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Abstract: The past few decades have seen robust research on questions regarding the existence,
form, and properties of stationary distributions of stochastically modeled reaction networks. When a
stochastic model admits a stationary distribution an important practical question is: what is the rate
of convergence of the distribution of the process to the stationary distribution? With the exception
of [1] pertaining to models whose state space is restricted to the non-negative integers, there has been a
notable lack of results related to this rate of convergence in the reaction network literature. This paper
begins the process of filling that hole in our understanding. In this paper, we characterize this rate of
convergence, via the mixing times of the processes, for two classes of stochastically modeled reaction
networks. Specifically, by applying a Foster-Lyapunov criteria we establish exponential ergodicity for
two classes of reaction networks introduced in [2]. Moreover, we show that for one of the classes the
convergence is uniform over the initial state.

Keywords: stochastically modeled reaction networks; Markov chains; mixing times; total variation
distance; Foster-Lyapunov criteria; exponential ergodicity; tiers

1. Introduction

Stochastic models of reaction networks, which will be formally introduced in Section 2, are used
ubiquitously in the biosciences to track the (integer valued) counts of different interacting species.
This class of models is utilized at multiple different scales, from molecular processes to the level of
populations. Numerous previous works have considered questions related to the stationary behavior of
these models: Lyapunov function approaches for positive recurrence [2–4], algebraic approaches for
closed forms of stationary distributions [5–7], stability for first-order reaction networks [1, 8], and so
on. In this paper, we study the natural followup question: if π is the stationary distribution of the model,
how fast does Pt(x, ·) converge to π(·), where Pt(x, A) = P(X(t) ∈ A|X(0) = x) is the time-dependent
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distribution of the process, denoted by X, given an initial condition of X(0) = x?
A natural route forward is to consider the mixing time of the process. Let ε ∈ (0, 1

2 ). For a Markov
process X with a stationary distribution π, the mixing time for the process with initial condition x is

τεx = inf
t≥0
{‖Pt(x, ·) − π(·)‖TV ≤ ε}, (1.1)

where the total variation distance between two probability measures on a measurable space (Ω,F )
is defined as ‖µ − ν‖TV = supA∈F |µ(A) − ν(A)|. In our case of a discrete state space, ‖µ − ν‖TV =
1
2

∑
x |µ(x) − ν(x)|, and so the total variation norm is an L1 norm. See [9] for a nice introduction to

mixing times.
In Theorems 3.1 and 3.2, we will provide results on the mixing times for two distinct classes of

reaction networks, with each class characterized by different graph topological conditions on the asso-
ciated reaction network. The network types considered in this paper were first considered in [2], where
positive recurrence (and hence existence of a stationary distribution) was established for each. Thus,
this paper can naturally be viewed as a followup to [2]. For the sake of consistency, throughout this
manuscript we used the same format and wordings of the key definitions and theorems as [2].

For now, we simply write Cond1 and Cond2 for the sets of conditions considered in Theorems 3.1
and 3.2, respectively (the specific conditions will be detailed in Section 3 when we have the proper ter-
minology available). Each of our theorems is then of the following form: for a stochastically modeled
reaction network whose associated graph satisfies the conditions Condi and whose stationary distribu-
tion is πi, there is an ηi > 0 and a function Bi : Zd

≥0 → R≥0 for which

‖Pt
i(x, ·) − πi(·)‖TV ≤ Bi(x)e−ηit, for all t ≥ 0. (1.2)

Hence, τεx ≤
1
η

[
ln(Bi(x) + ln(ε−1)

]
= O(ln(Bi(x)). The exponential decay rate (1.2) with ηi > 0 means

that the Markov process X is exponentially ergodic. Moreover, we characterize Bi(x) in each case with
B1(x) = C1(|x| + 1) ln(|x| + 2) and B2(x) = C2, for some C1,C2 > 0. Hence, the convergence for the
second class is shown to be uniform over the initial condition.

Our proofs rely upon the use of Foster-Lyapunov functions. Specifically, for Theorem 3.1 we will
provide an appropriate function, V : Zd

≥0 → R≥0, with V(x) → ∞ as |x| → ∞, and constants a > 0 and
b > 0 so thatAV(x) ≤ −aV(x) + b for all x outside some compact set, whereA is the generator of the
process. For Theorem 3.2 we will provide an appropriate function V , and positive constants a, b, and
δ so that AV(x) ≤ −aV(x)1+δ + b for x outside a compact. The (known) results of Section 4 related to
Foster-Lyapunov functions are then utilized to complete the argument. The new results presented here
should be compared with the results of [2] in which positive recurrence was proven by demonstrating
the existence of an appropriate function V with AV(x) ≤ −1 for all x outside some compact set. The
sharper estimates provided here are a result of a more careful analysis of the generator.

The remainder of the paper is outlined as follows. In Section 2, we introduce stochastic models of
reaction networks. In Section 3, we precisely state our main results. In Section 4, we provide some
necessary results related to tiers (in the context of reaction networks) and Foster-Lyapunov functions.
In Section 5, we provide proofs for our main results using appropriate Foster-Lyapunov functions. In
Section 6, we provide some generalizations to our main results.
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2. Stochastic reaction networks

Stochastic reaction networks are a class of continuous-time Markov chains on Zd
≥0 that are used to

model biochemical systems and other population processes [10–13]. Of particular interest to mathe-
matical researchers is how the topological conditions of the underlying reaction graph relates to the
qualitative behavior of the associated dynamical system (such as the mixing time). We proceed with
the basic definitions from the field.

A reaction network is a graphical construct that describes a set of possible interactions among some
constituent “species.”

Definition 2.1. A reaction network is given by a triple of finite sets (S,C,R) where:

(i) The species set S = {S 1, S 2, · · · , S d}, with d < ∞, contains the species of the reaction network.

(ii) The reaction set R = {R1,R2, · · · ,Rr}, with r < ∞, consists of ordered pairs (y, y′) ∈ R where

y =

d∑
i=1

yiS i and y′ =

d∑
i=1

y′iS i, (2.1)

and where the values yi, y′i ∈ Z≥0 are the stoichiometric coefficients. We will often write reactions
(y, y′) as y→ y′.

(iii) The complex set C consists of the linear combinations of the species in (2.1). Specifically, C =

{y | y → y′ ∈ R} ∪ {y′ | y → y′ ∈ R}. For the reaction y → y′, the complexes y and y′ are termed
the source and product complex of the reaction, respectively. �

The state space of our eventual Markov model, which will be fully described after some discussion
about reaction networks, will be described by the copy numbers of the species. The transitions of the
model will be determined via the reactions.

We note that in particular examples, as in most of ours below, we do not enumerate the species as
S 1, . . . , S d and instead utilized more suggestive notation (e.g., E for Enzyme, P for a protein, etc.),
or alphabetical labeling (e.g., A, B, C, etc.). The clear enumeration of {S 1, S 2, . . . , S d} will be used
primarily for theory and proofs.

The linear combinations in (2.1) are, for example, of the form 2S 1 + S 2 or 2S 1 + S 2 + 4S 3. How-
ever, we will also associate each complex y with the vector whose j-th component is y j, i.e. y =

(y1, y2, · · · , yd)T ∈ Zd
≥0. For example, when S = {S 1, S 2, . . . , S d}, the complex 2S 1 + S 2 is associated

with the vector (2, 1, 0, 0, . . . , 0)T ∈ Zd
≥0. We further note that it is reasonable to consider a complex y

with yi = 0 for each i. This complex is denoted by ∅.
We sometimes enumerate complexes and/or reactions. Hence, we will sometimes write, for ex-

ample, y1 or yr to denote particular complexes, as opposed to the 1st or rth element of the vector y.
Similarly, we may refer to the rth reaction as yr → y′r ∈ R. In such cases, the jth coordinate of, for
example, y1 and yr will be denoted y1, j and yr, j, respectively. Context will always make it clear if yr

is referring to the rth element of a complex y or if yr denotes a particular complex (such as the source
complex of the reaction yr → y′r).

It is most common to present a reaction network with a directed graph, termed the reaction graph of
the network, in which the vertices are the complexes, each complex is written exactly one time (even
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if it appears in more than one reaction), and the directed edges are given by the reactions. We present
an example to solidify notation.

Example 2.1. The following reaction graph is associated with a reaction network modeling a usual
substrate-enzyme kinetics

S + E � S E → E + P.

For this reaction network, S = {S , E, S E, P}, C = {S + E, S E, E + P} and R = {S + E → S E, S E →
S + E, S E → E + P}. 4

It is conditions on the reaction graph that will be important to us. It is unfortunately the case
that some of the terminology used in the study of reaction networks is different than that used more
commonly. Hence, we discuss here some of the differences.

A subgraph, which is connected, of the reaction graph is termed a linkage class [14]. If a linkage
class is strongly connected then we say that linkage class is weakly reversible. Finally, we say that
the entire network/graph is weakly reversible if each connected component (linkage class) is weakly
reversible.

Example 2.2. If we consider a reaction network described with the reaction graph,

A→ 2B� A + D, ∅ → B, B + C → 2C,
↖ ↙

D

then one can see that there are four species, eight complexes (vertices), seven reactions (directed edges),
and three linkage classes (connected components). The right-most connected component is strongly
connected, and hence weakly reversible, whereas the other two are not. Hence, the network as a whole
is not said to be weakly reversible. 4

The following notation will be utilized.

1. For u, v ∈ Rd
≥0, we define uv =

∏d
i=1 uvi

i , with 00 taken to be equal to 1.

2. For x ∈ Zd
≥0, we let x! =

∏d
i=1 xi!.

We now show the most common way to stochastically model a reaction network. Given a reaction
network (S,C,R), a (stochastic) kinetics is an assignment of a function λy→y′ : Zd

≥0 → R≥0 to each
reaction y → y′ ∈ R. The time evolution of the copy numbers of species is then modeled by means of
a continuous-time Markov chain with state space Zd

≥0, whose transition rate from state x to state z is
given by

qx,z =
∑

y→y′∈R
y′−y=z−x

λy→y′(x),

where the sum is over those reactions whose occurrence causes a net change that is precisely z − x. If
infinitely many transitions occur within a finite-time T∞ (in other words, an explosion occurs at T∞),
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we let X(t) = ∆ for any t ≥ T∞, where ∆ is a cemetery state not contained in Zd
≥0 [15]. The infinitesimal

generatorA of the associated Markov process acts on functions via the operation

A f (x) =
∑

y→y′∈R

λy→y′(x)( f (x + y′ − y) − f (x)), (2.2)

for f : Zd
≥0 → R [16].

One of the most widely used choices of stochastic kinetics, and the one which the present paper
focuses on exclusively, is given by (stochastic) mass-action kinetics, where for any reaction y→ y′ ∈ R

λy→y′(x) = κy→y′
x!

(x − y)!
1{x≥y} = κy→y′

d∏
i=1

xi!
(xi − yi)!

1{xi≥yi}, (2.3)

for some positive constant κy→y′ , called a reaction rate constant (or rate constant for short). We denote
K = {κy→y′}. We may then denote the stochastic mass-action system by (S,C,R,K). To include the rate
constants into the reaction graph, we place them right next to the arrow of the corresponding reaction as

in y
κy→y′

−−−→ y′. Typical stochastic simulation algorithms for generating sample trajectories of this model
are the Gillespie algorithm [12, 17] or the next reaction method [18, 19], or are approximated via tau-
leaping [20, 21]. Expectations and probabilities can be simulated by more advanced techniques [22].

3. Main results: Exponential ergodicity of two classes of reaction networks

In [2], Anderson and Kim studied two classes of reaction networks and proved that any stochastic
mass-action system associated with a network from one of these classes is necessarily positive recur-
rent. Moreover, they showed that positive recurrence holds regardless of the choice of reaction rate
constants. Hence, all such models admit a stationary distribution. The different sets of conditions char-
acterizing the classes are properties of the reaction graph alone, and are easily checked. In this paper,
we prove that these models are also exponentially ergodic. Specifically, Theorem 3.1 below states that
networks satisfying the conditions detailed in Theorem 1 of [2] are exponentially ergodic. Theorem
3.2 below states that networks satisfying the conditions detailed in Theorem 2 of [2] are exponentially
ergodic and, moreover, that the convergence is uniform over the choice of initial condition. After pro-
viding the results, with examples, we will close this section with two remarks that we hope shed light
on the theorems. We also provide generalizations to our results in Section 6.

Before stating the theorems, a few definitions related to possible network structures are needed.
These terms are introduced in [2], but they are also universally used in this field.

Definition 3.1. A reaction network (S,C,R) is called binary if ‖y‖`1 =
∑d

i=1 yi ≤ 2 for all y ∈ C. �

Definition 3.2. Let (S,C,R) be a reaction network with S = {S 1, S 2, · · · , S d}. The complex ∅ is termed
the zero complex. Unary complexes and binary complexes are the complexes of the form S i and S i +S j,
respectively, for i, j ∈ {1, . . . , d}, where we could have i = j. Binary complexes of the form 2S i are
called double complexes. If 2S i ∈ C for each i = 1, 2, . . . , d, then the reaction network (S,C,R) is said
to be double-full. �

Definition 3.3. We will say that (S,C,R) is open if both ∅ → S ∈ R and S → ∅ ∈ R for each S ∈ S. �
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That is, the system is open if there are inflows and outflows for each species. Note that in the case
of open systems, all states communicate with each other and so Zd

≥0 is irreducible.
In the two papers [23, 24], Anderson showed that deterministically modeled weakly reversible re-

action networks with a single linkage class are necessarily persistent and have bounded trajectories.
That is, they are “well-behaved.” Our first result pertains to a stochastic analog of those models. That
is, we start with a single linkage class that is weakly reversible and binary, and then add all inflow and
outflow reactions (making the network “open”). Theorem 1 in [2] states that a stochastically modeled
system associated with such a network is positive recurrent regardless of the choice of rate constants.
The result below gives us exponential ergodicity.

Theorem 3.1. Let (S,C,R) be a weakly reversible, binary reaction network that has a single linkage
class and S = {S 1, . . . , S d}. Let C̃ = C ∪ {∅} ∪ {S i | S i ∈ S} and R̃ = R ∪S i∈S {∅ → S i, S i → ∅}. Then,
for any choice of reaction rate constants K = {κy→y′} there exist C, η > 0 so that the Markov process X
with intensity functions (2.3) associated to the reaction network (S, C̃, R̃) satisfies

‖Pt(x, ·) − π(·)‖TV ≤ C(|x| + 1) ln(|x| + 2)e−ηt, for all t ≥ 0 and all x ∈ Zd
≥0, (3.1)

where π is the unique stationary distribution of the model on Zd
≥0. Thus, the mixing time satisfies

τεx = O(ln(|x|)), as |x| → ∞.
Moreover, if there is a w ∈ Rd

>0 for which w · (y′ − y) = 0 for all y → y′ ∈ R, that is if the network
(S,C,R) is conservative, then there exist C, η > 0 so that the Markov process X with intensity functions
(2.3) associated to the reaction network (S, C̃, R̃) satisfies

‖Pt(x, ·) − π(·)‖TV ≤ C(|x| + 1)e−ηt, for all t ≥ 0 and all x ∈ Zd
≥0. (3.2)

The mixing time of the model still satisfies τεx = O(ln(|x|)), as |x| → ∞.

We provide an example.

Example 3.1. We take S = {A, B,C} and the binary reaction network with a single linkage class,
(S,C,R), to be

A −−−→ B.

↖ ↙

2C

Adding inflows and outflows yields the reaction network (S, C̃, R̃), which has reaction graph

C

↑↓

∅

↗↙ ↖↘

A −−−−−→ B

↖ ↙

2C.

(3.3)

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4690–4713.
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Hence, by Theorem 3.1, for any choice of rate constants the Markov model associated to the network
(S, C̃, R̃) is exponentially ergodic with mixing time bounded above by the logarithm of the initial
counts.

We provide the results of a numerical example in Figure 1A. Specifically, we consider the stochastic
model associated with the network (3.3) in which all rate constants are selected to be equal to one. In
this case, the stationary distribution is a product of Poissons [6]. We then parameterized the model
via the initial condition xm = (m,m,m)T . On the left hand side of Figure 1A we provide plots of
‖Pt(x, ·) − π(·)‖TV, as a function of time, for each of m = 1, 10, 100. On the right hand side of Figure
1A we provide a plot of τεxm

, for xm = (m,m,m)T and ε = 0.1, as a function of m. Note that this
plot qualitatively agrees with Theorem 3.1 in that it appears logarithmic in m. The plots were made
via approximating Pt(x, ·) via Monte Carlo methods, and estimating the total variation distance via the
approximation

‖Pt(x, ·) − π(·)‖TV =
1
2

∑
z

|Pt(x, z) − π(z)| ≈
1
2

∑
z∈[0,200]3

|Pt(x, z) − π(z)|.

4

The next theorem, which allows us to conclude that the convergence is also uniform over initial
states, drops both the weak reversibility and the single linkage class assumption. However, it adds
the assumption that the network is double-full and an assumption related to paths through the reaction
graph that start with double complexes. Another difference with the previous theorem, though not the
corollay, is that now Zd

≥0 may no longer be irreducible. This is also an extension of Theorem 2 in [2]
that only shows ergodicity of the proposed reaction network class.

Theorem 3.2. Let (S,C,R) be a binary reaction network satisfying the following two conditions:

(i) the reaction network is double-full, and

(ii) for each double complex (of the form 2S i) there is a directed path within the reaction graph
beginning with the double complex itself and ending with either a unary complex (of the form S j)
or the zero complex, ∅.

Let K = {κy→y′} be a choice of reaction rate constants. Let X(0) = x ∈ S ⊂ Zd
≥0 be in a closed

communication class, S, and let π be the stationary distribution of the model on that class. Then, there
exist C, η > 0 so that the Markov process X with intensity functions (2.3) associated to the reaction
network (S,C,R) satisfies

‖Pt(x, ·) − π(·)‖TV ≤ Ce−ηt, for all t ≥ 0,

where neither C nor η depend upon x ∈ S. Thus, the mixing time satisfies τεx = O(1), as |x| → ∞.

We provide an example.

Example 3.2. Consider the following network

2A� A + B� B, A� 2C � B + C.

2B� ∅, C � A + C
(3.4)

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4690–4713.
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This network is double full since 2A, 2B, 2C ∈ C. Moreover, for each double complex, there is a
sequence of directed edges starting with the double complex and arriving at a complex that is either ∅
or a unary complex. Specifically, we have the following such sequences:

2A→ A + B→ B

2C → A

2B→ ∅

Hence, by Theorem 3.2, for any choice of rate constants the associated Markov model is exponentially
ergodic. Moreover, the convergence time is uniform over the initial state.

As in Example 3.1, we provide the results of a numerical example in Figure 1B. Specifically, we
consider the stochastic model associated with the network (3.4) in which all rate constants are selected
to be equal to one. In this case, the stationary distribution is a product of Poissons [6]. We then
parameterized the model via the initial condition xm = (m,m,m)T . On the left hand side of Figure 1B
we provide plots of ‖Pt(x, ·) − π(·)‖TV, as a function of time, for each of m = 1, 10, 100. On the right
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Figure 1. A and B (Left). For each initial condition X(0) = (m,m,m)>, the images on the left
provide plots of ‖Pt(x, ·) − π(·)‖TV over time for the reaction networks (3.3) (top) and (3.4)
(bottom), where π represents their stationary distributions.
A and B (Right). The images on the right provide plots of the mixing times τεxm

with ε = 0.1
and xm = (m,m,m)>, as functions of m. The top image is for the reaction network (3.3)
whereas the bottom image is for the the reaction network (3.4). Note that the top image
appears to show logarithmic growth whereas the bottom appears to show an asymptotic upper
bound. Both observations agree with our theory.
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hand side of Figure 1B we provide a plot of τεxm
, for xm = (m,m,m)T and ε = 0.1, as a function of

m. Note that this plot qualitatively agrees with Theorem 3.2 in that it appears to be bounded above in
m. The plots were made via approximating Pt(x, ·) via Monte Carlo methods, and estimating the total
variation distance via the approximation

‖Pt(x, ·) − π(·)‖TV =
1
2

∑
z

|Pt(x, z) − π(z)| ≈
1
2

∑
z∈[0,200]3

|Pt(x, z) − π(z)|.

4

We close this section with two remarks.

Remark 3.1. We note that the exponential convergence bounds in Theorem 3.1 (given in (3.1) and
(3.2)) are not uniform over the initial state, x. This can be understood by the fact that the “strength”
of the convergence is governed by the linear outflow reactions S i → ∅. Such linear terms lead to
exponential decay and, hence, logarithmic mixing times. Conversely, for Theorem 3.2 the decay has
quadratic rate, which should be compared to the ODE ẋ(t) = −x(t)2, which implodes from infinity (i.e.,
the time needed to hit a given compact from a particular state is bounded from above).

Remark 3.2. To prove Theorems 3.1 and 3.2 we require a number of results that we collect in the
next section. However, we will provide a bit of intuition here. The main point is that we must show
that the “average drift” of the model (which will be clarified in the next section through the use of
Foster-Lyapunov functions) points inward toward the origin from each x ∈ Zd

≥0 outside of a compact
set. There are then two main cases to consider: (i) those x that are “away” from the boundary in that
there are sufficient counts for each reaction to have positive intensity, and (ii) those x near the boundary
in that at least one of the reactions has zero intensity (for example, perhaps xi = 0 for some i). The
case of x “away” from the boundary can be handled in a manner that is similar to the deterministic
case [23,24], and relies on the overall structure of the networks. The existence of the outflow reactions
in Theorem 3.1 and of the double complex condition in Theorem 3.2 ensure that the drift towards the
origin also takes place for the x near the boundary.

4. Preliminary concepts: tiers and Foster-Lyapunov functions

This brief section is dedicated to introducing two key analytical tools we will use in the proofs of
Theorems 3.1 and 3.2: tiers and Foster-Lyapunov functions.

4.1. Tiers

“Tiers” were introduced to allow for the partition of the complexes along sequences in a manner
that tells us which reactions/complexes are “dominating” the dynamics of the mathematical model in
different regions of the state space. Tiers were first introduced by Anderson in [23, 24] in the context
of deterministically modeled reaction networks, but have recently been successfully used to analyze
stochastic models as well [2, 25].

There are multiple ways to partition the set of complexes along a particular sequence of points.
Below, and for reasons that will become clear throughout our analysis, we choose to do so via the
function x 7→ (x ∨ 1), which is the vector whose jth component is

(x ∨ 1) j = x j ∨ 1 = max{x j, 1}.

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4690–4713.
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This particular choice of function (and hence partition) was first used in [2] where it was called a
“D-type partition.”

Definition 4.1. Let (S,C,R) be a reaction network with S = {S 1, . . . , S d}. A sequence {xn} of points
in Rd

≥0 is called a D-type tier-sequence if

(i) for each i ∈ {1, . . . , d} the limit lim
n→∞

xn,i exists (it could be infinity) and lim
n→∞

xn,i = ∞ for at least
one i, and

(ii) for any pair of complexes y, y′ ∈ C, the limit

lim
n→∞

(xn ∨ 1)y

(xn ∨ 1)y′ ,

exists (it could be infinity). �

Remark 4.1. Note that, given a sequence {xn} of vectors inRd
≥0 with lim supn→∞ ‖xn‖∞ = ∞, it is always

possible to find a subsequence that is a D-type tier-sequence. This is simply because we assume that
only finitely many complexes are present. See Lemma 4.2 of [23].

Definition 4.2. Let (S,C,R) be a reaction network and let {xn} be a D-type tier-sequence in Rd
≥0. We

define a partition of the complexes C = ∪K
i=1T D,i

{xn}
along the tier-sequence {xn} in the following recursive

manner:

(i) we say that a complex y is in tier 1 (and write y ∈ T D,1
{xn}

) if for all complexes y′ ∈ C

lim
n→∞

(xn ∨ 1)y

(xn ∨ 1)y′ > 0;

(ii) we say that a complex y is in tier i (and write y ∈ T D,i
{xn}

) if there exists y′ ∈ T D,i−1
{xn}

with

lim
n→∞

(xn ∨ 1)y

(xn ∨ 1)y′ = 0

and for all complexes y′ <
⋃i−1

j=1 T D, j
{xn}

we have

lim
n→∞

(xn ∨ 1)y

(xn ∨ 1)y′ > 0.

The mutually disjoint subsets T D,i
{xn}

are called D-type tiers along {xn}. If y ∈ T D,i
{xn}

and y′ ∈ T D, j
{xn}

with
i < j we will write y �D y′. If y, y′ are in the same D-type tier, then we will write y ∼D y′. �

Thus, those complexes in tier 1 maximize (xn ∨ 1)y along the sequence, with those in tier 2 being
second largest, etc. Note that as a consequence of the above definition, if y, y′ ∈ T i

{xn}
then there exists

C ∈ (0,∞) such that

lim
n→∞

(xn ∨ 1)y

(xn ∨ 1)y′ = C,
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explaining the notation y ∼D y′, and if y ∈ T i
{xn}

and y′ ∈ T j
{xn}

for some i < j, then

lim
n→∞

(xn ∨ 1)y′

(xn ∨ 1)y = 0,

explaining the notation y �D y′.
The following example demonstrates the concept.

Example 4.1. Consider the reaction graph below.

2A −→ B
 ∅
 A.
↖ ↙

A + B

Let C be enumerated with y1 = 2A, y2 = B, y3 = ∅, y4 = A, y5 = A + B. For xn = (n, 0)>, (xn ∨ 1)yi

is equal to n2, 1, 1, n and n for i = 1, 2, 3, 4 and 5, respectively. On the other hand, if xn = (n, n + 1)>,
then (xn ∨ 1)yi is equal to n2, n + 1, 1, n and n(n + 1) for i = 1, 2, 3, 4 and 5, respectively. Note that both
sequences are tier-sequences. The tier structures (i.e., the partition) for each tier-sequence is shown in
the following table.

xn (n, 0)> (n, n + 1)>

T D,1
{xn}

y1 y1, y5

T D,2
{xn}

y4, y5 y2, y4

T D,3
{xn}

y2, y3 y3

We close this section with a useful lemma.

Lemma 4.1. Let {xn}, with xn ∈ Z
d
≥0, be a D-type tier-sequence of a reaction network (S,C,R) and let

y→ y′ ∈ R. If limn→∞ λy→y′(xn) > 0, where λy→y′ is given in (2.3), then there is a C > 0 with

lim
n→∞

λy→y′(xn)
(xn ∨ 1)y = C.

Moreover, if the source complex y satisfies |yi| ≤ 1 for each i ∈ {1, . . . , d}, then C = κy→y′ .

Proof. Since limn→∞ λy→y′(xn) > 0, we have that (xn ∨ 1)y = xy
n for all n large enough. The result then

follows from the basic polynomial structure of λy→y′ . �

4.2. Lyapunov functions for mixing times

The following known result is key to our analysis. See, for example, [26, 27].

Theorem 4.2. Let X be a continuous-time Markov chain on an irreducible, countably infinite state
space S ⊂ Zd with generatorA. Suppose there exists a positive function V on S satisfying the following.

(i) V(x)→ ∞, as |x| → ∞, and
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(ii) there are positive constants a and b such that

AV(x) ≤ −aV(x) + b for all x ∈ S. (4.1)

Then there exists positive constants η and C such that

‖Pt(x, ·) − π(·)‖TV ≤ C(V(x) + 1)e−ηt, ∀x ∈ S.

Note that if a continuous-time Markov chain X satisfies the conditions in Theorem 4.2 with the
function V defined from (5.1), then the mixing time satisfies τεx ≤

1
η
ln

(
C(V(x)+1)

ε

)
= O(ln |x|).

The next result utilizes a ‘super Lyapunov function.’ Such functions will allow us to show that, for
certain models, the convergence is uniform over the initial state. This theorem is a version of Theorem
3.2 in [28].

Theorem 4.3. Let X be a continuous-time Markov chain on an irreducible, countable state space
S ⊂ Rd with generatorA. Suppose there exists a positive function V on S satisfying the following.

(i.) V(x)→ ∞, as |x| → ∞, and

(ii.) there are positive constants a, b and δ such that

AV(x) ≤ −aV(x)1+δ + b for all x ∈ S. (4.2)

Then there exist positive constants η and C such that

‖Pt(x, ·) − π(·)‖TV ≤ Ce−ηt.

Note that in this case we have that the mixing time satisfies τεx = O(1).

5. Proofs of Theorems 3.1 and 3.2

We let V : Zd
≥0 → R≥0 be the following function

V(x) =

d∑
i=1

[xi(ln(xi) − 1) + 1] , (5.1)

with 0(ln(0) − 1) taken to be zero. This function has a long history in the field of chemical reaction
network theory: it has been used to show stability of deterministically modeled reaction networks
[24, 29–31], to show positive recurrence of stochastic reaction networks [2, 4, 25], and also plays a
key role in the study of “non-equilibrium” systems in the physics literature (see [32] and followup
references). The basic idea behind the proofs of Theorems 3.1 and 3.2 is to use the infinitesimal
behavior of the Markov process, which can be described via the generator A defined in (2.2), and the
Foster-Lyapunov function V defined above in (5.1), to show that the models under consideration admit
an “inward” drift at every state outside some compact set, in the sense of Theorems 4.2 and 4.3. To do
so we make use of the tier structures of the model.

We begin by first providing a series of lemmas.
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Lemma 5.1. LetA be the generator (2.2) of the continuous-time Markov chain associated to a reaction
network (S,C,R) with mass-action kinetics (2.3) and rate constants {κy→y′}. Let V be the function
defined in (5.1). For each D-type tier-sequence {xn} there is a constant C1 > 0 for which

AV(xn) ≤
∑

y→y′∈R

λy→y′(xn)
(

ln
(
(xn ∨ 1)y′

(xn ∨ 1)y

)
+ C1

)
. (5.2)

Furthermore, suppose that there exists a reaction y1 → y′1 ∈ R such that

(i) y1 ∈ T D,1
{xn}

,

(ii) y1 � y′1, and

(iii) lim
n→∞

λy1→y′1
(xn)

(xn ∨ 1)y1
= C2, for some C2 > 0.

Then there exists a positive constant C3 such that for large enough n,

AV(xn) ≤ C3

∑
y→y′∈R
y�Dy′

λy→y′(xn) ln
(
(xn ∨ 1)y′

(xn ∨ 1)y

)
, (5.3)

where the sum is over those reactions, y→ y′ ∈ R, with y �D y′.

The proof of (5.2) can be found in [2, Lemma 8]. The proof of (5.3) can be found in the proof
of [2, Theorem 9].

The next lemma gives a condition for when (5.3) holds.

Lemma 5.2. Let (S,C,R), with S = {S 1, . . . , S d}, be a weakly reversible, binary reaction network that
has a single connected component. Suppose that C is not a subset of {S i + S j : i, j ∈ {1, . . . , d}}. Let
C̃ = C ∪ {∅} ∪ {S i | S i ∈ S} and R̃ = R ∪S i∈S {∅ → S i, S i → ∅}. Then, for any D-type tier-sequence {xn}

for (S, C̃, R̃), there exists a reaction y1 → y′1 ∈ R̃ such that

(i) y1 ∈ T D,1
{xn}

,

(ii) y1 �D y′1 and

(iii) lim
n→∞

λy1→y′1
(xn)

(xn ∨ 1)y1
= C, for some C > 0.

Proof. First note that ∅ < T D,1
{xn}

. This follows because there is at least one i ∈ {1, . . . , d} with xn,i → ∞,
since {xn} is a D-type tier sequence, and so S i �D ∅.

Next, we observe that if S i ∈ T D,1
{xn}

for some i, then we are done because in this case the reaction
S i → ∅ satisfies all of (i), (ii), and (iii).

Now suppose that there is no S i ∈ T D,1
{xn}

. Then it must be the case that S i + S j ∈ T D,1
{xn}

for some i, j
(we could have i = j). However, because C does not consist solely of binary complexes, we must have
at least one complex, ỹ ∈ C, with |ỹ| ∈ {0, 1} (i.e., it is either unary or the zero complex). In particular,
we know that ỹ < T D,1

{xn}
. Hence, by the weak reversibility of (S,C,R), there is a sequence of reactions

starting with S i + S j and ending with a complex not contained in T D,1
{xn}

. This implies that there is at
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least one reaction, y → y′ ∈ R, with y ∈ T D,1
{xn}

and y �D y′. That is, conditions (i) and (ii) are satisfied
for these reactions.

We now look closer at y, the source complex of this reaction. If y = 2S k for some k, then we
have that this reaction also satisfies (iii) with xn,k → ∞, as n → ∞, and we are done. Similarly, if
y = S k + S ` for some k , `, and both limn→∞ xn,k > 0 and limn→∞ xn,` > 0, then Lemma 4.1 may be
used to imply that (iii) holds as well, and we are done. The final case to consider is when y = S k + S `

with limn→∞ xn,k > 0 and limn→∞ xn,` = 0. However, this would imply that S k ∈ T D,1
{xn}

as well, which is
impossible by assumption. Hence, all cases are covered and the proof is complete. �

While the inflow reactions are not crucial, the outflows in R̃ is necessary for Lemma 5.2. The next
example demonstrates.

Example 5.1. Let (S,C,R) be a reaction network formed with the reactions in the ‘triangle’ within the
reaction network shown in Example 4.1. That is,

2A −→ B
↖ ↙

A + B.

Let (S, C̃, R̃) be the full network in Example 4.1, where all the inflows and outflows are included. For
the D-type tier-sequence xn = (n, 0)>, the reaction 2A → B satisfies all the conditions (i), (ii) and (iii)
in Lemma 5.2. For the D-type tier sequence xn = (0, n)>, the reaction A + B→ 2A satisfies (i) and (ii)
in Lemma 5.2. However (iii) does not hold because the rate function λA+B→2A is zero at xn for each n.
In this case, the out-flow reaction B→ ∅ satisfies (i), (ii), and (iii) in Lemma 5.2. 4

Now we begin the proof of Theorem 3.1.

Proof of Theorem 3.1. We first suppose the existence of a w ∈ Rd
>0 with w·(y′−y) = 0 for all y→ y′ ∈ R.

Let W(x) = w · x =
∑d

i=1 wixi. Note that lim
|x|→∞

|W(x)| = ∞ since w ∈ Rd
>0. For each i ∈ {1, . . . , d}, let

ei ∈ Z
d
≥0 be the vector with a 1 in the ith coordinate and zeros elsewhere. Since w conserves the

reactions in R, we have

AW(x) =
∑

y→y′∈R

λy→y′(x)(W(x + y′ − y) −W(x))

+

d∑
i=1

λS i→∅(x)(W(x − ei) −W(x)) +

d∑
i=1

λ∅→S i(x)(W(x + ei) −W(x))

= −

d∑
i=1

κS i→∅ · wixi +

d∑
i=1

κ∅→S iwi

≤ −aW(x) + b,

where a = min{κS i→∅} and b =
∑d

i=1 κ∅→S iwi. Hence, (4.1) holds with V replaced with W, giving us the
second statement of the theorem, by Theorem 4.2.

Now we assume that no such w exists. Note that this implies that neither C ⊂ {2S i : S i ∈ S} nor
C ⊂ {S i : S i ∈ S}. We claim that there exists a compact set K ⊂ S such that for some positive constant
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a, the function V defined in (5.1) satisfies

AV(x) ≤ −aV(x) for all x ∈ S \ K. (5.4)

If this claim holds, then the result follows from Theorem 4.2 after setting b = (a + 1) max
x∈K
AV(x).

We prove the claim by contradiction. We therefore suppose that there is not a compact K, together
with an a > 0, so that (5.4) holds. In this case, there exists a sequence {xn} ⊂ S such that

lim
n→∞
||xn||∞ = ∞ and AV(xn) ≥ −

1
n

V(xn), for all n. (5.5)

By Remark 4.1, we can find a subsequence of {xn} that is a D-type tier-sequence. For ease of notation,
we also denote this subsequence by {xn}. By considering a further subsequence if needed, we also can
assume that there exists an i such that

lim
n→∞

xn,i

xn, j
> 0, for any j, (5.6)

where we denote the ith coordinate of xn by xn,i. Because of (5.6), we will say that xn,i is a “maximal
coordinate,” since no other element is asymptotically larger. Without loss of generality, we assume xn,1

is such a maximal coordinate of xn. That is, there exists a positive constant C′ such that for each i

xn,i ≤ C′xn,1, for all n large enough.

By Lemmas 5.1 and 5.2 there is a C1 > 0 for which (5.3) holds for all n large enough. That is,

AV(xn) ≤ C1

∑
y→y′∈R
y�Dy′

λy→y′(xn) ln
(
(xn ∨ 1)y′

(xn ∨ 1)y

)
. (5.7)

Note that because we are assuming that xn,1 is a maximal coordinate, it holds that S 1 � ∅, and so the
reaction S 1 → ∅ is included in the sum above. Since each term in the summation of the right-hand
side of (5.7) is negative for large n, the inequality stands after dropping other terms except for the term
related to S 1 → ∅. Hence we have

AV(xn) ≤ C1λS 1→∅(xn) ln
(
(xn ∨ 1)(0,0,...,0)

(xn ∨ 1)(1,0,...,0)

)
= −C1λS 1→∅(xn) ln (xn,1 ∨ 1).

However, since we assumed xn,1 is a maximal coordinate of xn, and limn→∞ xn,1 = ∞ by construc-
tion, we can find some positive constant C2 such that V(xn) ≤ C2xn,1 ln(xn,1) for all n large enough.
Combining the above, there is a C3 > 0 so that for all n large enough we have

AV(xn) ≤ −C1λS 1→∅(xn) ln (xn,1 ∨ 1).
≤ −C3V(xn).

This contradicts (5.5), and the result is shown. �

Remark 5.1. Since (S, C̃, R̃) is weakly reversible in Theorem 3.1, the associated Markov process X
with X(0) = x is irreducible. Moreover, because R̃ is open, the irreducible state space is all of Zd

≥0.
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We now turn to the proof of Theorem 3.2. We begin with a lemma that characterizes tiers of double-
full binary reaction networks.

Lemma 5.3. Let (S,C,R) be a binary reaction network satisfying the same conditions given in Theo-
rem 3.2. Let {xn} be a D-type tier-sequence. Then the following hold.

(i) For y→ y′ ∈ R with y ∈ T D,1
{xn}

, we have that λy→y′(xn) > 0 for all n large enough,

(ii) 2S i ∈ T D,1
{xn}

for some i, and

(iii) There exists y→ y′ ∈ R such that y ∈ T D,1
{xn}

and y � y′.

Proof. There are no complexes with ‖y‖`1 > 2, and our assumptions imply that each double complex is
the source complex for some reaction. Hence, (i) and (ii) follow.

To see that (iii) holds, you simply have to note that no unary complex (or the zero complex) can be
in T D,1

{xn}
. (iii) then follows from the existence of a directed path from any double complex to a unary

complex or the zero complex. �

We now prove Theorem 3.2.

Proof of Theorem 3.2. We will show that V defined in (5.1) satisfies the conditions of Theorem 4.3
with δ = 1/2 (and value δ ∈ (0, 1) would work). As in the proof of Theorem 3.1, we proceed via a
proof by contradiction. Therefore, in order to find a contradiction, we assume that there is no compact
set K ⊂ S, together with an a > 0, for which

AV(x) ≤ −aV(x)3/2 for all x ∈ S \ K.

Then there exists a sequence {xn}, with xn ∈ S, so that

lim
n→∞
‖xn‖∞ = ∞ and AV(xn) ≥ −

1
n

V(xn)3/2, (5.8)

for all n. By Remark 4.1, we may extract a subsequence that is a D-type tier sequence and that still
satisfies (5.8). As before, for ease of notation we denote this subsequence by {xn}.

By result (ii) in Lemma 5.3, there is a species S i for which 2S i ∈ T D,1
{xn}

. We will now show that there
must be a C > 0 with

AV(xn) ≤ −Cx2
n,i,

which would contradict (5.8).
By Lemma 5.3, there is a y1 → y′1 ∈ R for which y1 ∈ T D,1

{xn}
and y1 � y′1. By Lemma 4.1 and Lemma

5.1 (i) we also have that the limit in (iii) of Lemma 5.1 holds. Hence, we may utilize (5.3), with a
bound similar to (5.7) in the proof of Theorem 3.1, to conclude that there is a C2 > 0 so that for n large
enough we have

AV(xn) ≤ C2λy1→y′1
(xn) ln

(
(xn ∨ 1)y′1

(xn ∨ 1)y1

)
≤ −C2λy1→y′1

(xn), (5.9)

where the second inequality holds since ln
(
(xn ∨ 1)y′1

(xn ∨ 1)y1

)
→ −∞, as n → ∞. Since we know that

2S i ∈ T D,1
{xn}

, we can then conclude that there is a C > 0 so that

AV(xn) ≤ −C2λy1→y′1
(xn) ≤ −Cx2

n,i.

This was our goal, so we are done. �
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6. Extension of Theorem 3.1 for exponential ergodicity

In this section, we generalize Theorem 3.1 to provide four more classes of reaction networks for
which the associated Markov chains with intensity functions (2.3) are exponentially ergodic. Note
that we no longer have previous results guaranteeing the models under consideration in this section
are positive recurrent. Hence, existence of π is now part of each result. Note, however, that this fact
follows immediately since the existence of positive a and b for which AV(x) ≤ −aV(x) + b outside
a compact immediately implies that AV(x) ≤ −1 outside that same compact (since V is positive and
bounded from below).

The first generalization arises by noting that the proof of Theorem 3.1 only utilizes the presence
of the outflow reactions. Thus, the theorem can be generalized to only allow for a portion of (or even
none of) the inflow reactions. However, in this case the system is not open and so Zd

≥0 may not be a
closed communication class, and so the generalized statement must restrict to a particular closed class.

Corollary 6.1. Let (S,C,R) be a weakly reversible, binary reaction network that has a single linkage
class and S = {S 1, . . . , S d}. Let C̃ = C ∪ {∅} ∪ {S i | S i ∈ S} and R̃ = R ∪S i∈S {S i → ∅} ∪S i∈I {∅ → S i},

where I ⊂ S is any subset of the species (including the empty set). Let K = {κy→y′} be a choice of
reaction rate constants. Let X(0) = x ∈ Zd

≥0 be in a closed communication class, S. Then there is a
stationary distribution π on that class. Moreover, there exist C, η > 0 so that the Markov process X
with intensity functions (2.3) associated to the reaction network (S, C̃, R̃) satisfies

‖Pt(x, ·) − π(·)‖TV ≤ C(|x| + 1) ln(|x| + 2)e−ηt, for all t ≥ 0,

where neither C nor η depend upon x ∈ S. Thus, the mixing time satisfies τεx = O(ln(|x|)), as |x| → ∞.
Suppose now that there is a w ∈ Rd

>0 for which w · (y′−y) = 0 for all y→ y′ ∈ R. Let X(0) = x ∈ Zd
≥0

be in a closed communication class, S. Then there is a stationary distribution π on that class. Moreover,
there exist C, η > 0 so that the Markov process X with intensity functions (2.3) associated to the reaction
network (S, C̃, R̃) satisfies

‖Pt(x, ·) − π(·)‖TV ≤ C(|x| + 1)e−ηt, for all t ≥ 0,

where neither C nor η depend upon x ∈ S. Thus, the mixing time satisfies τεx = O(ln(|x|)), as |x| → ∞.

Example 6.1. Consider the system with reaction graph in (3.3) except C → ∅ is removed, i.e. the
network with reaction graph

C

↑

∅

↗↙ ↖↘

A −−−−−→ B

↖ ↙

2C.

For this model Zd
≥0 is irreducible, and there is a unique stationary distribution on Zd

≥0. Moreover,
because of Corollary 6.1, it is also exponentially ergodic with a mixing time that is bounded above by
the logarithm of the initial counts. 4
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As noted in Section 5, the results of Lemma 5.2 are crucial in proving Theorem 3.1. Hence it is
possible to find other structural conditions for the reaction network that guarantee exponential ergod-
icity by ensuring Lemma 5.2 holds. Essentially, in Lemma 5.2 the existence of a directed path of
reactions starting with a complex y ∈ T D,1

{xn}
and ending with a complex y′ < T D,1

{xn}
was crucial. Hence we

can generalize Theorem 3.1 with alternative conditions that guarantee the existence of such a path of
reactions.

Using the observation above, the corollary below allows us to drop the single linkage class assump-
tion. However, π could be a point mass (for example, when the network is 2S 1 → S 1 → ∅ and no
inflow of S 1 is added).

Corollary 6.2. Let (S,C,R) be a binary reaction network with S = {S 1, . . . , S d}. Suppose that for each
binary complex y ∈ C, there is a directed path within the reaction graph beginning with y and ending
with either a unary complex (of the form S j) or the zero complex, ∅. Let C̃ = C ∪ {∅} ∪ {S i | S i ∈ S}

and R̃ = R∪S i∈S {S i → ∅}∪S i∈I {∅ → S i}, where I ⊂ S is any subset of the species. LetK = {κy→y′} be
a choice of reaction rate constants. Let X(0) = x ∈ Zd

≥0 be in a closed communication class, S. Then
there is a stationary distribution π on that class. Moreover, there exist C, η > 0 so that the Markov
process X with intensity functions (2.3) associated to the reaction network (S, C̃, R̃) satisfies

‖Pt(x, ·) − π(·)‖TV ≤ C(|x| + 1) ln(|x| + 2)e−ηt, for all t ≥ 0,

where neither C nor η depend upon x ∈ S. Thus, the mixing time satisfies τεx = O(ln(|x|)), as |x| → ∞.
Suppose now that there is a w ∈ Rd

>0 for which w · (y′−y) = 0 for all y→ y′ ∈ R. Let X(0) = x ∈ Zd
≥0

be in a closed communication class, S. Then there is a stationary distribution π on that class. Moreover,
there exist C, η > 0 so that the Markov process X with intensity functions (2.3) associated to the reaction
network (S, C̃, R̃) satisfies

‖Pt(x, ·) − π(·)‖TV ≤ C(|x| + 1)e−ηt, for all t ≥ 0,

where neither C nor η depend upon x ∈ S. Thus, the mixing time satisfies τεx = O(ln(|x|)), as |x| → ∞.

Proof. It suffices to show that the results (i), (ii), and (iii) in Lemma 5.2 hold. However, in the proof of
Lemma 5.2, the weak reversibility and single linkage class assumptions of (S,C,R) were only used to
show the existence of a directed path of reactions beginning with some complex y ∈ T D,1

{xn}
and ending

with either a unary complex or the zero complex when T D,1
{xn}

only contains binary complexes. Hence by
directly assuming the existence of such a sequence, the result follows. �

Example 6.2. Let a reaction network (S,C,R) be described with the following reaction graph.

2B→ A + B→ C, 2C → A← ∅ → B.

Then each binary complex in C has a directed path of reactions beginning with itself and ending with a
unary complex. Then adding all the out-flows, we have the new reaction network (S, C̃, R̃), which has
reaction graph
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2B→ A + B→ C

↓

2C → A
 ∅
 B.

By Collorary 6.2, for any choice of rate constants the Markov model associated to the network (S, C̃, R̃)
is exponentially ergodic with mixing time bounded above by the logarithm of the initial counts. 4

We may also generalize by not requiring that all the species have an out-flow reaction (S i → ∅).
However, in this case we add the assumption that there is a “chain” of first order reactions (of the form
S i → S j) connecting a species with no out-flow reaction to one with an out-flow reaction. We first
consider the case where only one species, S 1, say, has an outflow.

Corollary 6.3. Let (S,C,R) be a binary reaction network with S = {S 1, . . . , S d} and {S 1, S 2, . . . , S d} ⊂

C. Suppose that

1. for each binary complex y ∈ C, there is a directed path within the reaction graph beginning with
y and ending with either a unary complex (of the form S j) or the zero complex, ∅.

2. for each unary complex S i ∈ C such that i , 1, there is a directed path within the reaction graph
such that it begins with S i, ends with S 1, and consists only of unary complexes (i.e. the path is of
the form S i → S i1 → S i2 → · · · → S 1).

Let C̃ = C ∪ {∅} and R̃ = R ∪ {S 1 → ∅} ∪S i∈I {∅ → S i}, where I ⊂ S is any subset of the species. Let
K = {κy→y′} be a choice of reaction rate constants. Let X(0) = x ∈ Zd

≥0 be in a closed communication
class, S. Then there is a stationary distribution π on that class. Moreover, there exist C, η > 0 so
that the Markov process X with intensity functions (2.3) associated to the reaction network (S, C̃, R̃)
satisfies

‖Pt(x, ·) − π(·)‖TV ≤ C(|x| + 1) ln(|x| + 2)e−ηt, for all t ≥ 0,

where neither C nor η depend upon x ∈ S. Therefore the mixing time of the model satisfies τεx =

O(ln(|x|)), as |x| → ∞.
Suppose now that there is a w ∈ Rd

>0 for which w · (y′−y) = 0 for all y→ y′ ∈ R. Let X(0) = x ∈ Zd
≥0

be in a closed communication class, S. Then there is a stationary distribution π on that class. Moreover,
there exist C, η > 0 so that the Markov process X with intensity functions (2.3) associated to the reaction
network (S, C̃, R̃) satisfies

‖Pt(x, ·) − π(·)‖TV ≤ C(|x| + 1)e−ηt, for all t ≥ 0,

where neither C nor η depend upon x ∈ S. The mixing time in this case still satisfies τεx = O(ln(|x|)), as
|x| → ∞.

Proof. We first show that the results in Lemma 5.2 hold for (S, C̃, R̃). Let {xn} be an arbitrary tier-
sequence. We only need to consider the case that at least one unary complex is in T D,1

{xn}
. The proof

of the other cases is the same as the proof of Lemma 5.2. Let y = S ` ∈ T D,1
{xn}

. Then on a direct path
S ` → S i1 → · · · → S 1 → ∅, there must exist a reaction of the form either S j → S k for some j , k
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such that S j ∈ T D,1
{xn}

and S k < T D,1
{xn}

or S 1 → ∅ with S 1 ∈ T D,1
{xn}

and ∅ < T D,1
{xn}

(as always). Then letting this
reaction be y1 → y′1, Lemma 5.2 follows.

To complete the proof, it suffices to start at (5.7) because the previous parts in the proof of Theorem
3.1 stand without further modification. Let {xn} be an arbitrary tier-sequence. Note that i) if there exists
a reaction y→ y′ such that y = S r for some r and y �D y′ and ii) if xn,r is a maximal coordinate of {xn},
then the proof is done in the same way as the proof of Theorem 3.1. Let xn,` be the maximal coordinate
of {xn}. Then over a directed path S ` = S i0 → S i1 → S i2 → · · · → S 1 → ∅, we have that either i) there
exists S r → S m ∈ R for some r,m such that xn,r is a maximal coordinate and S r �D S m or ii) S 1 → ∅

satisfies that xn,1 is a maximal coordinate and S 1 �D ∅. This completes the proof. �

Example 6.3. Let (S,C,R) be a reaction network that is described with the following reaction graph

2B −−−→ A + B −−−→ C
↗ ↘

2C −−−→ A←−−−−−− B
↖ ↘↖

∅ −−−−−→ D.

Then (S,C,R) satisfies conditions (i) and (ii) of Corollary 6.3 where S 1 can be taken to be A, B, or C.
Hence, (S, C̃, R̃) can be made with an additional one of the out-flows {A→ ∅, B→ ∅,C → ∅,D→ ∅}.
Then, by Corollary 6.3, for any choice of rate constants the Markov model associated to the network
(S, C̃, R̃) is exponentially ergodic with mixing time bounded above by the logarithm of the initial
counts. 4

Finally, Corollary 6.3 can be generalized further by adding additional out-flows to (S,C,R) when
some unary complex does not satisfy the directed path condition. In the corollary below, Sp plays the
role of {S 2, . . . , S d} and Se plays the role of {S 1} in Corollary 6.3.

Corollary 6.4. Let (S,C,R) be a binary reaction network with S = {S 1, . . . , S d}. We assume the
following conditions.

1. For each binary complex y ∈ C, there is a directed path within the reaction graph beginning with
y and ending with either a unary complex (of the form S j) or the zero complex, ∅.

2. There exist Sp ⊆ S and a non-empty subset Se ⊆ S such that (i) S = Sp ∪ Se, and (ii) for each
S i ∈ Sp there is a directed path within the reaction graph such that it begins with S i and ends
with some S k ∈ Se. Furthermore the directed path consists only of unary complexes (i.e. the path
is of the form S i → S i1 → S i2 → · · · → S k).

Let C̃ = C ∪ {S i | S i ∈ Se} ∪ {∅} and R̃ = R ∪S∈Se {S → ∅} ∪S i∈I {∅ → S i}, where I ⊂ S is any subset
of the species. Let K = {κy→y′} be a choice of reaction rate constants. Let X(0) = x ∈ Zd

≥0 be in a
closed communication class. Then there is a stationary distribution π on that class. Moreover, there
exist C, η > 0 so that the Markov process X with intensity functions (2.3) associated to the reaction
network (S, C̃, R̃) satisfies

‖Pt(x, ·) − π(·)‖TV ≤ C(|x| + 1) ln(|x| + 2)e−ηt, for all t ≥ 0,

where neither C nor η depend upon x ∈ S. Therefore the mixing time of the model satisfies τεx =

O(ln(|x|)), as |x| → ∞.
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Suppose now that there is a w ∈ Rd
>0 for which w · (y′−y) = 0 for all y→ y′ ∈ R. Let X(0) = x ∈ Zd

≥0
be in a closed communication class, S. Then there is a stationary distribution π on that class. Moreover,
there exist C, η > 0 so that the Markov process X with intensity functions (2.3) associated to the reaction
network (S, C̃, R̃) satisfies

‖Pt(x, ·) − π(·)‖TV ≤ C(|x| + 1)e−ηt, for all t ≥ 0,

where neither C nor η depend upon x ∈ S. The mixing time in this case still satisfies τεx = O(ln(|x|)), as
|x| → ∞.

Proof. If Se , and Sp , ∅, the proof is exactly the same as the proof of Corollary 6.3 after replacement
of S 1 by S k ∈ Se. If Sp = ∅, then Sc

p = S. In this case the result still follows since (S, C̃, R̃) has the
same condition of Corollary 6.2. �

Example 6.4. We give an example for Corollary 6.4 with a version of enzyme-substrate kinetics.
Consider the reaction network described by the reaction graph below:

S 
 P← ∅ → E (6.1)
↓↑

S + E 
 S E 
 E + P.

We put Sp = {S } and Se = {P, E, S E}. Then (S, C̃, R̃) is made by adding reactions E → ∅ and P → ∅
to this reaction network (note that S E → ∅ is already in the network and so does not need to be added).
Similar to Figure 1, in Figure 2 we provide the results of a numerical simulation for the continuous-
time Markov chain X associated with (S, C̃, R̃) in which all rate constants are selected to be equal to
one. In this case, the stationary distribution of X is a product form of Poissons [6]. 4
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Figure 2. Plots for the model provided in Example 6.4 in (6.1). For each initial condition
X(0) = (m,m,m)>, the image on the left provides a plot of ‖Pt(x, ·)−π(·)‖TV over time for the
reaction network (6.1), where π represents the stationary distribution. The image on the right
provides a plot of the mixing times τεxm

with ε = 0.1 and xm = (m,m,m)>, as a function of m.
Note that the growth on the right appears to be logarithmic, which agrees with our theory.
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