . Therefore the difference follows a Skellam distribution.

To summarize,

K0,t
r

def
= Y X

r − Y Z
r ∼ Skellam(Λ0,t

r ,Λ0,t
r), when conditioned on Λ0,t.

Continuing from above,

Pν(X11(t) = X12(t)) =
∑

k∈null(S)

Eν,0

[
R∏

r=1

P
(
K0,t

r = kr
∣∣ Λ0,t

r

)]
,

where the expectation is taken over Λ0,t.
If we are estimating a marginal distribution, then we need to modify the sum

slightly. Let S′ be the same as S, except the rows corresponding to the marginalized-
out variables are removed. Then replace null(S) with null(S′).

A.4. Proof of Theorem 5.1. Let {Xi(t−h)}ni=1 be i.i.d. realizations ofX(t−h).
Define Xij(t) to be the state of the CTMC conditioned on Xij(t − h) = Xi(t − h),
where 1 ≤ j ≤ m. For simplicity, later we will denote Xij(t) as just Xij .

Let Mi ∈ Z|S̃|
≥0, where the kth element of Mi is defined as

∑m
j=1 1(Xij = xk). Let

Σ ∈ R|S̃|×|S̃| be the covariance matrix of M1. The Mi are i.i.d., so if Σ is finite, then
the usual multivariate central limit theorem implies that

1√
n

n∑
i=1

(Mi −mpνt)
d→ N(0,Σ), as n→∞.

Let Mi(x) denote the element of Mi corresponding to x. Then by definition, for all x

nmp̂νt (x;n,m, h) =

n∑
i=1

Mi(x).

Therefore

√
nm (p̂νt − pνt)

d→ N(0,Σ), as n→∞.

The dot product is continuous, so the continuous mapping theorem implies that

nm2
∑
x∈S̃

(
p̂νt (x;n,m, h)− pνt (x)

)2 d→ N(0,Σ)TN(0,Σ), as n→∞.

CONDITIONAL MONTE CARLO FOR REACTION NETWORKS A1013

[15, Theorem 2.1] implies that the right side has the same distribution as
∑|S̃|

ℓ=1 λℓZ
2
ℓ .

Let Σxx be the element of Σ on the diagonal corresponding to state x. Then by
definition,

Σxx = Var

 m∑
j=1

1(X1j = x)


=

m∑
j=1

Var [1(X1j = x)] + 2
∑

1≤j<k≤m

Cov (1(X1j = x),1(X1k = x)) .

Var [1(X1j = x)] = pνt (x)(1− pνt (x)), and the covariance simplifies when we rewrite it
in terms of expectations. We get

Σxx = mpνt (x) +m(m− 1)Pν(X11(t) = x,X12(t) = x)−m2pνt (x)
2 <∞.

Let x1 and x2 be distinct states, and let Σx1,x2
be the element whose row and column

correspond to the states x1 and x2, respectively. By definition

Σx1,x2
= Cov

 m∑
j=1

1(X1j = x1),

m∑
j=1

1(X1j = x2)


=

m∑
j=1

m∑
k=1

Cov [1(X1j = x1),1(X1k = x2)] .

Rearrange the terms in the sum to get

m∑
j=1

Cov [1(X1j = x1),1(X1j = x2)] +

m∑
j=1

m∑
k=1
k ̸=j

Cov [1(X1j = x1),1(X1k = x2)] ,

which is equivalent to

m∑
j=1

(
Eν,0 [1(X1j = x1)1(X1j = x2)]− p(x1)p(x2)

)
+

m∑
j=1

m∑
k=1
k ̸=j

(
Eν,0 [1(X1j = x1)1(X1k = x2)]− p(x1)p(x2)

)
.

Since x1 ̸= x2, 1(X1j = x1)1(X1j = x2) = 0. Also, the second expectation can be
rewritten as a probability. The above expression simplifies to

m(m− 1)Pν (X11(t) = x1, X12(t) = x2)−m2pνt (x1)p
ν
t (x2) <∞.

Equation (5.2) simply expresses the above results with matrix-vector notation.
If we are estimating a marginal distribution, then take S to be the lower-dimensional

space corresponding to the marginal variables. Also interpret X(t) as the state vector
containing only the marginal variables.

A.5. Proof of Theorem 5.2. If we write out the definition of Σ̂n and use the
fact that the trace is linear, we can see that

tr
(
Σ̂n

)
=

1

n− 1

n∑
i=1

tr
((

Mi − M̄
) (

Mi − M̄
)T)

.

A1014 DAVID F. ANDERSON AND KURT W. EHLERT

We use the cyclic property of the trace to rewrite the right side as

1

n− 1

n∑
i=1

(
Mi − M̄

)T (
Mi − M̄

)
.

Expanding the summands leads to

1

n− 1

n∑
i=1

(
MT

i Mi − 2M̄TMi + M̄T M̄
)
.

From the definition of M̄ , the above expression is equal to

− n

n− 1
M̄T M̄ +

1

n− 1

n∑
i=1

MT
i Mi.

By definition, mp̂t = M̄ , therefore,

tr
(
Σ̂n

)
= − nm2

n− 1
(p̂νt)

T p̂νt +
1

n− 1

n∑
i=1

MT
i Mi.

Next consider tr(Σ̂2
n). We will proceed in a similar way. By definition

Σ̂2
n =

1

(n− 1)2

[
n∑

i=1

(Mi − M̄)(Mi − M̄)T

]2

=
1

(n− 1)2

n∑
i=1

n∑
j=1

(Mi − M̄)(Mi − M̄)T (Mj − M̄)(Mj − M̄)T .

The trace is linear, so

tr
(
Σ̂2

n

)
=

1

(n− 1)2

n∑
i=1

n∑
j=1

tr
(
(Mi − M̄)(Mi − M̄)T (Mj − M̄)(Mj − M̄)T

)
=

1

(n− 1)2

n∑
i=1

n∑
j=1

[
(Mi − M̄)T (Mj − M̄)

]2
.

The last line follows from the cyclic property of the trace. When we expand the
summands, the right side becomes

1

(n− 1)2

n∑
i=1

n∑
j=1

[
MT

i Mj − M̄TMi − M̄TMj +m2(p̂νt)
T p̂νt

]2
.

As for the claim about almost sure convergence of the traces, note that Σ̂n
a.s.→ Σ.

Since matrix multiplication and the trace are continuous, the continuous mapping
theorem implies the result.

A.6. Proof of Corollary 5.3. Define

U =
tr
(
Σ2
)

tr (Σ)
χ2
α

(
tr (Σ)

2

tr (Σ2)

)
.

CONDITIONAL MONTE CARLO FOR REACTION NETWORKS A1015

Since Σ̂n
a.s.→ Σ as n → ∞, the continuous mapping theorem and Lemma A.2 taken

together imply that Un → U almost surely as n→∞. Also Theorem 5.1 says that

nm2
∑
x∈S̃

(
p̂νt (x;n,m, h)− pνt (x)

)2 d→
|S̃|∑
ℓ=1

λℓZ
2
ℓ , as n→∞.

Therefore by Slutsky’s theorem

nm2
∑

x∈S̃
(
p̂νt (x;n,m, h)− pνt (x)

)2
Un

d→
∑|S̃|

ℓ=1 λℓZ
2
ℓ

U
, as n→∞,

which we can rewrite as

lim
n→∞

Pν

nm2
∑
x∈S̃

(
p̂νt (x;n,m, h)− pνt (x)

)2 ≤ Un

 = P

 |S̃|∑
ℓ=1

λℓZ
2
ℓ ≤ U

 .

Applying the Satterthwaite approximation [52] to the right-hand side gives

lim
n→∞

Pν

nm2
∑
x∈S̃

(
p̂νt (x;n,m, h)− pνt (x)

)2 ≤ Un


≈ P

(
tr
(
Σ2
)

tr (Σ)
χ2

(
tr (Σ)

2

tr (Σ2)

)
≤ U

)
= 1− α.

The result still holds for marginal distributions. We just need to remove the coordi-
nates of S̃ corresponding to the variables that are marginalized out.

Lemma A.2. Let Xθ be a family of random variables parameterized by θ ∈ R with
strictly increasing cumulative distribution functions Fθ. Suppose that for each θ, the
function Fθ is continuous. Assume also that Fθ(x) is continuous in θ for each x ∈ R.
Then the 1− α quantiles of Fθ are also continuous in θ for all α ∈ (0, 1).

Proof. Let α ∈ (0, 1), and let {θn}∞n=1 be a sequence that converges to θ. Define
qn and q to be the 1− α quantiles corresponding to θn and θ, respectively. We want
to show that qn converges to q.

Let ε > 0. Since α ∈ (0, 1), we know that q is finite. Therefore, we can choose q
and q such that

q < q < q and q − q < ε.

We want to show that |qn− q| < ε for all sufficiently large n, so it will suffice to prove
that q < qn < q for all n large enough.

By assumption, Fθ(q) is continuous in θ, so

lim
n→∞

Fθn(q) = Fθ(q) < Fθ(q) = 1− α = Fθn(qn).

The inequality is strict, because q is a quantile and Fθ is strictly increasing and q < q.
Since Fθn is nondecreasing, qn > q for all sufficiently large n. We can use essentially
the same argument to conclude that qn < q for all n large enough.

A1016 DAVID F. ANDERSON AND KURT W. EHLERT

Appendix B. Expectations.
The specific conditional Monte Carlo method introduced in this paper has been

developed to estimate the entire distribution in a manner that is more efficient than
regular Monte Carlo, as quantified by the MISE (3.4) for a fixed computational budget.
This does not imply that it will be more efficient in the computation of any specific
expectation. In fact, in this appendix we prove that it is necessarily less efficient in
computing the first moment of a linear birth model. Specifically, we prove that for a
fixed computational budget the variance of the estimator generated via the conditional
Monte Carlo method is greater than or equal to the variance of the standard Monte
Carlo estimator. This demonstrates that caution is required when implementing a
method in a context it was not intended for.

Recall the birth model, which consists of the single reaction X
1−→ 2X, where we

have chosen a rate parameter of 1. Assuming a fixed initial condition of X0 ∈ Z≥0, it
is straightforward to show that

E[X(t)] = X0e
t and Var[X(t)] = X0e

t(et − 1).

For a fixed number of paths n1, and a point mass X0, the standard Monte
Carlo estimator has an expected cost—quantified by the number of random variables
utilized—of

CostMC(n1) = E[n1(X(t)−X0)] = n1X0(e
t − 1),

and a variance of Var[n−1
1

∑n1

i=1 Xi(t)] = n−1
1 Var(X1(t)) = n−1

1 X0e
t(et − 1).

For a fixed number of paths n and m, and a fixed parameter h ∈ [0, t], the
expected cost of the conditional Monte Carlo estimator is

CostCMC(n,m, h) = nE[X1i(t− h)−X0] + n ·mE[X1i(t)−X1i(t− h)]

= nX0(e
t−h − 1) + n ·mX0(e

t − et−h).

The variance of the conditional Monte Carlo estimator is

Var

 1

n

1

m

n∑
i=1

m∑
j=1

Xij(t)

 =
1

n ·m2
Var

 m∑
j=1

Xij(t)

 .(B.1)

Using the generic result that for random variables X and Y on the same probability
space Var(X) = E[Var(X|Y)] + Var(E[X|Y]), we have

Var

 m∑
j=1

Xij(t)

 = E

Var
 m∑

j=1

X1j(t)

∣∣∣∣X11(t− h)


+Var

E

 m∑
j=1

X1j(t)

∣∣∣∣X11(t− h)


= mE[Var(X1j(t)|X11(t− h))] + Var(mE[X1j(t)|X11(t− h)])

= mE
[
X11(t− h)eh(eh − 1)

]
+m2Var

(
X11(t− h)eh

)
= mX0e

t−heh(eh − 1) +m2e2hX0e
t−h(et−h − 1)

= mX0e
t(eh − 1) +m2X0e

t(et − eh).

CONDITIONAL MONTE CARLO FOR REACTION NETWORKS A1017

Thus, dividing by n · m2 as in (B.1), the variance of the conditional Monte Carlo
estimator is

Var

 1

n

1

m

n∑
i=1

m∑
j=1

Xij(t)

 =
1

n ·m
[
X0e

t(eh − 1) +mX0e
t(et − eh)

]
.

For a fixed n1, setting CostCMC(n,m, h) = CostMC(n1) yields

nX0(e
t−h − 1) + n ·mX0(e

t − et−h) = n1X0(e
t − 1),

or

n =
n1(e

t − 1)

(et−h − 1) +m(et − et−h)
.

Thus, for a fixed n1 and n chosen above the variance of the conditional Monte Carlo
estimator is

1

n1
· (e

t−h − 1) +m(et − et−h)

m(et − 1)

[
X0e

t(eh − 1) +mX0e
t(et − eh)

]
.

This is minimized at the boundary withm = 1, giving exactly the same variance as the
regular Monte Carlo estimator. Thus, to summarize, for a given fixed computational
cost the variance of the conditional Monte Carlo estimator must be larger than the
variance of the standard Monte Carlo estimator.

REFERENCES

[1] D. F. Anderson, A modified next reaction method for simulating chemical systems with time
dependent propensities and delays, J. Chem. Phys., 127 (2007), 214107.

[2] D. F. Anderson, Incorporating postleap checks in tau-leaping, J. Chem. Phys., 128 (2008),
054103.

[3] D. F. Anderson, D. Cappelletti, M. Koyama, and T. G. Kurtz, Non-explosivity of stochas-
tically modeled reaction networks that are complex balanced, Bull. Math. Biol., 80 (2018),
pp. 2561–2579.

[4] D. F. Anderson, G. Craciun, and T. G. Kurtz, Product-form stationary distributions for
deficiency zero chemical reaction networks, Bull. Math. Biol., 72 (2010), pp. 1947–1970.

[5] D. F. Anderson, A. Ganguly, and T. G. Kurtz, Error analysis of tau-leap simulation
methods, Ann. Appl. Probab., 21 (2011), pp. 2226–2262.

[6] D. F. Anderson and D. J. Higham, Multilevel Monte Carlo for continuous time Markov
chains, with applications in biochemical kinetics, Multiscale Model. Simul., 10 (2012),
pp. 146–179.

[7] D. F. Anderson, D. J. Higham, and Y. Sun, Complexity of multilevel Monte Carlo tau-
leaping, SIAM J. Numer. Anal., 52 (2014), pp. 3106–3127.

[8] D. F. Anderson, D. J. Higham, and Y. Sun, Computational complexity analysis for Monte
Carlo approximations of classically scaled population processes, SIAM Multiscale Model.
Simul., 16 (2018), pp. 1206–1226.

[9] D. F. Anderson and M. Koyama, Weak error analysis of numerical methods for stochastic
models of population processes, Multiscale Model. Simul., 10 (2012), pp. 1493–1524.

[10] D. F. Anderson and T. G. Kurtz, Error analysis of tau-leap simulation methods, Ann. Appl.
Probab., 72 (2010), pp. 1947–1970.

[11] D. F. Anderson and T. G. Kurtz, Continuous time Markov chain models for chemical reac-
tion networks, Design and Analysis of Biomolecular Circuits: Engineering Approaches to
Systems and Synthetic Biology, H. Koeppl, ed., Springer, New York, 2011, pp. 3–42.

[12] D. F. Anderson and T. G. Kurtz, Stochastic Analysis of Biochemical Systems, Springer,
Cham, Switzerland, 2015.

[13] D. F. Anderson, D. Schnoerr, and C. Yuan, Time-dependent product-form poisson dis-
tributions for reaction networks with higher order complexes, J. Math. Biol., 80 (2020),
pp. 1919–1951.

A1018 DAVID F. ANDERSON AND KURT W. EHLERT

[14] D. F. Anderson, T. Seppalainen, and B. Valko, Introduction to Probability, Cambridge
University Press, Cambridge, 2017.

[15] G. E. Box, Some theorems on quadratic forms applied in the study of analysis of variance
problems, I. Effect of inequality of variance in the one-way classification, Ann. Math.
Statist., 25 (1954), pp. 290–302.

[16] H. Busch, W. Sandmann, and V. Wolf, A numerical aggregation algorithm for the enzyme-
catalyzed substrate conversion, in International Conference on Computational Methods in
Systems Biology, Springer, Berlin, 2006, pp. 298–311.

[17] Y. Cao, D. T. Gillespie, and L. R. Petzold, Efficient step size selection for the tau-leaping
simulation method, J. Chem. Phys., 124 (2006), 044109.

[18] Y. Cao, D. T. Gillespie, and L. R. Petzold, Adaptive explicit-implicit tau-leaping method
with automatic tau selection, [18,22,27,28,30] J. Chem. Phys., 126 (2007), 224101.

[19] Y. Cao, A. Terebus, and J. Liang, Accurate chemical master equation solution using multi-
finite buffers, Multiscale Model. Simul., 14 (2016), pp. 923–963.

[20] M. Conforti, G. Cornuéjols, and G. Zambelli, Integer programming, Springer, Cham,
Switzerland, 2014.

[21] F. Didier, T. A. Henzinger, M. Mateescu, and V. Wolf, Fast adaptive uniformization
of the chemical master equation, in 2009 International Workshop on High Performance
Computational Systems Biology, IEEE Computer Society, Los Alonitos, CA, 2009, pp. 118–
127.

[22] K. Ehlert and L. Loewe, Lazy updating of hubs can enable more realistic models by speeding
up stochastic simulations, [18,22,27,28,30] J. Chem. Phys., 141 (2014), 207109.

[23] S. Engblom, Spectral approximation of solutions to the chemical master equation, [23,31] J.
Comput. Appl. Math., 229 (2009), pp. 208–221.

[24] M. Feinberg, Lectures on chemical reaction networks, Mathematics Research Center, Uni-
versity Wisconsin-Madison, http://crnt.engineering.osu.edu/LecturesOnReactionNetworks
(1979).

[25] M. A. Gibson and J. Bruck, Efficient exact stochastic simulation of chemical systems
with many species and many channels, [25] J. Phys. Chem. A, 104 (2000), pp. 1876–
1889.

[26] D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of
coupled chemical reactions, J. Comput. Phys., 22 (1976), pp. 403–434.

[27] D. T. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems,
[18,22,27,28,30] J. Chem. Phys., 115 (2001), pp. 1716–1733.

[28] D. T. Gillespie, A. Hellander, and L. R. Petzold, Perspective: Stochastic algorithms for
chemical kinetics, [18,22,27,28,30] J. Chem. Phys., 138 (2013), p. 05B201 1.

[29] P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer, New York, 2003.
[30] E. L. Haseltine and J. B. Rawlings, Approximate simulation of coupled fast and slow

reactions for stochastic chemical kinetics, [18,22,27,28,30] J. Chem. Phys., 117 (2002),
pp. 6959–6969.

[31] M. Hegland, C. Burden, L. Santoso, S. MacNamara, and H. Booth, A solver for the
stochastic master equation applied to gene regulatory networks, [23,31] J. Comput. Appl.
Math., 205 (2007), pp. 708–724.

[32] T. A. Henzinger, M. Mateescu, and V. Wolf, Sliding window abstraction for infinite markov
chains, in International Conference on Computer Aided Verification, Springer, Berlin, 2009,
pp. 337–352.

[33] T. Jahnke and W. Huisinga, Solving the chemical master equation for monomolecular reac-
tion systems analytically, J. Math. Biol., 54 (2007), pp. 1–26.

[34] T. Jahnke and T. Udrescu, Solving chemical master equations by adaptive wavelet compres-
sion, J. Comput. Phys., 229 (2010), pp. 5724–5741.

[35] G. Karlebach and R. Shamir, Modelling and analysis of gene regulatory networks, Nature
Rev. Mol. Cell Biol., 9 (2008), pp. 770–780.

[36] V. Kazeev, M. Khammash, M. Nip, and C. Schwab, Direct solution of the chemical master
equation using quantized tensor trains, PLoS Comput. Biol., 10 (2014), e1003359.

[37] I. Kryven, S. Röblitz, and C. Schütte, Solution of the chemical master equation by radial
basis functions approximation with interface tracking, BMC Systems Biol., 9 (2015), 67.

[38] T. G. Kurtz, Representations of Markov processes as multiparameter time changes, Ann.
Probab., (1980), pp. 682–715.

[39] S. MacNamara, A. M. Bersani, K. Burrage, and R. B. Sidje, Stochastic chemical kinetics
and the total quasi-steady-state assumption: Application to the stochastic simulation al-
gorithm and chemical master equation, [39,45,48,49,51,54,57] J. Chem. Phys., 129 (2008),
095105.

http://crnt.engineering.osu.edu/LecturesOnReactionNetworks

CONDITIONAL MONTE CARLO FOR REACTION NETWORKS A1019

[40] S. MacNamara, K. Burrage, and R. B. Sidje, Multiscale modeling of chemical kinetics via
the master equation, Multiscale Model. Simul., 6 (2008), pp. 1146–1168.

[41] S. Mauch and M. Stalzer, Efficient formulations for exact stochastic simulation of chemical
systems, IEEE/ACM Trans. Comput. Biol. Bioinform., 8 (2011), pp. 27–35.

[42] H. H. McAdams and A. Arkin, Stochastic mechanisms in gene expression, Proc. Nat. Acad.
Sci. USA, 94 (1997), pp. 814–819.

[43] J. M. McCollum, G. D. Peterson, C. D. Cox, M. L. Simpson, and N. F. Samatova,
The sorting direct method for stochastic simulation of biochemical systems with varying
reaction execution behavior, Comput. Biol. Chem., 30 (2006), pp. 39–49.

[44] A. Moraes, R. Tempone, and P. Vilanova, Multilevel hybrid Chernoff tau-leap, BIT, 56
(2016), pp. 189–239.

[45] B. Munsky and M. Khammash, The finite state projection algorithm for the solution of the
chemical master equation, [39,45,48,49,51,54,57] J. Chem. Phys., 124 (2006), 044104.

[46] J. R. Norris, Markov Chains, Cambridge University Press, New York, 1997.
[47] A. B. Owen, Monte Carlo theory, methods and examples, http://statweb.stanford.edu/∼owen/

mc/, (2013).
[48] S. Peleš, B. Munsky, and M. Khammash, Reduction and solution of the chemical master

equation using time scale separation and finite state projection, [39,45,48,49,51,54,57] J.
Chem. Phys., 125 (2006), 204104.

[49] R. Ramaswamy, N. González-Segredo, and I. F. Sbalzarini, A new class of
highly efficient exact stochastic simulation algorithms for chemical reaction networks,
[39,45,48,49,51,54,57] J. Chem. Phys., 130 (2009), 244104.

[50] C. V. Rao, D. M. Wolf, and A. P. Arkin, Control, exploitation and tolerance of intracellular
noise, Nature, 420 (2002), pp. 231–237.

[51] M. Rathinam, L. R. Petzold, Y. Cao, and D. T. Gillespie, Stiffness in stochastic chemically
reacting systems: The implicit tau-leaping method, [39,45,48,49,51,54,57] J. Chem. Phys.,
119 (2003), pp. 12784–12794.

[52] F. E. Satterthwaite, Synthesis of variance, Psychometrika, 6 (1941), pp. 309–316.
[53] R. B. Sidje and H. D. Vo, Solving the chemical master equation by a fast adaptive finite

state projection based on the stochastic simulation algorithm, Math. Biosci., 269 (2015),
pp. 10–16.

[54] A. Slepoy, A. P. Thompson, and S. J. Plimpton, A constant-time kinetic Monte Carlo
algorithm for simulation of large biochemical reaction networks, [39,45,48,49,51,54,57] J.
Chem. Phys., 128 (2008), 205101.

[55] M. Thattai and A. van Oudenaarden, Intrinsic noise in gene regulatory networks, Proc.
Nat. Acad. Sci. USA, 98 (2001), pp. 8614–8619.

[56] H. D. Vo and R. B. Sidje, Improved Krylov-FSP method for solving the chemical master
equation, in Proceedings of the World Congress on Engineering and Computer Science,
Vol. 2, IEEE, Piscataway, NJ, 2016, pp. 521–526.

[57] H. D. Vo and R. B. Sidje, An adaptive solution to the chemical master equation using tensors,
[39,45,48,49,51,54,57] J. Chem. Phys., 147 (2017), 044102.

[58] D. J. Wilkinson, Stochastic Modelling for Systems Biology, Chapman and Hall/CRC, Boca
Raton, FL, 2006.

[59] V. Wolf, R. Goel, M. Mateescu, and T. A. Henzinger, Solving the chemical master equa-
tion using sliding windows, BMC Systems Biol., 4 (2010), 42.

http://statweb.stanford.edu/~owen/mc/
http://statweb.stanford.edu/~owen/mc/

	Introduction
	Mathematical model
	Examples

	Determining the values of m and h via optimization
	Computational cost model
	Optimization problem
	Approximating the joint probability
	Approximation to the optimization problem

	Numerical results
	A central limit theorem
	Directions for future research
	Appendix A. Proofs
	Theorem regarding the expected number of reactions
	Proof of MISE simplification
	Proof of Skellam approximation of the joint probability
	Proof of central limit theorem for the integrated mean-squared error
	Proof of sample variance trace theorem
	Proof of confidence interval theorem

	Appendix B. Expectations
	References

