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Abstract

We consider biochemical reaction chains and investigate ramdom
external fluctuations, as characterized by variance anfficeat of varia-
tion, propagate down the chains. We perform such a studyrdind@assump-
tion that the number of molecules is high enough so that thaber of the
concentrations of the system is well approximated by diffiéal equations.
We conclude that the variances and coefficients of variatidie fluxes will
decrease as one moves down the chain and, through an exaimphethat
there is no corresponding result for the variances of thenated species.
We also prove that the fluctuations of the fluxes as charaetkriby their
time averages decrease down reaction chains. The resaksned give
insight into how biochemical reaction systems are buffergainst external
perturbations solely by their underlying graphical stametand point out the
benefits of studying the out-of-equilibrium dynamics ofteyss.

1 Introduction

In [1] and [2] we began a study of biochemical reaction systambjected to
random, external forcing. The question we considered, amdirie with here,
is the following: if we add random, external forcing to thein of a biochem-
ical reaction system, how do those fluctuations (charasdrby their variance
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and coefficient of variation) propagate through the entygtesn? The broader
aims of this paper are to gain a better understanding of hewétwork topol-

ogy of biochemical reaction systems suppresses or othemllisrs the behavior
of fluctuations in reaction systems and to point out the benefistudying the

out-of-equilibrium dynamics of systems.

In [2] we studied systems under the two simplifying assuon#ithat the ki-
netics were all mass action and that each reaction involwetinty precisely one
substrate into another substrate. Therefore, in the telogy of Horn, Jackson,
and Feinberg, each complex consisted of a single specigs1]6 Thus, we al-
lowed reactions of the ford — B, but notA+ B — C'. These two assumptions
caused the differential equations governing the conceotiof the species to be
linear and so we referred to them as linear SSC (single speoiaplex) systems.
Considering linear SSC systems decreased some of the ¢athiificulties of
the analysis while still allowing us to probe how differemttwork structures af-
fect the propagation of fluctuations. Under these assumptie proved that the
variances of fluxes decrease down reaction chains and theatesaction systems
and feedback loops lower the variance of the flux out of reaathains. A natural
guestion is whether or not these results from [2] hold whemlx@ one or both of
the simplifying assumptions. The main purpose of this p&pty demonstrate a
biologically significant result from [2] that does hold whee drop both the SSC
and mass action assumptions: the variances and coeffiokevasiation of fluxes
decrease as one moves down a non-reversible reaction chain.

For an example of a reaction chain consider the followinglémical system:
a substratesS, enters the system at a constant rdte; 0. This substrate then
combines with an enzymé;, to form £S, which is then degraded to some product
substrateP” plus the original enzyme. Finally, the produetieaves the system. If
the concentration of the enzyme is taken to be so large asaediemed constant
and the reactions are non-reversible then the followinglyfaithfully models
our system:

I F1 F2 F3

— S — kS — P —,

(1)

whereFy, F; and F3 are functions that give the rates of the respective reagtion
Let s, es, andp be the concentrations of, £.S, and P, respectively. Then, if the
kinetic functionsF;, F», and F5 are functions of the reactant substrates only, the



differential equations governing the temporal evolutibthe concentrations are

$(t) = I — Fa(s(t))
es(t) = Fi(s(t)) — Fa(es(t)) (2)
p(t) = Fy(es(t)) — Fs(p(t)).

If the functionsF; are differentiable, monotone increasing, and satisfy)) <
I <lim, . F;(z), thenitis easily seen that, independent of initial codisi, the
system (2) will converge to the steady statecs, p) = (F, (1), F; ' (1), F3 ' (1)).
However, if the input to the system (1) is allowed to fluctuatéme, then each
concentration will fluctuate, and, hence, each fltx,will also fluctuate. If the
fluctuations are random, we can ask what the variance or ciegifiof variation
of each flux is with respect to that randomness, and how tHaterdt is the goal
of this paper to prove

Var(Fi(s(t))) > Var(Fy(es(t))) > Var(Fs5(p(t))) (3)
CV(Fi(s(t))) > CV(F(es(t)) > CV(Fs(p(t))), (4)

where Vat-) andC'V (-) represents variance and coefficient of variation, respec-
tively. (Notice that the inequalities are strict.)

The reaction chain given in (1) is an example of an SSC chatause each
node of the network graph consists of a single substrate.eheigl, a reaction
chain is any biochemical system of the following form:

I F1 F2 Fn—l FTL

— O — Oy — ... — (C, —,

(5)

wherel € R. is the constant input to the system, the complekésare linear
combinations of the substrates, afAd: RY; — R, are the reaction kinetics
(wherem;, is the number of distinct substrates composing compigxIn [2] we
showed that if the constant inpitis replaced by the fluctuating in time random
procesd + &(t,w), where{(t, w) is either white noise or a mean zero, finite vari-
ance, stationary stochastic process suchgttatv) > —1, and if the system (5)
is a linear SSC chain, then for alb> 1, Var(F;) > Var(F;,,), where the variance
is computed according to the unique stationary measure ichvthe distribution
of the species converges. In this paper, we prove that thigtrstill holds when
we drop the assumption that the kinetics are mass actionhanalssumption that
each complex consists of a single species. The main assumyotithe kinetics
will be that they are monotone increasing in each of theiredeent variables
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(so, for example, we may consider Michaelis-Menten kirgdti¢n dropping the
SSC assumption we will show that the result still holds whHendomplexes are
composed of multiple species so long as each species appgamecisely one
complex. Throughout, we will refer to systems for which cdexes can by com-
posed of multiple species yet each species appears in & siogiplex as MSC
(multiple species complexes) systems.

The goal of this paper is to prove that variances of fluxesezhby an external
stochastic input decrease down a non-reversible readtiain c\We will show that
if I is the average input to a reaction chain, then (once theraysés reached its
statistical equilibrium) the mean of each flux is also eqoal.t Therefore, say-
ing that the variances of the fluxes decrease down a readti@n ¢s equivalent
to saying that the coefficients of variation of the fluxes dase down a reaction
chain. That is, equation (3) is equivalent to equation (Hcd&ise of this equiva-
lence between the magnitudes of variances and the magsitiad®efficients of
variation, each result in this paper is stated in terms ofawae alone and it is
understood that each result is still valid if Varis replaced witlC'V (-).

Throughout, we allow external perturbations to be whitesagrocesses or
mean zero, finite variance, stationary stochastic proses§&®nsidering white
noise processes is useful because it allows one to make ubke &b Calculus
with which stronger results (i.e. fewer restrictions onridie functionsf;) can be
proven than if you solely consider arbitrary perturbatiohiso, if the input flux to
a reaction system is perturbed by white noise, then all dthees are perturbed
by mean zero, finite variance, stationary continuous pseEses Therefore, one
may construct continuous, stationary perturbations frohitevnoise processes
by allowing a pseudo-species to be perturbed by white naidecansidering the
output from the pseudo-species as the input to the reacgsiem of interest. In
doing so, one is allowed to use the stronger white noise teeasl opposed to
the stationary noise results. Thus, allowing both typesesfysbations is quite
natural. However, we point out that we do not feel the chofoexternal forcing
is critical because the broader aim of this paper is to sthdytt-of-equilibrium
dynamics of biochemical systems and both choices of petian achieve this
aim.

The layout of the paper is as follows. In Section 2 we cons&fe€ chains.
In Section 3 we consider MSC chains. Complementing the nesnlts are two
important examples. In Section 2, Example 2.3 is a nonlickain perturbed
by white noise for which the variance (and CV) of the specresdase down
the chain. Hence, there is no corresponding “decreasinguéition” result for
the species of reaction chains. In Section 3, Example 3.8dstrates that the
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assumption that each species is in precisely one complexés@ssary one. In
both examples we use a Monte Carlo simulation to arrive atonclusions. The
proofs of all the results in this paper are found in Appendix A

This paper is part of a larger research project in which thenrbelogical
goal is to understand how network topology affects how beneital systems re-
act to large-scale, random perturbations to their inputser@ are two distinct
approaches we take in trying to achieve this goal. In the fivetapply random
fluctuations toin silico representations of specific biological systems. We can
then identify reactions, substrates, or whole subsysthatsare buffered against
the fluctuations, i.e. are homeostatic. We can then takeyiters apart piece by
piece throughn silico experimentation to discover the regulatory mechanisnts tha
give rise to the homeostasis. In the second, we prove theoaibout how random
fluctuations propagate through relatively simple, but doatally relevant, sys-
tems. We are interested in how these systems magnify or asgpfluctuations as
this may give clues as to why these systems are structuré@aste. In this sec-
ond approach it is the out-of-equilibrium dynamics thatesly probed in order
to give information on the emergent properties of the sysfenis paper, like [1]
and [2], takes the second approach; for an example of thedast[19].

Due to the inherent randomness in the making and breakirfgeohical bonds,
biochemical reaction systems are, at their most fundarhé&vel, modeled as
jump Markov processes ([4][8][7][21][13]). However, if erscales up the vol-
ume and number of molecules in a system while keeping thalin@gncentrations
constant, then this intrinsic randomness becomes nelgligilthe scale of concen-
trations. One is then able to faithfully model the conceitre of the substrates
by a system of differential equations ([14]). As in [1] andi\\%& consider systems
in this scaling limit. Thus, the random external forcinghistpaper is on the scale
of concentrations (and not of individual molecules) anddbecentrations of the
species are modeled by differential equations and not layetes jump processes.
For a more detailed comparison between the randomnesssimpéaiper and the
inherent randomness of biochemical systems, see [2].

2 SSC chains with random perturbations

In this section we consider nonlinear SSC chains subjectedndom perturba-
tions.



2.1 The model

A non-reversible SSC chain with a constant input is a biodgbalmeaction system
with the following graphical structure:

I Fl F2 Fn—l Fn (6)
— X — X5 — ... — X, —,

where/ > 0 is the constant input to the systerd; are the species (and com-
plexes) of the system, anil : R, — R, are the reaction kinetics. If we let
{z;} denote the concentrations of the spedi&s}, then the temporal evolution
of z(t) is governed by the following differential equation:

jZ’l =1- F1($1)
.j?g = F1(1’1> — FQ(.TQ)
(7)

Ty = n—l(xn—l) - Fn(xn)
In the sequel we make the following standing assumptionb@functions?;.

Assumption 2.1.EachF; is a real valued”" function of[0, co) with the following
properties:

a) F;(0) = 0.
b) Forall z € R.q, F/(z) > 0.
c) lim Fi(z) > I.

r— 00

Note that condition c) guarantees that mass will not buildtgny point along
the chain so long as the input is kept at the constant valughis assumption is
also reasonable for systems for which the input is beingupeetd by a mean zero
random process and will be used to keep concentrations fsgapéng to infinity.

We will consider two different classes of random perturdyadiof the input.
The first will be white in time while the second will be almoatsly continuous in
time. Since the kineticg;;, are defined only on the positive portion of the real line,
it is important that any noise we consider as a perturbatidhd input will never
drive the concentrations of the species into the negativegooof the real line.
Hence we will impose restrictions on the perturbations teuea that the specie
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concentrations stay non-negative at all times. Becauseowsider two different
classes of perturbations of the input, we consider two iiffe mechanisms to
achieve this goal.

In the case of the white in time random perturbation, we mlyitthe noise
term,dB;, by a functionfs(-), that turns the noise off if; approaches zero. This
property ofd; combined with the dynamics governing the concentratiotk of
ensures that; remains non-negative for all time which, in turn, keeps #tleo
concentrations non-negative for all time. The conceraretif z; is now governed
by a stochastic differential equation, while the equatimnshe remaininge; stay
asin (7). Thatis,

dwy = (I — Fy(a1))dt + 005(2,)dB(t)

Ty = F1($1) - F2($2) (8)

jf’n = n—l(«rn—l) - Fn<xn)7

whereB(t) = B(t,w) is standard one dimensional Brownian motienc R,
and for some small > 0, §5(x) = 1 forall z > §, 65(0) = 0 andfs(z) is C> and
monotone increasing. Sindg(0) = 0;(0) = 0and/ > 0, z,(t) > 0forallt > 0
|f ol (0) > 0.

The second class of perturbations to the input consideretisnpaper are
mean zero, finite variance, stationary, random proce§ses;), that are continu-
ous in time at almost every moment of time. To guarantee tgatoncentrations
of the chemical substrates remain non-negative for all thre@nly consider per-
turbations such tha(¢,w) > —1I for all t andw (and so we no longer need the
functionds(-) used in the white in time setting). In order to keep the reacsys-
tem away from equilibrium, we make the added restriction tbaeach choice
of w, £(t,w) is non-constant on all time intervals larger than some fixaldies
a = a(w). We will typically write £(t) instead of (¢, w). The almost everywhere
continuity of£(t) allows the possibility of isolated jumps and allows us to ase
standard differential equation faf (in contrast to the Itd stochastic differential
equation used in (8)). In this case, the equations goverhi@dehavior of the



concentrations are
iy = I — Fi(x) + £(t)

Ty = F1(CU1) - F2($2) (9)

T = Fn1(znq) — Folzy).

To prove the existence of a stationary state we will furttssuane that the distri-
bution of the noise’s future is completely determined bypist. An example of
such a&(t) is a Markov processes whose future distribution depends amits
present value.

2.2 Decreasing variance for SSC chains

We are mainly interested in describing the system once itsb#tted into a sta-
tistical equilibrium and any behavior that is transientime has passed. Such
statistical steady states are characterized by a stagigpartion. A solution:*(t)

is stationary if for any collection of timels < t, < --- < t,, and anys the dis-
tribution of the vectofx*(t; + s), 2*(t2 + ), - - - , 2*(t, + 5)) is independent of

s. When the forcing is Brownian as in (8), the solution is a Markrocess and
the distribution ofz*(¢) at any timet is an invariant measure for the associated
Markov semigroup. An invariant measuye,is a measure on the state space of
the systemR", such that if the initial condition is chosen accordingit@hen
solutions at any time > 0 are also distributed gs. More precisely, if for all
measurablel C R", P(z(0) € A) = p(A) implies thatP(x(t) € A) = u(A) for
allt > 0, theny is invariant to the dynamics of the system. Therefore, when t
forcing is Brownian, a stationary solution exists. Whenftireing is a stationary
proces<(t) as in (9) more care must be taken to obtain a stationary saltdi
the dynamics as the solution need not be a Markov process.

We will concern ourselves with the existence and basic ptegssof stationary
solutions and invariant measures at the end of this sectiorst we state the
principal result of the article and give a few numerical ep#es to illustrate its
use. The following theorem is proved in Appendix A.2

Theorem 2.2 (Decreasing variance down a nonlinear SSC chginLetz*(¢) be
a stationary solution for the dynamics given in either equra(8) or (9). Then
forall1 <i<nandallt

Var (Fi(z}(t))) > Var (Fi1 (24 (1))) -
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We note that the variances of Theorem 2.2 are computed vsfrect to the
choice of randomness;, in B(t,w) or {(t,w). Thatis, Theorem 2.2 gives the
variance as an average over the choice of perturbationsidse8tion 2.3 we give
a similar result except the variance is computed as a timeageeover a single
path. In many natural settings (including those given ingkamples below), the
two notions are equivalent and, therefore, give the samuation about fluctua-
tions down reaction chains.

We now give three examples where the preceding theorem .hdids the
moment we will assume that the systems possess a statiaviatios to which
the statistics of the solutions convergetas> oco. At the end of the section we
will prove that the preceding assumption holds for any ahitondition.

Example 2.3 (Species variances need not decreas€onsider the following
SSC chain with Michaelis-Menten kinetics

10+095($1)dBt Fl(xl) FQ(ZL’Q)

? Xl X2 )

whereo = 1, § = .001, Fy(z1) = z1, Fy(x2) = 11-2&22 We will see in Theorem
2.6 that this system possesses a unique invariant measuhedio the statistics of
the trajectories converge. Using Matlab to perform a Morddd&simulation we

computed the means, variances, and coefficients of variafiaghe species and

fluxes to be the following:

v | m | Fi(x) | Fa(xo)
mean | 10 | 5.18 10 10
variance| .5 | 1.19 5 124

CcVv 07] .21 | .109 .035

As guaranteed by Theorem 2.2, the fluctuations of the fluxesedse down the
chain. However, no matter the measure we use (variance grt@#/jluctuations
of x, are always greater than thosexgf Therefore, there is no counterpart to
Theorem 2.2 pertaining to the species of an SSC reaction.chai

To understand why the fluctuationsof are higher than those af;, consider
the plot of F5(x) = 12z /(1 + «) in Figure 2.1. The horizontal lines at = 9, 10,
and 11 represent possible fluxes into speci€s, while the vertical lines show
what the equilibrium value of, would be corresponding to that input. While the
perturbed system will never settle to an equilibrium, theekics will always be
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Michaelis—Menton Kinetics

12

10

B _ 1225
(14z2)

Figure 2.1: The horizontal lines represent possible inpoitspeciesX, from
speciesX; and the vertical lines represent the value:pthat would give an equi-
librium to the system for a given input. We therefore see thigior fluctuations
in F1(z,) = x; can correspond with large fluctuationsiig

driving the concentration of, towards the solution f;z((’?) = x4 (t). Therefore,
minor fluctuations in the input to the speci&s give rise to large fluctuations in

Z2.

Example 2.4 (Continuous input and unbounded kinetics).Consider the fol-
lowing SSC chain

10+ £(2) Fy(x) Fy(x3)

? Xl X2 )

where—10 < £(t) is a modified Ornstein-Uhlenbeck process defined in Appendix
B, Fi(z1) = 2} and Fy(xy) = x3/(1 + ). Because botlt; (z) and Fy(x) are
unbounded asg — oo, we will see in Theorem 2.7 that the system possesses
a unique stationary solution to which the statistics of tfagettories converge.
Using Matlab to perform a Monte Carlo simulation we computedmeans, vari-
ances, and coefficient of variation of the fluxes to be thewalhg:

10+&(t) | Fi(z) | Fo(xs)
mean 10 10 10
variance 8 6.8 3.9
CVv 0.28 .26 .20
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The variances and coefficients of variation of the fluxesese down the chain,
as guaranteed by Theorem 2.2.

Example 2.5 (Continuous input and Michaelis-Menten kinetts). Consider the
following SSC chain

44 £(t) Fy(21) Fy(x2)

Xl X2 )

where—4 < £(t) < 4 is a modified Ornstein-Uhlenbeck process defined in Ap-
pendix B, F(x;) = 11z /(1 + x1), and Fy(x2) = 10x9/(1 + x2). We will see

in Theorem 2.8 that this system possesses a unique statisolation to which
the statistics of the trajectories converge. Using Mattaperform a Monte Carlo
simulation we computed the means, variances, and coeffiofarariation of the
fluxes to be the following:

44€(t) | Fi(m) | Fa(xo)
mean 4 4 4
variance| 4.2 3.3 2.9
CcVv 51 46 43

The variances and coefficients of variation of the fluxesel®se down the chain,
as guaranteed by Theorem 2.2.

We now show the random dynamics given in equation (8) possessnique
invariant measure. This invariant measure generates iarsigy solutionz*(¢)
when extended to paths fromoo to co. Similarly, under some additional as-
sumptions or¢ and theF;’s, we show that the dynamics given in equation (9)
possesses a unique stationary solutidft) (the concept of an invariant measure
does not directly make sense for (9) since the dynamics areacessarily Marko-
vian, see Appendix A.1). In addition, in both settings wewsgltloat the statistics
of the trajectories converge to those of the stationarytewlw*(¢) ast — oo. In
other words, for any:(0) and measurabld c R",

P(z(t) € A) — P(z*(t) € A) = P(2"(0) € A), ast — oo. (10)

This means that the long time statistics of the solutionsirdependent of the
initial condition and the result on the decrease of fluctustiis applicable on long
time intervals. Of course in the setting of (8),(¢) is distributed as the invariant
measureu so P(z*(0) € A) = u(A). In the setting of (9)x*(¢, &) should be
viewed as a function of the entire past of the noise.
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The next three results apply, respectively, in the threequimg examples
to ensure the existence of an unique stationary solutionhose statistics the
statistics of arbitrary trajectories converge in time. Tir& result covers the case
of white in time forcing while the second two apply to statoy forcing. The
proofs of all three are contained in Appendix A.3.

Theorem 2.6 (Ergodicity of the SSC chain with white noise).Equation(8)
possesses a unique invariant measureon R™. Furthermore, the distribution of
any solution to equatio(B) converges tq ast — oo.

To prove the existence of a stationary solution to equat®nwe need to
assume that the distribution of the future of the noge), is determined by its
past (such as for Markov processes). This is made precispperdix A.1. We
also need additional assumptions on the functibpnsWe give two versions of
these assumptions.

Theorem 2.7. Let ¢ be as in Appendix A.1. Under the additional assumption
that the rate functiong; are unbounded as — oo, equation(9) possesses a
unique stationary solution;*(¢). Furthermore, any solutiom(¢) to equation(9)
converges ta:*(t) ast — oo.

In the event that any of thé; are bounded, we need a bound on the size of
£(t).
Theorem 2.8.Let¢ be as in Appendix A.1. Defin€ = min{ lim F;(z) — I}.
Under the additional assumption thatl < (1) < M < K, for all t and some

M < K, equation(9) possesses a unique stationary solutioti). Furthermore,
any solutionz(¢) to equation(9), converges ta*(t) ast — oo.

In the white in time setting, the system is in fact ergodic hedce by Birkhoff’s
ergodic theorem we know that for almost every realizati@ttme average of any
statistic converges to the value of the statistic in theniavea measure. Combining
this with the strong mixing properties of such a system weshhet

t
lim 5 [ (Ffai(s) = 1)%ds = Var (F(z (1)
for almost every realization of the Brownian forcing and rgviaitial condition
xg. For this to hold in the setting of (9), we need to assume intimhdthat the
stationary measure @nis ergodic. Even without this assumption, the next section
shows that one can say something in general. This undetimefact that the
decrease of variance is really a pathwise phenomenon dbe ttyhamics.
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2.3 Pathwise perturbations

The variance described in the previous sub-section is ctedputh respect to the
probability measure of the perturbations. More precistly,is the realization of

the perturbation theWar(F;(z(t,w))) = E, (F(x;(t,w)) — I)?, i.e. is an average
over the realizations of the noise. Another natural way tratterize how pertur-
bations propagate down chains is to consider the time agsm@afgpaths. Consider
again the dynamics given by equation (9), except now the astyumptions on
&(t) are pathwise assumptions:

) lim — /5 )ds =0 and 4i.) limsup — /5 )2ds < oo. (12)

t—»oo t—o0

That is, we now assume that the time averagée foy converges to zero and that
the time average of the square is bounded above. The folipthi@orem states
that the pathwise variances of the fluxes do not increase deaation chains and
is proved in Appendix A.4.

Theorem 2.9.Consider equatioif9) where( (t) satisfieq11). Then for alli > 1,
the following hold:

t

1. lim E Fi(z;(s))ds = 1.
0

t—oo

2. lim inf G /Otf(s)zds— %/Ot(Fz-(xi(s)) — I)st) >0

3t (5 [ (B () = 1ds = 1 [ (Bealon(s) - ) 20

t—o0

3 MSC chains with random perturbations

We now consider MSC chains with random perturbations. Weagain allow
perturbations that are white in time or that are stationasan zero, finite vari-
ance and continuous for almost eveégnd that satisfy the conditions of Appendix
A.1l. Consider areaction chain, (5), where each comglex;onsists ofn; unique
species and no species is contained in more than one coniies, ifx(¢) is the
vector representing the species concentrations attiienz(t) € R™++mn,
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Let Xf represent thgth species in complexanduv;; be the multiplicity of species
X/ in Complexi. For example, if the reaction chain is

— X{ +2X7 — 3X, —,

then’UH = 1,U12 = 2, and’U21 = 3.
If F; represents the reaction rate from compléxto complexC;,; we have
that,
Fi(z(t)) = Fy(xy,...,z") :R™ — R.

We assume each; satisfies Assumption 3.1 which is analogous to Assumption
2.1.

Assumption 3.1. F; is a real valuedC"! function of|[0, co)™ with the following
properties:

a) If 27 = 0foranyl < j < my, thenF;(z) = 0.

b) If1 <j <m;andx € RT}

0y thenﬁgﬂ(x) > 0.

¢) IM > Osuchthatife! > M for all species in theéth complex, thed (z) > 1.

As in the SSC case, if we want to add a random perturbatioretantbut flux
of the system, we must only consider perturbations thatrveder drive concen-
trations into the negative portion of the real line. We harttis issue in a similar
manner as in the SSC case:

If the perturbation is white in time, we multiply the pertation by a function
which will go to zero if the concentration of one of the speaiethe first complex
goes to zero. Therefore, 18t(z], ..., z") : R™ — R, satisfy the following
three properties for some smalt> 0.

1. 65(z) = 1 when each] > 4.
2. 05(z) = 0if 2] = 0foranyl < j <m;.
3. 65 is C> and is monotone increasing in each of the variables. ., z".

If we add a white noise perturbation multiplied & x) to the input of the system,
then the dynamics are now governed by the stochastic diffi@teequation

dx(t) = f(x(t))dt + 00s5(x)dB(t)u, (12)
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whereu = [vi1, V19, - - ., Vim0, ..., 0T, 0 € Ry, B(t) is standard one dimen-
sional Brownian motion, and{(z) = v;(I — Fy(x)) for eachl < i < my,
fQZ = Ugi(Fl(.T) — Fg(l’)), for eachl <t<mMmsg,..., f:l = Um(Fn_l(ﬂf) — Fn(ﬂf))
for eachl < i <m,,.

If the perturbation is a mean zero, finite variance, statippaocess¢ (¢, w),
that for eachw is continuous for almost all and that satisfies the conditions of
Appendix A.1, then in order to keep the concentrations negative, we again
assume that(t,w) > —1I for all t andw. In this case the dynamics of the system
are governed by the differential equation

2(t) = f(x(t)) + &), (13)

wheref andu are as above.
The following four theorems are analogous to those in the &€ and their
proofs can be found in Appendix A.5.

Theorem 3.2 (Decreasing variance down a nonlinear MSC chajn Let z*(t)
be a stationary solution for the dynamics given by eitheragign (12) or (13).
Then forall: > 1 andt > 0

Var (Fi(z"(t))) > Var (Fiy (2"(t))) -

Theorem 3.3 (Ergodicity of the MSC chain with white noise).Equation(12)
possesses a unique invariant measureon R™. Furthermore, the distribution of
any solution to equatio(B) converges tq ast — oo.

Theorem 3.4. Let ¢ be as in Appendix A.1. Under the additional assumption
that the rate functiong; are unbounded as — oo, equation(13) possesses a
unique stationary solution;*(¢). Furthermore, any solution(t) to equation(13)
converges ta:*(t) ast — co.

Theorem 3.5.Let¢ be as in Appendix A.1. Defin€ = min{ lim F;(z) — I}.

Under the additional assumption that/ < £(¢) < M < K, for all ¢t and some
M < K, equation(13) possesses a unique stationary solutiof(t). Further-
more, any solution:(¢) to equation(13) converges ta:*(¢) ast — oc.

Example 3.6 (Sum of Two Species with Mass Action Kinetics)Consider the
following MSC chain with mass action kinetics

I(t) F1 F2 F3
— Y — X1+X2 e X3+X4 e

Y
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Wherej(t) =10+ 295(y)dBt (Wlth 0 = 001), Fl(y) =1, Fg(l’l,{lj’g) = T1T2,
Fs(z3,4) = x3x4. Using Matlab to perform a Monte Carlo simulation we com-
puted the means, variances, and coefficient of variatiomeffluxes to be the
following:

Fl(y) F2($1,$2) F3(933,$4)
mean 10 10 10
variance| 2 1.73 1.62
Cv 0.14 131 127

We note that the variances and coefficients of variation®fltixes decrease down
the chain, as guaranteed by Theorem 3.2.

Example 3.7 (Sum of Two Species with Michaelis-Menten Kinéts). Consider
the following MSC chain with Michaelis-Menten Kinetics

I(t) F1 F2 F3
— Y — X1+ Xy — X3+ Xy )

—

wherel(t) andF; are as in Example 3.6, af@(x1, x2) = 14a12o/[(1 + 1) (1 +
xa)], F3(x3,4) = 1dxszs/[(1 + 23)(1 + 24)]. Using Matlab to perform a Monte
Carlo simulation we computed the means, variances, andiaeat of variation
of the fluxes to be the following:

Fi(y) | Foxy,220) | F(xs, x4)
mean 10 10 10
variance| 2 72 .49
Cv 14 .085 .07

As guaranteed by Theorem 3.2 the variances and coefficiénariation of the
fluxes decrease down the chain.

Example 3.8 (Species can not be in more than one complexjonsider the
following MSC chain subjected to white noise perturbatitmravhich the species
X, appears in two complexes (and so this system is not coverétidayrem 3.2)

() F 5 Fy

— Xi+Xo — Xz — Xi+Xy —,

Where](t) = 10+¢95($1, l’g)dB(t) (W|th 0= 001), Fl(l’l,ﬂfg) = 27129, FQ(JIg) =
x3, and F3(xq, z4) = bxyzy. We performed a Monte Carlo simulation using Mat-
lab to compute:
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Fl(l'la 932) F2($3) F3(931,$4)
mean 10 10 10
variance 4.16 45 1.71
CVv .204 .067 131

Note that Va(Fs(z)) > Var(Fy(x)) andCV (Fs(z)) > CV(Fy(x)). Therefore,
the assumption in Theorem 3.2 that each species is in phecee complex is
necessary.

4 Discussion

We have proven under a variety of different contexts thahéf input to a non-
reversible biochemical reaction chain is perturbed by @d@amprocess, then the
variances and coefficients of variation of the fluxes will @ase as one moves
down the chain. The assumptions made on the different choicperturbations
and on the properties of the rate functions were varied, &plicély spelled out.
Further, much care was taken to state precisely what is ngdfitictuations de-
crease down reaction chains.” Due to this (necessary) metieal detail, how-
ever, it is easy for the over-riding point of the paper to b&:la@onsidering the
out-of-equilibrium dynamics of a biochemical system canabeimportant tool
for understanding the dynamical properties of that system.

A comparison of the results of this paper to metabolic cdrminalysis (MCA)
([12][10]) sheds light on the importance of considering-ofsequilibrium dy-
namics. The control coefficient for the flux out of a reactibaio, F', in terms of
the input,/, is

p OF I

I — W ' Fa
where the values are computed at equilibrium. However, alibgum, /' = 1.
Therefore, independent of the choice of reaction kinetick®length of the chain,
CF = 1. This implies that changes in the output of a chain corregmbrectly
with changes to the input. However, by studying the outepitbrium dynamics,
we have shown in this paper that the fluctuations in a reactiam will actually
decreaseas one moves down a reaction chain and changes to the output of
chain do not correspond directly with changes to the inpiie differing results
are biologically significant since it is tempting to spectelthat this decrease in
fluctuations (and, hence, increase in stability) is oneae#sng reaction chains
may be evolutionarily advantageous in cellular systems.
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While all of the technical details of the proofs have beeergated to the ap-
pendices, we would like to point out that to prove the maimultesof this paper
(with the exception of Theorem 2.9) two things must be shdlythe existence of
a unigue solution whose statistics are stationary for timadyics and 2) variances
of a stationary solution decrease down reaction chains.ic@ilp, a stationary
solution can be proved to exist so long as the perturbatmmtiset system do not
drive any solutions to infinity. Stability properties of then-perturbed system
can then be used to show uniqueness of the stationary suldtle fact that the
variances decrease down reaction chains follows from atanidequalities and
the use of Lyapunov type functions. Intuitively, howevée wariances decrease
down reaction chains because the dynamics are always dptie output flux
from a complex towards the input flux. That is, the dynamiescamstantly mov-
ing the system towards a shifting equilibrium. There is, be&r, a natural time
delay in its ability to do so. Therefore the output will alveaye lagging behind
the input, which leads to the decrease in variance.

There is still much work to be done in studying biochemicakten systems
subjected to external perturbations. A natural extensiothis work and that
of [2] would be to attempt to analyze reaction systems withremmmplicated
geometries and more complicated kinetics (like productbition). The main
technical issues encountered in such a study would be: 1@xitiemely weak
stability of many such systems ([5][6]) would make provifng texistence of a
stationary solution difficult and 2) it will be difficult to @date the variances of
particular fluxes or specie concentrations within a conapéid system. While
both of these problems are formidable in a theoretical stuaty as in this paper,
they become trivial in am silico study ([19]).
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A Precise definition of the noise& and the proofs

A.1 Assumptions on the nois€ (¢) needed for existence

In addition to the standing assumptions th@i is stationary with mean zero and
finite variance, to prove the existence of a stationary soiufor (9), we need

to assume that the distribution 6ft) is determined entirely by the past &fon

any interval of time(—oo, s] with s < ¢. Intuitively, we mean that given the
value of&(s) for s € (—oo,t] the distribution ont, 7] is uniquely determined

for anyT > t. This must be done in a way such that if one first adds a segment
[t,T — r] and thenT' — r, T, the resulting distribution of, 7] is the same as

if one had added the segmént7’] in one step. For a discussion of some of the
issues involved if one does not make such an assumption9kard subsequent
works by the author.

Let C,.((—o0, 0], R) denote the space of almost every where continuous func-
tions, f, endowed with the normup | f(s)|e~**l for somea > 0. Let P, be a
Markov semigroup ot ((—oo, 0], R) which is Feller, has an invariant measure
M, and such that foM-almost everyy, € C,.((—o0,0],R), P:(vo, - ) iS con-
centrated on elements € C,.((—o0, 0], R) with y;(s) = (s + t) for s < —t.

If v, t > 0, is a realization of the Markov chain generated withwith ~, dis-
tributed asM, we define(s) = (s — t) for s < t. This is well defined since
our assumptions oR; makevy,(r — s) = y(r — t) for r < min(s, t).

The dynamics of such & can be understood as follows. Given an initial
history from—oo to 0, one adds on a segment of lengtinesulting in a trajectory
from —oo to ¢. After shifting this trajectory back by-¢, one again obtains a
trajectory from—oo to 0. The distribution of this new trajectory fromoo to 0
is given byP,. The conditions above simply insure that the trajectorynfreco
to —t coincide with the initial trajectory from-oo to zero. If¢(t) is a Markov
process, then it can be constructed as above and hence iamplexof the type
of noise we allow.

A.2 Proof of principal result on variances

Proof of Theorem 2.2We consider the dynamics given by equation (8). The
proof when the dynamics is given by equation (9) is identical
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Definingé&, (t) = Fi(xj(t)) — I, the equations governing andz} are

dx] = (I — Fy(27))dt + 00s5(x7)dB(t) (14)
iy = Fi(xy) — Fo(x3) =1 — Fo(73) + & (15)

We claim that for any, EF (z}(t)) = EFy(23(t)) = 1. Integrating (14), taking
expected values, using that the distributioncoft) is stationary and noting that
o [, 05(x7(s))dB, is anL*~martingale gives

Exz}(t) = Ex7(0) 4+ (I — EFy(27(t))) .

By the stationarity of the systerfiz}(¢t) = Exz;(0), soE (Fy(zi(t)) —I) = 0 as
claimed. A similar argument which usEg (z5(¢)) = I (and, henceg¢, (t) = 0)
shows thatE F»(x5(t)) = 1. Therefore, in order to show that \(d# (z3(¢))) <
Var(Fy(z%(t))), we needE (Fy(x3(t)) — I)* < K& (t)2.

Let Gy (z) =2 [, (F2(y) — I)dy. Then,

d

ZGi(a3(1) = Gy ()50
= 2By (w5(t)) = DI = Fa(a3(t)) +&(1)) (16)

= —2(Fy(x3(t)) — 1) + 2(Fa(x3(t)) — DE(R).

Pick¢ > 0 arbitrarily. Integrating (16) up to timéand taking expected values
gives

EGl(I‘Q(E)) — EGl(I‘Q(O)) = — 2/ E(FQ(ZL'Q(S)) — ])2d8
’ (17)

+2 [ B((Flna(s) = Dér(s)) s

Using thatz3(t) is stationary, differentiation of (17) together with thequality
2ab < a?® + 1? gives

0= —2E(Fy(25()) — 1) + 2K [(Fa(a5(F) — D& ()]

< “E(Fy(a3(D) - I + E&, (7). (18)

We claim, however, that the inequality in (18) is strict. Eesvhy, we suppose,
in order to find a contradiction, thak [(F(z3(1)) — )& ()] = E(Fa(x5(t)) —
I)? + E& ()2 Then Fy(x5(f)) — I = & (%) with probability one. However, this
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implies Fy(z35(t)) = Fi(x3(t)) with probability one. Becausewas arbitrary,
we conclude that with probability ong,(z3(t)) = Fi(zj(t)) for all ¢t in some
countably dense subsetkf However, by the continuity of the functions involved,
this implies that with probability oné,(z5(t)) = Fi(23(t)) for all ¢ € R. Thus,
#3(t) = 0 for all time andz%(t) is a constant. Butfy(x3(t)) = Fi(zf(t)) and
sozj(t) is also a constant. However, for any> 0, P{x(s) = const : s €
[0,t]} = 0 # 1. Thus, the inequality in (18) is strict, which was the desiresult
of the Theorem. Therefore, the result is shown for the fiegp & the chain. To
complete the proof, one simply repeats the argument dowathia. O

A.3 Existence and uniqueness of stationary solutions and 4in
variant measures

The proofs of Theorems 2.6, 2.7, and 2.8 have the same osatatture. We use
the assumptions over the dynamics to obtain a uniform in tioend on some
statistic of the concentration vector which can be used ¢wgthat a sequence
of time averages is tight. By extracting a convergent sujusece we can prove
the existence of at least one invariant measure for the vimitiene setting. For
the stationary forcing, we must work on the space to trajetcstretching back
to negative infinity and prove the existence of a stationaggasure on that space.
We then prove that the invariant measure or stationaryisolig unique and that
the statistics of any solution converge to it under the dyinamf the system.

To prove the needed tightness for Theorem 2.6, we make ube ébitowing
Lyapunov function:

Z @-)] : (19)

where theV;’s are positive numbers yet to be determined andzthare defined
as the solution ta¥;(z;) = I (that is, they are the equilibrium values of the
unperturbed problem). As an example, for a chain with 2 we have

V(r) = 2oor =0+ 2 [l —22) + (o2 — )

We begin by proving a fact that, while technical, is the créithe proof of Theo-
rem 2.6.
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Lemma A.1l. Let A be the generator of the SDES8). Then there are positive
numbersiy, Vs, ..., V, and positive numbers k such that ifi/(x) is defined by
(19)then AV (z) < ¢ — k|z|.

Proof. For allk < n:

ov 0 -V
= o 2

Ony  Om, <= 2

Zm—xn] 3y,

j=1 i=k

1=1

Let F, = I. Using equation (20), it can be shown that

a—V(Fk—l —Fo) =) (¢ - 1) ( _ Vi(l — E)) :

p Oxy, ‘=
Therefore,
AV (z) = %&%(:51)288—;‘/( )+ ]; %(Fk_l oy
! <o—295<x1>2 im) +3 - 5) (Z Vi F»)
i=1 j=1 i=j
= <o—295<x1>2 > w) £ 0)
g g

where the last equality is a definition. We now chooseltlie recursively. Let
V, = 1. Becauselim F,,(z) > I, s, is bounded by:

Sp(7) = (2 — Zp) (I — Fu(xn)) < ¢p — knTn,
wherec,, andk,, are some positive constants. Then, is given by
$n1(7) = (Tp1 — Tp1) (Vor(I = Foa(zn1)) + (I — Fu(zn))) -
F.(xz,) >0,s0ifz,_; > z,_1, then
Sn_1(x) < (vp1 —Tpo1) Vaa(I — Fq(xn1)) + 1)

We may therefore choosg,_; to be large enough so that there are positive con-
stantsc,,_; andk,,_; such that

Sn—l(x) < Cp—1— kn—lxn—L
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Continuing up the chain, we considerfor j < n. Whenz; > z; we have

sj(z) = (z; — 7;) (Vj(f — Fi(z;))+ Y Vil = E-))

< ()~ %) (w—ﬂ-(xmu 3 m-) .

SinceV,, ..., V, have already been defined, we may chddsso large that there
are positive constants andk; such that

S < Cj — ]{Ijﬂfj.
Setting
1 n n
NS
i=1 i=1

we now have that for some
AV (z) <c— ka < c— k||,
=1
which was the desired result. O

Proof of Theorem 2.6The proof has two parts. First, we will use Lemma A.1
and Prohorov’s theorem ([3], pg. 59) to show that there sxsheasure which is
invariant to the stochastic flow generated by equation (& Wi then prove that
this invariant measure is unique and that all distributiomsverge to it under the
flow of the SDE (8).

Part |

Let V(z) be defined by (19) wher®,, V4, ..., V,, are given by Lemma A.1.
Then, ifk, ¢ > 0 are the constants given in the conclusion of Lemma A.1,

AV (z) = AV (2)dt + dM(t) < (c — k|z|) dt + dM(t),

whereM (t) is someL? - martingale. Integrating gives

V(x(t)) < V(2(0)) +ct — k:/o l2(s)|ds + M(t) — M(0),
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wherez(0) is some fixed value. Rearranging terms, taking expectedc:sand
using the fact that M (¢) = EM (0) then yields,

I ¢ V(z(0))
;/0 E|x(s)|ds§z+ o

Thus for anyR > 0 Chebychev’s inequality gives

1 cl  V(z(0)1

2/0 P{la(s)| > RYds < £+ 02 (21)

where, again, the initial condition(0) is fixed. The right side of equation (21)
converges to zero uniformly ih > 1 asR — oo. Therefore, the sequence of
measures ofR defined by

v (A) = L /O " Pla(s) € A}ds,

tn

wheret, — oo asn — oo andA C R”, is tight ([3], pg. 59). By Prohorov’s
theorem,y,, is relatively compact and so there exists a subsequepceand a
measureu, such thaty,, — p, where the convergence is weak convergence.
Thus, forallA C R

1(A) = Tim —— /0 " pla(s) € A}ds,

k—oo tnk

ForA c R", let¢r(A) = {x(T) : z(0) € A}. To show thaiu is invariant to
the flow of equation (8) we need to demonstrate that fof'att 0 and A C R,

p(@7)(A) = p(A), wherepu(¢')(A) = u(z = ¢r(x) € A). Note that, by
definition, u(x : ¢r(z) € A) = limg oo 7~ [ P{a(s + T) € A}ds. Using a
change of variable, we then make the following computata@rahy7’ > 0 and
ACR:

W(@)(A) = lim —— /0 " Pla(s +T) € A}ds

1 t”k 1 tnk—‘rT
= lim —/ P{xz(s) € A}ds + lim —/ P{z(s) € A}ds
0 ¢

nk k—oo0 Nk ny

~ lim - / " Pla(s) € Ayds

k—oo t”k
1 tnk+T T
~ p(A) + lim / Pla(s) € Ayds — / Plas) € Ads| .
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However,

< limg:(],

k—o0 tnk

/:“T Pla(s) € A}ds — /0 " Plas) € Alds

k

lim — [
k—oo t

and sou(¢;')(A) = u(A). Thus,u is invariant under the stochastic flow gener-
ated by (8).

Part Il

The proof that the invariant measure is unique is not corafylettraightfor-
ward. The noise enters only one species, hence the diffusiant uniformly
elliptic (so arguments such as in [15] do not suffice). Theopme now sketch
follows a rather standard line of argument. We refer theeetwl[16] [20] [17] for
the missing details. The proof has three elements. Firgtsbows that the gen-
erator of the diffusion satisfies Hormander’s “sum of sg@satheorem and hence
is hypoelliptic. This ensures that the Markov transitionsigy p,(z, y) is smooth
in z andy and hence is a Strong Feller process. This gives the locabtimg
needed to ensure that the invariant measure found abovéjseuriThe structure
of (8) and the fact that thé! do not vanish ensures that the span of the needed
Lie brackets is of full dimension. Hence Hormander's tle@oholds.

Secondly, we need to provide the global information whickueas open set
irreducibility (the fact that processes starting from eliéint initial points have
nonzero probability of entering a small neighborhood ofheather). The Lya-
punov function given by (19) shows that the processes reétumbounded ball
B about the origin eventually. Since there is a globally attra fix point, if the
noise is small for long enough all of the points®ivill enter an arbitrarily small
neighborhood of the fixed point.

Finally, with the above facts in hand, the uniqueness andeargence result
follows from standard arguments (see [18] [20] [16] [22]).

0]

Proof of Theorem 2.7As in the proof of Theorem 2.6, the proof is split into two
parts. In the first we prove the existence of a stationarytemlu:*(¢) for the
dynamics (9). In the second we show that the(if) andy(¢) are solutions driven
by the same noise, theit) — x(¢) pathwise. Hence, we conclude there can only
be one stationary solution since any two would converge ¢b ether over time.
Part |

Unlike the previous example, the procesg) alone is not a Markov process.
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However, if we include the entire history then the system does become Marko-
vian. More precisely, from the assumptions in section A.lkwew that{(s) =
(s — t) for s < t where~, is a Feller Markov process dfi,.((—oo, 0], R) with
semi-groupP; and with~, distributed as the invariant measuté. Then the pair
(z(t),~:) is a Markov process on the expanded state sgaceC,.((—oco, 0], R).

Let P, denote the Markov transition semi-group of this systemsahdndr, the
projection onto ther and~ coordinate respectively. Since we stgrtfrom an
invariant measure for its dynamics, we know that the stesisif v; are constant
in time equal toM for all ¢ and hence is tight.

Let 2 be an arbitrary initial condition far(¢) Defining the measure

Qu(-) = %/Ot/ﬁs(x(o),% M (dv)ds

we need only show thap, " is tight to conclude tha®; is tight sinceQ,m ' =
M is independent fot. We will do this coordinate by coordinate. Consider the
equation governing; (¢):

21(t) =1 — Fi(z(t) + &(1). (22)
Integrating (22) gives

x1(t) = z(0) + It — /0 Fi(z1(s))ds + /0 £(s)ds (23)
< .TJ(O) + It — /0 Fl(xl(s))l{‘x(s)b}g}ds + /0 §(S)d8

t t
S {L'(O) + It — Fl(R) / 1{|m1(s)\>R}dS + / S(s)ds
0 0

Taking expected values and rearranging terms gives

2/0 Pl (3)] > R}ds € o+ e (24)

Note that rearranging equation (23) and taking expectadegajives us the addi-

tional bound
1

. /OtEFl(xl(s))ds <1+

Continuing down the chain we considex(¢):

To(t) = Fi(z1(t)) — Fa(za(1)).

El’l (0)
; .

(25)
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Integrating gives

xo(t) = x2(0) —i—/() Fl(xl(s))ds—/o Fy(xo(s))ds (26)
< x2(0) +/0 F1($1(3))d5 - FQ(R)/@ 1{\x2(s)|>R}d8

Rearranging terms as before, taking expected values ang eguation (25) gives

1/t I Ez,(0)  Ew(0)
?/0 Plleals)l > Bids < s 75 () T thm)

Further, rearranging equation (26) and using equationdR®s

t * t

1/{: EFy(wa(s))ds < I +

t

We may continue down the chain in a similar manner and coedldt there are
positive constants;, ¢, . . ., ¢, such that for alt > 1

Qs bl > BY) = 1 / Plsuplei(s)] > R}ds 27)

<Z%/O P{|z(s)

Because eacli; is monotone and unbounded the right side of inequality (27)
above converges to zero uniformlyfims R — oo. Therefore, just as in the proof
of Theorem 2.6, we may invoke Prohorov’s Theorem to guaeatiie existence
of a measure onR™ x C,.((—o0, 0], R) that is invariant to the dynamics induced
by P,. By Kolmogormov’s extension theorem we can use this meastdefine a
measure on pairs of noigeand solution trajectories starting at—oc and contin-
uing tooo. The projection of this measure onto the solution coordimpatbduces
a stationary solution for the(¢) dynamics. One should really view this stationary
solutionz* along with its noise trajectory which was constructed along with it.
Part Il

Let z*(t) = x*(¢,&) be the stationary solution and matching noise trajectory
found above. Ley(t) be the solution starting from an arbitrary initial conditio
y(0) using the same noiggt).

Considerz;(t) andy, (t). If 7(0) = y1(0), thenzi(t) =
uniqueness of solutions. Suppose thg) > v, (0) (if 27(0)

(t) for all time by
< y1(0) there is a
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symmetric argument). Then;(t) > y(¢) for all time. Differentiatingz; () —
yi(t) gives

Defining

we have that

() — 1 (1) = (25(0) — g2 (0))e~ o ),

By the uniform bound given in equation (27), we know that bottt) andy; (¢)
spend a positive fraction of time in a compact set on whittit) > d; > 0
for somed; > 0 (since H; is an approximation to the derivative 6f). Thus,
xi(t) —y(t) — 0, ast — oo.

We next consider:s(t) andy(t). Suppose that;(0) < y»(0). Let» be the
first timex3(t) = y2(¢). Then, up until timer,,

%(yz(t) —25(t)) = —(Fa(21) — Fiyn)) — (Fa(ya(t)) — Fa(5(1))).

But, I‘T > U1 SO(Fl(ZL'){) — Fl(yl)) > 0 and

d

7 W2(t) = 23(8)) < —(F2(1(t)) — Fo(z3(?)))
_ e F2(2(8) — Fa(a3(t)
= (y2 (t) 2(t)) valt) — 75(0) .

Defining Hy(t) as we didH,(t) we may conclude from the above that up until
timer,

ya(t) — 23() < (y2(0) — 23(0))e™ o Ha()dr,

Therefore, ifr, = 0o, then, as in the previous case, we may use the above equation
and the bound (27) to conclude tha}(t) —y2(t)| — 0, which is the desired result.
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If 7, is finite, then for all time aftery, 25(t) > y2(t). To see this note that if
x5(t) = ya(t), then

 3t) — l0) = (o) — Filan) > 0

where the inequality follows sincef > y,. Thus, we consider times pastand
redefine our initial condition to be the valuegr,) andy (7).
We note:

i(fﬁ%(t) —2(t)) = = (Fa(a3) — Fa(y2)) + Fi(21) — Fi(y)

dt
Fy(zh) — F
_ —(JI; i y2> 2( 22 2(y2)
Ty — Y2

(29)

+ Fi(27) — Fi(y).

To gain control over the term; (z7) — F1(y1) we use the equations governing
andy;:

£(t) — 41(t) = 23(0) — 2 (0) + / Fi(i(s) - Fu(p(s))ds.  (30)

Rearranging and using that > v, we have
t
| Filai(e) = Flans)ds <530 - 1 (0) (3D)
0

Thus, ify (1) = [} Fi(x1(s))— Fi (1 (s))ds, we have thaf (7 (1)) — Fi (s (1)) =
n;(t), and that for alk, 7, (t) < 27(0) — y1(0). Therefore,

d

E(x;(t) — yo(t)) = — (25 — y2) Ha(t) + 1y (1),

and integrating by parts gives
t
w5(t) — ya(t) = (23(0) — ya(0)e~Jo 2t 4 / 7, (s)e Ji Hatdr g
0
= (a3(0) — ya(0)e™ s 2 oy (1) — gy, (0)e o Ha(r)er
t
_ / nl(s)e—fs H2(r)drH2(S)dS.
0

The last two terms are negative and, as before, the expahtartns go to zero as
t — 00. SO,limy_o |25(t) — y2(t)| < m(t) < 23(0) — y1(0). However, we can
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re-scale time (do the above analysis on the integtyal ¢] instead of(0, ¢]) to con-
clude thatim; o |25(t) —y2(t)| < im0 (1) < limyoo (27(t/2) — y1(t/2)) =
0.

Now we continue down the chain in a similar manner and consigeand
y3. Without loss of generality we may assumgt) > y,(t) for all time. If
x3(t) < ys(t) for all time, we do the same argument as above to conclude that
|xs(t) — y3(t)| — 0, ast — oo. Thus, we assumes(t) > ys(t) for all time.
The argument is the same as that above, except we now havedorgeol over
Fy(x3(s)) — Fa(ya(s)). We have

£5(8) — ya(t) = 23(0) — 42(0) + / (Fy(21(s)) — Fu(y(s)) ds

- / (Fa(z3(s)) — Falals)) ds.

Rearranging gives

/0 (Fa(w5(s)) — Fa(ya(s))) ds = 25(0) — 42(0) + m(2).

We may define the above integral to hgt) and perform the same analysis as
before. In this way we continue down the chain and conclud8ith, ... |z(t) —
y(t)| = 0, which was the desired result.

0]

Proof of Theorem 2.8Let N{ = F; ' (I + M +¢), wheree < K — M. If z,(t) >
Nt, then by the monotonicity of; we have

#1(t) = I = F(x(t)) + £(2)
< I —F(Ny)+£(t)
=—M —e+&(t)
< —€.
Therefore, independent of initial conditiony, .. z1(t) < Ni. Howevere was
arbitrary, solim, ., z1(t) < F;*(I + M). Continuing in this manner down the

chain showdim; ., z;(t) < F;'(I + M), for eachi. Thus, for larget, there
existsL > 0 such thatf|z(¢)| < L. By Chebychev’s inequality we then have

17 L
o | Pl > Ryas < 3
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which converges to zero uniformly inas R — oo. As in the proof of Theorem
2.7, we need to consider the Markov process on the extendezl gtaceR™ x
Cae((—00,0],R). As before, we obtain tightness by using the above estimates
on the marginal of this measure in thét) variable since the&(t) variable is
stationary and hence already tight. We may again use Prokofbeorem to
guarantee the existence of an invariant measure. The pfaofigueness is the
same is in the proof of Theorem 2.7. O

A.4 Proof of Theorem 2.9

Proof of Theorem 2.9We begin by showing thdtm, .., z;(¢)/t = 0. Consider
the dynamics governing, where¢(t) satisfies (11)

&y =1 — Fy(z1) +£(1). (32)
Letz, = F~1(I). Then

—(x1(t) = 1) =1 = Fi(z1(2)) + £(t) = P—ry (z1(t) — 1) +£(2).

dt

SettingH () = %“g” > 0 (which is well defined sincé’ is assumed differ-

T1—x1(

entiable and is positive by the monotonicity Bf) and using Duhamel’s formula
gives us

(1(t) = F1) = (21(0) — Ty )e o Hs / e SHO (5)ds,

0

Integrating by parts gives

(21() = 71) = (21(0) — 7)o 1% 4 /0 §(s)ds

v [ smnn ([Cewar)as

By the positivity of H (¢) and property (11), we then have

t s
lim xlt(t) = lim ! e s H@dr g () (/ f(r)dr) ds.
0 0

t—o0 t—o00
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Lete > 0. There exists ai$ > 0 such thats > S implies |1 [~ ¢( dr} < ¢€/2.
There exists & = T'(s) > 0 such that > T impliessup,_g |+ [, £(r)dr| < €/2.
Therefore, ift > max{S, T} we have that

‘%/Ot e JLHOY (o) (/Sg(r)dr) ds

g/ e JSHE DA (s /5 )dr| (Lis<sy + 1is>sy)ds
0
t
< e/ e~ s HOAr 1 (6)ds
0
<e.

Thus,lim; ., z1(t)/t = 0.
Integrating equation (32), dividing byand taking the limit ag — oo now

gives us
t

lim ! F(xz(s))ds =1,

t—>oot 0

which proves part 1 of Theorem 2.9 for.
LetG(x) =2 [; (Fi(y) — I) dy, which, non-coincidentally, is the same func-
tion used |n the proof of Theorem 2.2. We have

d

@) = —2(A(n(t) - I)? + 2(Fy(1 (1) — DE®).

Integrating and using the inequality < (1/2)a* + (1/2)b? gives

G () < G (0)) — / (Fy ((s)) — 1)2ds + / (s

Therefore, part 2 of Theorem 2.9 will be shown fgrif lim inf, ., G(z(¢))/t >
0. We have

1 1 =0
lim inf ~G(z;(t)) = 2lim inf ;/ (F1(y) = 1) (Lyysany + Ly<any) dy
0

t—o0 t—o0

1 Il(t)
> 2liminf n / (Fi(y) = I) 1gy<z,ydy
0

t—o0
> 9] lim “t(t)

t—o0

=0,
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so part 2 is shown for;. Note that parts 1 and 2 of Theorem 2.9 show that
Fi(z1(t)) — I satisfy condition (11). Therefore, to prove parts 1, 2, anfdr3

all z;, one simply continues down the chain considerifagr;(t)) as the external
perturbation of; ;. O

A.5 Proofs of Section 3
The proofs of Theorems 3.2, 3.3, 3.4, and 3.5 can be handtadtaneously.

Proof of Theorems 3.2, 3.3, 3.4, and 3'Be key to each proof is the recognition
that the species in each complex satisfy constant multgilése same (stochastic)
differential equations. Mathematically this means thgsecies can by grouped
and treated as a single substrate with a redefined kinethus.ré@duces us to the
case previously studied. More explicitly, there are camista,, andd,;;, such that
xi (t) = dyjral(t) + cijx for all t. Thus, the species of each complex can be solved
for from knowledge of just one species from that complex.tir@m, a monotone
increase in one translates to a monotone increase in thesoti@oosing one
speciesy;, from each complex, we may redefine thgs (andé; in the white
noise case) appropriately so that the vector functign satisfies either (8) or
(9) with the F;’s satisfying Assumption 2.1. Therefore, applying the tie@as of
Section 2.2 completes the proof. O

B Processes Used in Examples 2.4 and 2.5

In Example 2.4(t) is described as a modified Ornstein-Uhlenbeck process such
that—10 < £(t). More precisely¢(t) is governed by the following dynamics:

) =E(t)dt +4dB(t) if £(t) > —10
%@‘{%mﬁ ) < 10

This dynamics ensures thatif0) > —10 then{(t) > —10 for all ¢.

In Example 2.5£(t) is built from the Ornstein-Uhlenbeck equatidé(t) =
—&(t)dt + 3dB(t), with the added condition that §(t) = —4 or () = 4, then
d¢(t) = —£(t)dt. More preciselyé(t) is governed by the following dynamics:

—E(t)dt if £(¢)dt > 4
de(t) = { —€(t)dt + 3dB(t) if —4 < €(t) < 4
—£(t)dt if £(t)dt < —4
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Figures with Captions

Figure 2.1
Michaelis—Menton Kinetics
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Caption:

The horizontal lines represent possible inputs to speEieom speciesX;
and the vertical lines represent the value ofhat would give an equilibrium to the
system for a given input. We therefore see that minor flucinatin £ (z,) = =
can correspond with large fluctuationsin
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