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Abstract

We consider biochemical reaction chains and investigate how random
external fluctuations, as characterized by variance and coefficient of varia-
tion, propagate down the chains. We perform such a study under the assump-
tion that the number of molecules is high enough so that the behavior of the
concentrations of the system is well approximated by differential equations.
We conclude that the variances and coefficients of variationof the fluxes will
decrease as one moves down the chain and, through an example,show that
there is no corresponding result for the variances of the chemical species.
We also prove that the fluctuations of the fluxes as characterized by their
time averages decrease down reaction chains. The results presented give
insight into how biochemical reaction systems are bufferedagainst external
perturbations solely by their underlying graphical structure and point out the
benefits of studying the out-of-equilibrium dynamics of systems.

1 Introduction

In [1] and [2] we began a study of biochemical reaction systems subjected to
random, external forcing. The question we considered, and continue with here,
is the following: if we add random, external forcing to the input of a biochem-
ical reaction system, how do those fluctuations (characterized by their variance
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and coefficient of variation) propagate through the entire system? The broader
aims of this paper are to gain a better understanding of how the network topol-
ogy of biochemical reaction systems suppresses or otherwise alters the behavior
of fluctuations in reaction systems and to point out the benefits of studying the
out-of-equilibrium dynamics of systems.

In [2] we studied systems under the two simplifying assumptions that the ki-
netics were all mass action and that each reaction involved turning precisely one
substrate into another substrate. Therefore, in the terminology of Horn, Jackson,
and Feinberg, each complex consisted of a single species ([6][11]). Thus, we al-
lowed reactions of the formA → B, but notA+B → C. These two assumptions
caused the differential equations governing the concentrations of the species to be
linear and so we referred to them as linear SSC (single species complex) systems.
Considering linear SSC systems decreased some of the technical difficulties of
the analysis while still allowing us to probe how different network structures af-
fect the propagation of fluctuations. Under these assumptions we proved that the
variances of fluxes decrease down reaction chains and that side reaction systems
and feedback loops lower the variance of the flux out of reaction chains. A natural
question is whether or not these results from [2] hold when wedrop one or both of
the simplifying assumptions. The main purpose of this paperis to demonstrate a
biologically significant result from [2] that does hold whenwe drop both the SSC
and mass action assumptions: the variances and coefficientsof variation of fluxes
decrease as one moves down a non-reversible reaction chain.

For an example of a reaction chain consider the following biochemical system:
a substrate,S, enters the system at a constant rate,I > 0. This substrate then
combines with an enzyme,E, to formES, which is then degraded to some product
substrateP plus the original enzyme. Finally, the productP leaves the system. If
the concentration of the enzyme is taken to be so large as to beassumed constant
and the reactions are non-reversible then the following graph faithfully models
our system:

I F1 F2 F3

−→ S −→ ES −→ P −→,
(1)

whereF1, F2 andF3 are functions that give the rates of the respective reactions.
Let s, es, andp be the concentrations ofS,ES, andP , respectively. Then, if the
kinetic functionsF1, F2, andF3 are functions of the reactant substrates only, the
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differential equations governing the temporal evolution of the concentrations are

ṡ(t) = I − F1(s(t))

ės(t) = F1(s(t)) − F2(es(t))

ṗ(t) = F2(es(t)) − F3(p(t)).

(2)

If the functionsFi are differentiable, monotone increasing, and satisfyFi(0) <
I < limx→∞ Fi(x), then it is easily seen that, independent of initial conditions, the
system (2) will converge to the steady state(s̄, ēs, p̄) = (F−1

1 (I), F−1
2 (I), F−1

3 (I)).
However, if the input to the system (1) is allowed to fluctuatein time, then each
concentration will fluctuate, and, hence, each flux,Fi, will also fluctuate. If the
fluctuations are random, we can ask what the variance or coefficient of variation
of each flux is with respect to that randomness, and how they relate. It is the goal
of this paper to prove

Var(F1(s(t))) > Var(F2(es(t))) > Var(F3(p(t))) (3)

CV (F1(s(t))) > CV (F2(es(t))) > CV (F3(p(t))), (4)

where Var(·) andCV (·) represents variance and coefficient of variation, respec-
tively. (Notice that the inequalities are strict.)

The reaction chain given in (1) is an example of an SSC chain because each
node of the network graph consists of a single substrate. In general, a reaction
chain is any biochemical system of the following form:

I F1 F2 Fn−1 Fn

−→ C1 −→ C2 −→ . . . −→ Cn −→,
(5)

whereI ∈ R>0 is the constant input to the system, the complexes,Ci, are linear
combinations of the substrates, andFi : R

mi

≥0 → R≥0 are the reaction kinetics
(wheremi is the number of distinct substrates composing complexCi). In [2] we
showed that if the constant inputI is replaced by the fluctuating in time random
processI + ξ(t, ω), whereξ(t, ω) is either white noise or a mean zero, finite vari-
ance, stationary stochastic process such thatξ(t, ω) ≥ −I, and if the system (5)
is a linear SSC chain, then for alli ≥ 1, Var(Fi) > Var(Fi+1), where the variance
is computed according to the unique stationary measure to which the distribution
of the species converges. In this paper, we prove that this result still holds when
we drop the assumption that the kinetics are mass action and the assumption that
each complex consists of a single species. The main assumption on the kinetics
will be that they are monotone increasing in each of their dependent variables
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(so, for example, we may consider Michaelis-Menten kinetics). In dropping the
SSC assumption we will show that the result still holds when the complexes are
composed of multiple species so long as each species appearsin precisely one
complex. Throughout, we will refer to systems for which complexes can by com-
posed of multiple species yet each species appears in a single complex as MSC
(multiple species complexes) systems.

The goal of this paper is to prove that variances of fluxes caused by an external
stochastic input decrease down a non-reversible reaction chain. We will show that
if I is the average input to a reaction chain, then (once the system has reached its
statistical equilibrium) the mean of each flux is also equal to I. Therefore, say-
ing that the variances of the fluxes decrease down a reaction chain is equivalent
to saying that the coefficients of variation of the fluxes decrease down a reaction
chain. That is, equation (3) is equivalent to equation (4). Because of this equiva-
lence between the magnitudes of variances and the magnitudes of coefficients of
variation, each result in this paper is stated in terms of variance alone and it is
understood that each result is still valid if Var(·) is replaced withCV (·).

Throughout, we allow external perturbations to be white noise processes or
mean zero, finite variance, stationary stochastic processes. Considering white
noise processes is useful because it allows one to make use ofthe Itô Calculus
with which stronger results (i.e. fewer restrictions on therate functions,Fi) can be
proven than if you solely consider arbitrary perturbations. Also, if the input flux to
a reaction system is perturbed by white noise, then all otherfluxes are perturbed
by mean zero, finite variance, stationary continuous processes. Therefore, one
may construct continuous, stationary perturbations from white noise processes
by allowing a pseudo-species to be perturbed by white noise and considering the
output from the pseudo-species as the input to the reaction system of interest. In
doing so, one is allowed to use the stronger white noise results as opposed to
the stationary noise results. Thus, allowing both types of perturbations is quite
natural. However, we point out that we do not feel the choice of external forcing
is critical because the broader aim of this paper is to study the out-of-equilibrium
dynamics of biochemical systems and both choices of perturbation achieve this
aim.

The layout of the paper is as follows. In Section 2 we considerSSC chains.
In Section 3 we consider MSC chains. Complementing the main results are two
important examples. In Section 2, Example 2.3 is a nonlinearchain perturbed
by white noise for which the variance (and CV) of the species increase down
the chain. Hence, there is no corresponding “decreasing fluctuation” result for
the species of reaction chains. In Section 3, Example 3.8 demonstrates that the
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assumption that each species is in precisely one complex is anecessary one. In
both examples we use a Monte Carlo simulation to arrive at ourconclusions. The
proofs of all the results in this paper are found in Appendix A.

This paper is part of a larger research project in which the main biological
goal is to understand how network topology affects how biochemical systems re-
act to large-scale, random perturbations to their inputs. There are two distinct
approaches we take in trying to achieve this goal. In the first, we apply random
fluctuations toin silico representations of specific biological systems. We can
then identify reactions, substrates, or whole subsystems that are buffered against
the fluctuations, i.e. are homeostatic. We can then take the system apart piece by
piece throughin silicoexperimentation to discover the regulatory mechanisms that
give rise to the homeostasis. In the second, we prove theorems about how random
fluctuations propagate through relatively simple, but biologically relevant, sys-
tems. We are interested in how these systems magnify or suppress fluctuations as
this may give clues as to why these systems are structured as they are. In this sec-
ond approach it is the out-of-equilibrium dynamics that is being probed in order
to give information on the emergent properties of the system. This paper, like [1]
and [2], takes the second approach; for an example of the first, see [19].

Due to the inherent randomness in the making and breaking of chemical bonds,
biochemical reaction systems are, at their most fundamental level, modeled as
jump Markov processes ([4][8][7][21][13]). However, if one scales up the vol-
ume and number of molecules in a system while keeping the initial concentrations
constant, then this intrinsic randomness becomes negligible at the scale of concen-
trations. One is then able to faithfully model the concentrations of the substrates
by a system of differential equations ([14]). As in [1] and [2] we consider systems
in this scaling limit. Thus, the random external forcing in this paper is on the scale
of concentrations (and not of individual molecules) and theconcentrations of the
species are modeled by differential equations and not by discrete jump processes.
For a more detailed comparison between the randomness in this paper and the
inherent randomness of biochemical systems, see [2].

2 SSC chains with random perturbations

In this section we consider nonlinear SSC chains subjected to random perturba-
tions.
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2.1 The model

A non-reversible SSC chain with a constant input is a biochemical reaction system
with the following graphical structure:

I F1 F2 Fn−1 Fn

−→ X1 −→ X2 −→ . . . −→ Xn −→,
(6)

whereI > 0 is the constant input to the system,Xi are the species (and com-
plexes) of the system, andFi : R≥0 → R≥0 are the reaction kinetics. If we let
{xi} denote the concentrations of the species{Xi}, then the temporal evolution
of x(t) is governed by the following differential equation:

ẋ1 = I − F1(x1)

ẋ2 = F1(x1) − F2(x2)

...

ẋn = Fn−1(xn−1) − Fn(xn).

(7)

In the sequel we make the following standing assumptions on the functionsFi.

Assumption 2.1.EachFi is a real valuedC1 function of[0,∞) with the following
properties:

a) Fi(0) = 0.

b) For all x ∈ R>0, F ′
i (x) > 0 .

c) lim
x→∞

Fi(x) > I.

Note that condition c) guarantees that mass will not build upat any point along
the chain so long as the input is kept at the constant valueI. This assumption is
also reasonable for systems for which the input is being perturbed by a mean zero
random process and will be used to keep concentrations from escaping to infinity.

We will consider two different classes of random perturbations of the inputI.
The first will be white in time while the second will be almost surely continuous in
time. Since the kinetics,Fi, are defined only on the positive portion of the real line,
it is important that any noise we consider as a perturbation to the input will never
drive the concentrations of the species into the negative portion of the real line.
Hence we will impose restrictions on the perturbations to ensure that the specie
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concentrations stay non-negative at all times. Because we consider two different
classes of perturbations of the input, we consider two different mechanisms to
achieve this goal.

In the case of the white in time random perturbation, we multiply the noise
term,dBt, by a function,θδ(·), that turns the noise off ifx1 approaches zero. This
property ofθδ combined with the dynamics governing the concentration ofX1,
ensures thatx1 remains non-negative for all time which, in turn, keeps all other
concentrations non-negative for all time. The concentration ofx1 is now governed
by a stochastic differential equation, while the equationsfor the remainingxi stay
as in (7). That is,

dx1 = (I − F1(x1))dt + σθδ(x1)dB(t)

ẋ2 = F1(x1) − F2(x2)

...

ẋn = Fn−1(xn−1) − Fn(xn),

(8)

whereB(t) = B(t, ω) is standard one dimensional Brownian motion,σ ∈ R>0,
and for some smallδ > 0, θδ(x) = 1 for all x > δ, θδ(0) = 0 andθδ(x) is C∞ and
monotone increasing. SinceF1(0) = θδ(0) = 0 andI > 0, x1(t) ≥ 0 for all t > 0
if x1(0) > 0.

The second class of perturbations to the input considered inthis paper are
mean zero, finite variance, stationary, random processes,ξ(t, ω), that are continu-
ous in time at almost every moment of time. To guarantee that the concentrations
of the chemical substrates remain non-negative for all timewe only consider per-
turbations such thatξ(t, ω) ≥ −I for all t andω (and so we no longer need the
functionθδ(·) used in the white in time setting). In order to keep the reaction sys-
tem away from equilibrium, we make the added restriction that for each choice
of ω, ξ(t, ω) is non-constant on all time intervals larger than some fixed value
a = a(ω). We will typically write ξ(t) instead ofξ(t, ω). The almost everywhere
continuity ofξ(t) allows the possibility of isolated jumps and allows us to usea
standard differential equation forx1 (in contrast to the Itô stochastic differential
equation used in (8)). In this case, the equations governingthe behavior of the
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concentrations are

ẋ1 = I − F1(x1) + ξ(t)

ẋ2 = F1(x1) − F2(x2)

...

ẋn = Fn−1(xn−1) − Fn(xn).

(9)

To prove the existence of a stationary state we will further assume that the distri-
bution of the noise’s future is completely determined by itspast. An example of
such aξ(t) is a Markov processes whose future distribution depends only on its
present value.

2.2 Decreasing variance for SSC chains

We are mainly interested in describing the system once it hassettled into a sta-
tistical equilibrium and any behavior that is transient in time has passed. Such
statistical steady states are characterized by a stationary solution. A solutionx∗(t)
is stationary if for any collection of timest1 < t2 < · · · < tn and anys the dis-
tribution of the vector(x∗(t1 + s), x∗(t2 + s), · · · , x∗(tn + s)) is independent of
s. When the forcing is Brownian as in (8), the solution is a Markov process and
the distribution ofx∗(t) at any timet is an invariant measure for the associated
Markov semigroup. An invariant measure,µ, is a measure on the state space of
the system,Rn, such that if the initial condition is chosen according toµ then
solutions at any timet ≥ 0 are also distributed asµ. More precisely, if for all
measurableA ⊂ R

n, P (x(0) ∈ A) = µ(A) implies thatP (x(t) ∈ A) = µ(A) for
all t ≥ 0, thenµ is invariant to the dynamics of the system. Therefore, when the
forcing is Brownian, a stationary solution exists. When theforcing is a stationary
processξ(t) as in (9) more care must be taken to obtain a stationary solution to
the dynamics as the solution need not be a Markov process.

We will concern ourselves with the existence and basic properties of stationary
solutions and invariant measures at the end of this section.First we state the
principal result of the article and give a few numerical examples to illustrate its
use. The following theorem is proved in Appendix A.2

Theorem 2.2 (Decreasing variance down a nonlinear SSC chain). Letx∗(t) be
a stationary solution for the dynamics given in either equation (8) or (9). Then
for all 1 ≤ i ≤ n and all t

Var(Fi(x
∗
i (t))) > Var

(

Fi+1(x
∗
i+1(t))

)

.
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We note that the variances of Theorem 2.2 are computed with respect to the
choice of randomness,ω, in B(t, ω) or ξ(t, ω). That is, Theorem 2.2 gives the
variance as an average over the choice of perturbations. In Subsection 2.3 we give
a similar result except the variance is computed as a time average over a single
path. In many natural settings (including those given in theexamples below), the
two notions are equivalent and, therefore, give the same intuition about fluctua-
tions down reaction chains.

We now give three examples where the preceding theorem holds. For the
moment we will assume that the systems possess a stationary solution to which
the statistics of the solutions converge ast → ∞. At the end of the section we
will prove that the preceding assumption holds for any initial condition.

Example 2.3 (Species variances need not decrease).Consider the following
SSC chain with Michaelis-Menten kinetics

10 + σθδ(x1)dBt F1(x1) F2(x2)
−→ X1 −→ X2 −→ ,

whereσ = 1, δ = .001, F1(x1) = x1, F2(x2) = 12x2

1+x2

. We will see in Theorem
2.6 that this system possesses a unique invariant measure towhich the statistics of
the trajectories converge. Using Matlab to perform a Monte Carlo simulation we
computed the means, variances, and coefficients of variation of the species and
fluxes to be the following:

x1 x2 F1(x1) F2(x2)
mean 10 5.18 10 10

variance .5 1.19 .5 .124
CV .07 .21 .109 .035

As guaranteed by Theorem 2.2, the fluctuations of the fluxes decrease down the
chain. However, no matter the measure we use (variance or CV), the fluctuations
of x2 are always greater than those ofx1. Therefore, there is no counterpart to
Theorem 2.2 pertaining to the species of an SSC reaction chain.

To understand why the fluctuations ofx2 are higher than those ofx1, consider
the plot ofF2(x) = 12x/(1 + x) in Figure 2.1. The horizontal lines atx1 = 9, 10,
and11 represent possible fluxes into speciesX2, while the vertical lines show
what the equilibrium value ofx2 would be corresponding to that input. While the
perturbed system will never settle to an equilibrium, the kinetics will always be
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Figure 2.1: The horizontal lines represent possible inputsto speciesX2 from
speciesX1 and the vertical lines represent the value ofx2 that would give an equi-
librium to the system for a given input. We therefore see thatminor fluctuations
in F1(x1) = x1 can correspond with large fluctuations inx2.

driving the concentration ofX2 towards the solution of12x2(t)
1+x2(t)

= x1(t). Therefore,
minor fluctuations in the input to the speciesX2 give rise to large fluctuations in
x2.

Example 2.4 (Continuous input and unbounded kinetics).Consider the fol-
lowing SSC chain

10 + ξ(t) F1(x1) F2(x2)
−→ X1 −→ X2 −→,

where−10 ≤ ξ(t) is a modified Ornstein-Uhlenbeck process defined in Appendix
B, F1(x1) = x2

1 andF2(x2) = x2
2/(1 + x2). Because bothF1(x) andF2(x) are

unbounded asx → ∞, we will see in Theorem 2.7 that the system possesses
a unique stationary solution to which the statistics of the trajectories converge.
Using Matlab to perform a Monte Carlo simulation we computedthe means, vari-
ances, and coefficient of variation of the fluxes to be the following:

10 + ξ(t) F1(x1) F2(x2)
mean 10 10 10

variance 8 6.8 3.9
CV 0.28 .26 .20
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The variances and coefficients of variation of the fluxes decrease down the chain,
as guaranteed by Theorem 2.2.

Example 2.5 (Continuous input and Michaelis-Menten kinetics). Consider the
following SSC chain

4 + ξ(t) F1(x1) F2(x2)
−→ X1 −→ X2 −→,

where−4 ≤ ξ(t) ≤ 4 is a modified Ornstein-Uhlenbeck process defined in Ap-
pendix B,F1(x1) = 11x1/(1 + x1), andF2(x2) = 10x2/(1 + x2). We will see
in Theorem 2.8 that this system possesses a unique stationary solution to which
the statistics of the trajectories converge. Using Matlab to perform a Monte Carlo
simulation we computed the means, variances, and coefficient of variation of the
fluxes to be the following:

4 + ξ(t) F1(x1) F2(x2)
mean 4 4 4

variance 4.2 3.3 2.9
CV .51 .46 .43

The variances and coefficients of variation of the fluxes decrease down the chain,
as guaranteed by Theorem 2.2.

We now show the random dynamics given in equation (8) possesses a unique
invariant measure. This invariant measure generates a stationary solutionx∗(t)
when extended to paths from−∞ to ∞. Similarly, under some additional as-
sumptions onξ and theFi’s, we show that the dynamics given in equation (9)
possesses a unique stationary solutionx∗(t) (the concept of an invariant measure
does not directly make sense for (9) since the dynamics are not necessarily Marko-
vian, see Appendix A.1). In addition, in both settings we show that the statistics
of the trajectories converge to those of the stationary solution x∗(t) ast → ∞. In
other words, for anyx(0) and measurableA ⊂ R

n,

P (x(t) ∈ A) → P (x∗(t) ∈ A) = P (x∗(0) ∈ A), ast → ∞. (10)

This means that the long time statistics of the solutions areindependent of the
initial condition and the result on the decrease of fluctuations is applicable on long
time intervals. Of course in the setting of (8),x∗(t) is distributed as the invariant
measureµ so P (x∗(0) ∈ A) = µ(A). In the setting of (9),x∗(t, ξ) should be
viewed as a function of the entire past of the noise.
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The next three results apply, respectively, in the three preceding examples
to ensure the existence of an unique stationary solution to whose statistics the
statistics of arbitrary trajectories converge in time. Thefirst result covers the case
of white in time forcing while the second two apply to stationary forcing. The
proofs of all three are contained in Appendix A.3.

Theorem 2.6 (Ergodicity of the SSC chain with white noise).Equation(8)
possesses a unique invariant measure,µ, onR

n. Furthermore, the distribution of
any solution to equation(8) converges toµ ast → ∞.

To prove the existence of a stationary solution to equation (9), we need to
assume that the distribution of the future of the noise,ξ(t), is determined by its
past (such as for Markov processes). This is made precise in Appendix A.1. We
also need additional assumptions on the functionsFi. We give two versions of
these assumptions.

Theorem 2.7. Let ξ be as in Appendix A.1. Under the additional assumption
that the rate functionsFi are unbounded asx → ∞, equation(9) possesses a
unique stationary solution,x∗(t). Furthermore, any solutionx(t) to equation(9)
converges tox∗(t) ast → ∞.

In the event that any of theFi are bounded, we need a bound on the size of
ξ(t).

Theorem 2.8. Let ξ be as in Appendix A.1. DefineK = min
i
{ lim

x→∞
Fi(x) − I}.

Under the additional assumption that−I ≤ ξ(t) ≤ M < K, for all t and some
M < K, equation(9) possesses a unique stationary solution,x∗(t). Furthermore,
any solutionx(t) to equation(9), converges tox∗(t) ast → ∞.

In the white in time setting, the system is in fact ergodic andhence by Birkhoff’s
ergodic theorem we know that for almost every realization the time average of any
statistic converges to the value of the statistic in the invariant measure. Combining
this with the strong mixing properties of such a system we have that

lim
t→∞

1

t

∫ t

0

(Fi(xi(s)) − I)2ds = Var(Fi(x
∗
i (t)))

for almost every realization of the Brownian forcing and every initial condition
x0. For this to hold in the setting of (9), we need to assume in addition that the
stationary measure onξ is ergodic. Even without this assumption, the next section
shows that one can say something in general. This underlinesthe fact that the
decrease of variance is really a pathwise phenomenon due to the dynamics.

12



2.3 Pathwise perturbations

The variance described in the previous sub-section is computed with respect to the
probability measure of the perturbations. More precisely,if ω is the realization of
the perturbation thenV ar(Fi(x(t, ω))) = Eω(F (xi(t, ω))− I)2, i.e. is an average
over the realizations of the noise. Another natural way to characterize how pertur-
bations propagate down chains is to consider the time averages of paths. Consider
again the dynamics given by equation (9), except now the onlyassumptions on
ξ(t) are pathwise assumptions:

i.) lim
t→∞

1

t

∫ t

0

ξ(s)ds = 0 and ii.) lim sup
t→∞

1

t

∫ t

0

ξ(s)2ds < ∞. (11)

That is, we now assume that the time average forξ(t) converges to zero and that
the time average of the square is bounded above. The following theorem states
that the pathwise variances of the fluxes do not increase downreaction chains and
is proved in Appendix A.4.

Theorem 2.9.Consider equation(9) whereξ(t) satisfies(11). Then for alli ≥ 1,
the following hold:

1. lim
t→∞

1

t

∫ t

0

Fi(xi(s))ds = I.

2. lim inf
t→∞

(

1

t

∫ t

0

ξ(s)2ds −
1

t

∫ t

0

(Fi(xi(s)) − I)2ds

)

≥ 0.

3. lim inf
t→∞

(

1

t

∫ t

0

(Fi(xi(s)) − I)2ds −
1

t

∫ t

0

(Fi+1(xi+1(s)) − I)2ds

)

≥ 0.

3 MSC chains with random perturbations

We now consider MSC chains with random perturbations. We will again allow
perturbations that are white in time or that are stationary,mean zero, finite vari-
ance and continuous for almost everyt and that satisfy the conditions of Appendix
A.1. Consider a reaction chain, (5), where each complex,Ci, consists ofmi unique
species and no species is contained in more than one complex.Thus, ifx(t) is the
vector representing the species concentrations at timet, thenx(t) ∈ R

m1+···+mn .
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Let Xj
i represent thejth species in complexi andvij be the multiplicity of species

Xj
i in Complexi. For example, if the reaction chain is

−→ X1
1 + 2X2

1 −→ 3X1
2 −→,

thenv11 = 1, v12 = 2, andv21 = 3.
If Fi represents the reaction rate from complexCi to complexCi+1 we have

that,
Fi(x(t)) = Fi(x

1
i , . . . , x

mi

i ) : R
mi → R.

We assume eachFi satisfies Assumption 3.1 which is analogous to Assumption
2.1.

Assumption 3.1. Fi is a real valuedC1 function of[0,∞)mi with the following
properties:

a) If xj
i = 0 for any1 ≤ j ≤ mi, thenFi(x) = 0.

b) If 1 ≤ j ≤ mi andx ∈ R
mi

>0, then d

dx
j
i

Fi(x) > 0.

c) ∃M > 0 such that ifxj
i > M for all species in theith complex, thenFi(x) > I.

As in the SSC case, if we want to add a random perturbation to the input flux
of the system, we must only consider perturbations that willnever drive concen-
trations into the negative portion of the real line. We handle this issue in a similar
manner as in the SSC case:

If the perturbation is white in time, we multiply the perturbation by a function
which will go to zero if the concentration of one of the species in the first complex
goes to zero. Therefore, letθδ(x

1
1, . . . , x

m1

1 ) : R
m1 → R≥0 satisfy the following

three properties for some smallδ > 0.

1. θδ(x) = 1 when eachxj
1 > δ.

2. θδ(x) = 0 if xj
1 = 0 for any1 ≤ j ≤ m1.

3. θδ is C∞ and is monotone increasing in each of the variablesx1
1, . . . , x

m1

1 .

If we add a white noise perturbation multiplied byθδ(x) to the input of the system,
then the dynamics are now governed by the stochastic differential equation

dx(t) = f(x(t))dt + σθδ(x)dB(t)u, (12)
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whereu = [v11, v12, . . . , v1m1
, 0, . . . , 0]T , σ ∈ R>0, B(t) is standard one dimen-

sional Brownian motion, andf i
1(x) = v1i(I − F1(x)) for each1 ≤ i ≤ m1,

f i
2 = v2i(F1(x) − F2(x)), for each1 ≤ i ≤ m2, . . . , f i

n = vni(Fn−1(x) − Fn(x))
for each1 ≤ i ≤ mn.

If the perturbation is a mean zero, finite variance, stationary process,ξ(t, ω),
that for eachω is continuous for almost allt and that satisfies the conditions of
Appendix A.1, then in order to keep the concentrations non-negative, we again
assume thatξ(t, ω) ≥ −I for all t andω. In this case the dynamics of the system
are governed by the differential equation

ẋ(t) = f(x(t)) + ξ(t)u, (13)

wheref andu are as above.
The following four theorems are analogous to those in the SSCcase and their

proofs can be found in Appendix A.5.

Theorem 3.2 (Decreasing variance down a nonlinear MSC chain). Let x∗(t)
be a stationary solution for the dynamics given by either equation (12) or (13).
Then for alli ≥ 1 andt ≥ 0

Var(Fi(x
∗(t))) > Var(Fi+1(x

∗(t))) .

Theorem 3.3 (Ergodicity of the MSC chain with white noise).Equation(12)
possesses a unique invariant measure,µ, onR

n. Furthermore, the distribution of
any solution to equation(8) converges toµ ast → ∞.

Theorem 3.4. Let ξ be as in Appendix A.1. Under the additional assumption
that the rate functionsFi are unbounded asx → ∞, equation(13) possesses a
unique stationary solution,x∗(t). Furthermore, any solutionx(t) to equation(13)
converges tox∗(t) ast → ∞.

Theorem 3.5. Let ξ be as in Appendix A.1. DefineK = min
i
{ lim

x→∞
Fi(x) − I}.

Under the additional assumption that−I ≤ ξ(t) ≤ M < K, for all t and some
M < K, equation(13) possesses a unique stationary solution,x∗(t). Further-
more, any solutionx(t) to equation(13)converges tox∗(t) ast → ∞.

Example 3.6 (Sum of Two Species with Mass Action Kinetics).Consider the
following MSC chain with mass action kinetics

I(t) F1 F2 F3

−→ Y −→ X1 + X2 −→ X3 + X4 −→,
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whereI(t) = 10 + 2θδ(y)dBt (with δ = .001), F1(y) = y, F2(x1, x2) = x1x2,
F3(x3, x4) = x3x4. Using Matlab to perform a Monte Carlo simulation we com-
puted the means, variances, and coefficient of variation of the fluxes to be the
following:

F1(y) F2(x1, x2) F3(x3, x4)
mean 10 10 10

variance 2 1.73 1.62
CV 0.14 .131 .127

We note that the variances and coefficients of variation of the fluxes decrease down
the chain, as guaranteed by Theorem 3.2.

Example 3.7 (Sum of Two Species with Michaelis-Menten Kinetics). Consider
the following MSC chain with Michaelis-Menten Kinetics

I(t) F1 F2 F3

−→ Y −→ X1 + X2 −→ X3 + X4 −→,

whereI(t) andF1 are as in Example 3.6, andF2(x1, x2) = 14x1x2/[(1 + x1)(1 +
x2)], F3(x3, x4) = 14x3x4/[(1 + x3)(1 + x4)]. Using Matlab to perform a Monte
Carlo simulation we computed the means, variances, and coefficient of variation
of the fluxes to be the following:

F1(y) F2(x1, x2) F3(x3, x4)
mean 10 10 10

variance 2 .72 .49
CV .14 .085 .07

As guaranteed by Theorem 3.2 the variances and coefficients of variation of the
fluxes decrease down the chain.

Example 3.8 (Species can not be in more than one complex).Consider the
following MSC chain subjected to white noise perturbationsfor which the species
X1 appears in two complexes (and so this system is not covered byTheorem 3.2)

I(t) F1 F2 F3

−→ X1 + X2 −→ X3 −→ X1 + X4 −→,

whereI(t) = 10+θδ(x1, x2)dB(t) (with δ = .001), F1(x1, x2) = 2x1x2, F2(x3) =
x3, andF3(x1, x4) = 5x1x4. We performed a Monte Carlo simulation using Mat-
lab to compute:
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F1(x1, x2) F2(x3) F3(x1, x4)
mean 10 10 10

variance 4.16 .45 1.71
CV .204 .067 .131

Note that Var(F3(x)) > Var(F2(x)) andCV (F3(x)) > CV (F2(x)). Therefore,
the assumption in Theorem 3.2 that each species is in precisely one complex is
necessary.

4 Discussion

We have proven under a variety of different contexts that if the input to a non-
reversible biochemical reaction chain is perturbed by a random process, then the
variances and coefficients of variation of the fluxes will decrease as one moves
down the chain. The assumptions made on the different choices of perturbations
and on the properties of the rate functions were varied, and explicitly spelled out.
Further, much care was taken to state precisely what is meantby “fluctuations de-
crease down reaction chains.” Due to this (necessary) mathematical detail, how-
ever, it is easy for the over-riding point of the paper to be lost: considering the
out-of-equilibrium dynamics of a biochemical system can bean important tool
for understanding the dynamical properties of that system.

A comparison of the results of this paper to metabolic control analysis (MCA)
([12][10]) sheds light on the importance of considering out-of-equilibrium dy-
namics. The control coefficient for the flux out of a reaction chain,F , in terms of
the input,I, is

CF
I =

∂F

∂I
·

I

F
,

where the values are computed at equilibrium. However, at equilibrium, F = I.
Therefore, independent of the choice of reaction kinetics or the length of the chain,
CF

I = 1. This implies that changes in the output of a chain correspond directly
with changes to the input. However, by studying the out-of-equilibrium dynamics,
we have shown in this paper that the fluctuations in a reactionchain will actually
decreaseas one moves down a reaction chain and changes to the output ofa
chain do not correspond directly with changes to the input. The differing results
are biologically significant since it is tempting to speculate that this decrease in
fluctuations (and, hence, increase in stability) is one reason long reaction chains
may be evolutionarily advantageous in cellular systems.
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While all of the technical details of the proofs have been relegated to the ap-
pendices, we would like to point out that to prove the main results of this paper
(with the exception of Theorem 2.9) two things must be shown:1) the existence of
a unique solution whose statistics are stationary for the dynamics and 2) variances
of a stationary solution decrease down reaction chains. Typically, a stationary
solution can be proved to exist so long as the perturbations to the system do not
drive any solutions to infinity. Stability properties of thenon-perturbed system
can then be used to show uniqueness of the stationary solution. The fact that the
variances decrease down reaction chains follows from standard inequalities and
the use of Lyapunov type functions. Intuitively, however, the variances decrease
down reaction chains because the dynamics are always forcing the output flux
from a complex towards the input flux. That is, the dynamics are constantly mov-
ing the system towards a shifting equilibrium. There is, however, a natural time
delay in its ability to do so. Therefore the output will always be lagging behind
the input, which leads to the decrease in variance.

There is still much work to be done in studying biochemical reaction systems
subjected to external perturbations. A natural extension of this work and that
of [2] would be to attempt to analyze reaction systems with more complicated
geometries and more complicated kinetics (like product inhibition). The main
technical issues encountered in such a study would be: 1) theextremely weak
stability of many such systems ([5][6]) would make proving the existence of a
stationary solution difficult and 2) it will be difficult to isolate the variances of
particular fluxes or specie concentrations within a complicated system. While
both of these problems are formidable in a theoretical studysuch as in this paper,
they become trivial in anin silico study ([19]).
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A Precise definition of the noiseξ and the proofs

A.1 Assumptions on the noiseξ(t) needed for existence

In addition to the standing assumptions thatξ(t) is stationary with mean zero and
finite variance, to prove the existence of a stationary solution for (9), we need
to assume that the distribution ofξ(t) is determined entirely by the past ofξ on
any interval of time(−∞, s] with s ≤ t. Intuitively, we mean that given the
value ofξ(s) for s ∈ (−∞, t] the distribution on[t, T ] is uniquely determined
for anyT > t. This must be done in a way such that if one first adds a segment
[t, T − r] and then[T − r, T ], the resulting distribution on[t, T ] is the same as
if one had added the segment[t, T ] in one step. For a discussion of some of the
issues involved if one does not make such an assumption, see [9] and subsequent
works by the author.

Let Cae((−∞, 0], R) denote the space of almost every where continuous func-
tions,f , endowed with the normsup |f(s)|e−α|s| for someα > 0. Let Pt be a
Markov semigroup onCae((−∞, 0], R) which is Feller, has an invariant measure
M, and such that forM-almost everyγ0 ∈ Cae((−∞, 0], R), Pt(γ0, · ) is con-
centrated on elementsγt ∈ Cae((−∞, 0], R) with γt(s) = γ0(s + t) for s ≤ −t.
If γt, t ≥ 0, is a realization of the Markov chain generated withPt with γ0 dis-
tributed asM, we defineξ(s) = γt(s − t) for s ≤ t. This is well defined since
our assumptions onPt makeγs(r − s) = γt(r − t) for r ≤ min(s, t).

The dynamics of such aPt can be understood as follows. Given an initial
history from−∞ to 0, one adds on a segment of lengtht, resulting in a trajectory
from −∞ to t. After shifting this trajectory back by−t, one again obtains a
trajectory from−∞ to 0. The distribution of this new trajectory from−∞ to 0
is given byPt. The conditions above simply insure that the trajectory from −∞
to −t coincide with the initial trajectory from−∞ to zero. If ξ(t) is a Markov
process, then it can be constructed as above and hence is an example of the type
of noise we allow.

A.2 Proof of principal result on variances

Proof of Theorem 2.2.We consider the dynamics given by equation (8). The
proof when the dynamics is given by equation (9) is identical.
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Definingξ1(t) = F1(x
∗
1(t)) − I, the equations governingx∗

1 andx∗
2 are

dx∗
1 = (I − F1(x

∗
1))dt + σθδ(x

∗
1)dB(t) (14)

ẋ∗
2 = F1(x

∗
1) − F2(x

∗
2) =̇ I − F2(x

∗
2) + ξ1. (15)

We claim that for anyt, EF1(x
∗
1(t)) = EF2(x

∗
2(t)) = I. Integrating (14), taking

expected values, using that the distribution ofx∗(t) is stationary and noting that
σ
∫ t

0
θδ(x

∗
1(s))dBs is anL2−martingale gives

Ex∗
1(t) = Ex∗

1(0) + (I − EF1(x
∗
1(t))) t.

By the stationarity of the system,Ex∗
1(t) = Ex∗

1(0), soE (F1(x
∗
1(t)) − I) = 0 as

claimed. A similar argument which usesEF1(x
∗
1(t)) = I (and, hence,Eξ1(t) = 0)

shows thatEF2(x
∗
2(t)) = I. Therefore, in order to show that Var(F2(x

∗
2(t))) <

Var(F1(x
∗
1(t))), we needE (F2(x

∗
2(t)) − I)2 < Eξ1(t)

2.
Let G1(x) = 2

∫ x

0
(F2(y) − I)dy. Then,

d

dt
G1(x

∗
2(t)) = G′

1(x
∗
2(t))ẋ

∗
2(t)

= 2(F2(x
∗
2(t)) − I)(I − F2(x

∗
2(t)) + ξ1(t))

= −2(F2(x
∗
2(t)) − I)2 + 2(F2(x

∗
2(t)) − I)ξ1(t).

(16)

Pick t > 0 arbitrarily. Integrating (16) up to timet and taking expected values
gives

EG1(x2(t)) − EG1(x2(0)) = − 2

∫ t

0

E(F2(x2(s)) − I)2ds

+ 2

∫ t

0

E [(F2(x2(s)) − I)ξ1(s)] ds

(17)

Using thatx∗
2(t) is stationary, differentiation of (17) together with the inequality

2ab ≤ a2 + b2 gives

0 = −2E(F2(x
∗
2(t)) − I)2 + 2E

[

(F2(x
∗
2(t)) − I)ξ1(t)

]

≤ −E(F2(x
∗
2(t)) − I)2 + Eξ1(t)

2.
(18)

We claim, however, that the inequality in (18) is strict. To see why, we suppose,
in order to find a contradiction, that2E

[

(F2(x
∗
2(t)) − I)ξ1(t)

]

= E(F2(x
∗
2(t)) −

I)2 + Eξ1(t)
2. ThenF2(x

∗
2(t)) − I = ξ1(t) with probability one. However, this
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implies F2(x
∗
2(t)) = F1(x

∗
1(t)) with probability one. Becauset was arbitrary,

we conclude that with probability oneF2(x
∗
2(t)) = F1(x

∗
1(t)) for all t in some

countably dense subset ofR. However, by the continuity of the functions involved,
this implies that with probability oneF2(x

∗
2(t)) = F1(x

∗
1(t)) for all t ∈ R. Thus,

ẋ∗
2(t) = 0 for all time andx∗

2(t) is a constant. But,F2(x
∗
2(t)) ≡ F1(x

∗
1(t)) and

so x∗
1(t) is also a constant. However, for anyt > 0, P{x∗

1(s) = const : s ∈
[0, t]} = 0 6= 1. Thus, the inequality in (18) is strict, which was the desired result
of the Theorem. Therefore, the result is shown for the first step in the chain. To
complete the proof, one simply repeats the argument down thechain.

A.3 Existence and uniqueness of stationary solutions and in-
variant measures

The proofs of Theorems 2.6, 2.7, and 2.8 have the same overallstructure. We use
the assumptions over the dynamics to obtain a uniform in timebound on some
statistic of the concentration vector which can be used to prove that a sequence
of time averages is tight. By extracting a convergent sub-sequence we can prove
the existence of at least one invariant measure for the whitein time setting. For
the stationary forcing, we must work on the space to trajectories stretching back
to negative infinity and prove the existence of a stationary measure on that space.
We then prove that the invariant measure or stationary solution is unique and that
the statistics of any solution converge to it under the dynamics of the system.

To prove the needed tightness for Theorem 2.6, we make use of the following
Lyapunov function:

V (x) =
n
∑

i=1

Vi

2

[

i
∑

j=1

(xj − x̄j)

]2

, (19)

where theVi’s are positive numbers yet to be determined and thex̄j are defined
as the solution toFj(x̄j) = I (that is, they are the equilibrium values of the
unperturbed problem). As an example, for a chain withn = 2 we have

V (x) =
V1

2
(x1 − x̄1)

2 +
V2

2
[(x1 − x̄1) + (x2 − x̄2)]

2 .

We begin by proving a fact that, while technical, is the crux of the proof of Theo-
rem 2.6.

21



Lemma A.1. Let A be the generator of the SDEs(8). Then there are positive
numbersV1, V2, . . . , Vn and positive numbersc, k such that ifV (x) is defined by
(19) thenAV (x) ≤ c − k|x|.

Proof. For allk ≤ n:

∂V

∂xk

=
∂

∂xk

n
∑

i=1

Vi

2

[

i
∑

j=1

(xj − x̄j)

]2

=
n
∑

i=k

Vi

[

i
∑

j=1

(xj − x̄j)

]

. (20)

Let F0 = I. Using equation (20), it can be shown that

n
∑

k=1

∂V

∂xk

(Fk−1 − Fk) =
n
∑

j=1

(xj − x̄j)

(

n
∑

i=j

Vi(I − Fi)

)

.

Therefore,

AV (x) =
1

2
σ2θδ(x1)

2 ∂2

∂x2
1

V (x) +
n
∑

k=1

∂V

∂xk

(Fk−1 − Fk)

=
1

2

(

σ2θδ(x1)
2

n
∑

i=1

Vi

)

+

n
∑

j=1

(xj − x̄j)

(

n
∑

i=j

Vi(I − Fi)

)

=̇
1

2

(

σ2θδ(x1)
2

n
∑

i=1

Vi

)

+
n
∑

j=1

sj(x),

where the last equality is a definition. We now choose theVj ’s recursively. Let
Vn = 1. Becauselim

x→∞
Fn(x) > I, sn is bounded by:

sn(x) = (xn − x̄n)(I − Fn(xn)) < cn − knxn,

wherecn andkn are some positive constants. Thensn−1 is given by

sn−1(x) = (xn−1 − x̄n−1) (Vn−1(I − Fn−1(xn−1)) + (I − Fn(xn))) .

Fn(xn) ≥ 0, so if xn−1 ≥ x̄n−1, then

sn−1(x) ≤ (xn−1 − x̄n−1) (Vn−1(I − Fn−1(xn−1)) + I) .

We may therefore chooseVn−1 to be large enough so that there are positive con-
stantscn−1 andkn−1 such that

sn−1(x) < cn−1 − kn−1xn−1.
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Continuing up the chain, we considersj for j < n. Whenxj > x̄j we have

sj(x) = (xj − x̄j)

(

Vj(I − Fj(xj)) +

n
∑

i=j+1

Vi(I − Fi)

)

≤ (xj − x̄j)

(

Vj(I − Fj(xj)) + I

n
∑

i=j+1

Vi

)

.

SinceVj+1 . . . , Vn have already been defined, we may chooseVj so large that there
are positive constantscj andkj such that

sj < cj − kjxj .

Setting

c =
1

2
σ2

n
∑

i=1

Vi +
n
∑

i=1

ci,

we now have that for somek

AV (x) ≤ c −

n
∑

i=1

kixi ≤ c − k|x|,

which was the desired result.

Proof of Theorem 2.6.The proof has two parts. First, we will use Lemma A.1
and Prohorov’s theorem ([3], pg. 59) to show that there exists a measure which is
invariant to the stochastic flow generated by equation (8). We will then prove that
this invariant measure is unique and that all distributionsconverge to it under the
flow of the SDE (8).

Part I
Let V (x) be defined by (19) whereV1, V2, . . . , Vn are given by Lemma A.1.

Then, ifk, c > 0 are the constants given in the conclusion of Lemma A.1,

dV (x) = AV (x)dt + dM(t) ≤ (c − k|x|) dt + dM(t),

whereM(t) is someL2 - martingale. Integrating gives

V (x(t)) ≤ V (x(0)) + ct − k

∫ t

0

|x(s)|ds + M(t) − M(0),
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wherex(0) is some fixed value. Rearranging terms, taking expected values and
using the fact thatEM(t) = EM(0) then yields,

1

t

∫ t

0

E|x(s)|ds ≤
c

k
+

V (x(0))

kt
.

Thus for anyR > 0 Chebychev’s inequality gives

1

t

∫ t

0

P{|x(s)| > R}ds ≤
c

k

1

R
+

V (x(0))

kt

1

R
, (21)

where, again, the initial conditionx(0) is fixed. The right side of equation (21)
converges to zero uniformly int ≥ 1 asR → ∞. Therefore, the sequence of
measures onR defined by

νn(A) =̇
1

tn

∫ tn

0

P{x(s) ∈ A}ds,

wheretn → ∞ asn → ∞ andA ⊂ R
n, is tight ([3], pg. 59). By Prohorov’s

theorem,νn is relatively compact and so there exists a subsequenceνnk
and a

measureµ, such thatνnk
→ µ, where the convergence is weak convergence.

Thus, for allA ⊂ R

µ(A) = lim
k→∞

1

tnk

∫ tnk

0

P{x(s) ∈ A}ds.

For A ⊂ R
n, let φT (A) = {x(T ) : x(0) ∈ A}. To show thatµ is invariant to

the flow of equation (8) we need to demonstrate that for allT > 0 andA ⊂ R,
µ(φ−1

T )(A) = µ(A), whereµ(φ−1
T )(A) =̇ µ(x : φT (x) ∈ A). Note that, by

definition,µ(x : φT (x) ∈ A) = limk→∞
1

tnk

∫ tnk

0
P{x(s + T ) ∈ A}ds. Using a

change of variable, we then make the following computation for anyT > 0 and
A ⊂ R:

µ(φ−1
T )(A) = lim

k→∞

1

tnk

∫ tnk

0

P{x(s + T ) ∈ A}ds

= lim
k→∞

1

tnk

∫ tnk

0

P{x(s) ∈ A}ds + lim
k→∞

1

tnk

∫ tnk
+T

tnk

P{x(s) ∈ A}ds

− lim
k→∞

1

tnk

∫ T

0

P{x(s) ∈ A}ds

= µ(A) + lim
k→∞

1

tnk

[

∫ tnk
+T

tnk

P{x(s) ∈ A}ds −

∫ T

0

P{x(s) ∈ A}ds

]

.
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However,
∣

∣

∣

∣

∣

lim
k→∞

1

tnk

[

∫ tnk
+T

tnk

P{x(s) ∈ A}ds −

∫ T

0

P{x(s) ∈ A}ds

]
∣

∣

∣

∣

∣

≤ lim
k→∞

2T

tnk

= 0,

and soµ(φ−1
T )(A) = µ(A). Thus,µ is invariant under the stochastic flow gener-

ated by (8).

Part II
The proof that the invariant measure is unique is not completely straightfor-

ward. The noise enters only one species, hence the diffusionis not uniformly
elliptic (so arguments such as in [15] do not suffice). The proof we now sketch
follows a rather standard line of argument. We refer the reader to [16] [20] [17] for
the missing details. The proof has three elements. First, one shows that the gen-
erator of the diffusion satisfies Hörmander’s “sum of squares” theorem and hence
is hypoelliptic. This ensures that the Markov transition densitypt(x, y) is smooth
in x andy and hence is a Strong Feller process. This gives the local smoothing
needed to ensure that the invariant measure found above is unique. The structure
of (8) and the fact that theF ′

i do not vanish ensures that the span of the needed
Lie brackets is of full dimension. Hence Hörmander’s theorem holds.

Secondly, we need to provide the global information which ensures open set
irreducibility (the fact that processes starting from different initial points have
nonzero probability of entering a small neighborhood of each other). The Lya-
punov function given by (19) shows that the processes returnto a bounded ball
B about the origin eventually. Since there is a globally attracting fix point, if the
noise is small for long enough all of the points ofB will enter an arbitrarily small
neighborhood of the fixed point.

Finally, with the above facts in hand, the uniqueness and convergence result
follows from standard arguments (see [18] [20] [16] [22]).

Proof of Theorem 2.7.As in the proof of Theorem 2.6, the proof is split into two
parts. In the first we prove the existence of a stationary solution x∗(t) for the
dynamics (9). In the second we show that the ifx(t) andy(t) are solutions driven
by the same noise, theny(t) → x(t) pathwise. Hence, we conclude there can only
be one stationary solution since any two would converge to each other over time.
Part I
Unlike the previous example, the processx(t) alone is not a Markov process.
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However, if we include the entire history ofξ then the system does become Marko-
vian. More precisely, from the assumptions in section A.1 weknow thatξ(s) =
γt(s − t) for s ≤ t whereγt is a Feller Markov process onCae((−∞, 0], R) with
semi-groupPt and withγ0 distributed as the invariant measureM. Then the pair
(x(t), γt) is a Markov process on the expanded state spaceR

n ×Cae((−∞, 0], R).
Let P̂t denote the Markov transition semi-group of this system andπx andπγ the
projection onto thex andγ coordinate respectively. Since we startγt from an
invariant measure for its dynamics, we know that the statistics of γt are constant
in time equal toM for all t and hence is tight.

Let x(0) be an arbitrary initial condition forx(t) Defining the measure

Qt( · ) =
1

t

∫ t

0

∫

P̂s(x
(0), γ, · )M(dγ)ds

we need only show thatQtπ
−1
x is tight to conclude thatQt is tight sinceQtπ

−1
γ =

M is independent fort. We will do this coordinate by coordinate. Consider the
equation governingx1(t):

ẋ1(t) = I − F1(x1(t)) + ξ(t). (22)

Integrating (22) gives

x1(t) = x(0) + It −

∫ t

0

F1(x1(s))ds +

∫ t

0

ξ(s)ds (23)

≤ x(0) + It −

∫ t

0

F1(x1(s))1{|x(s)|>R}ds +

∫ t

0

ξ(s)ds

≤ x(0) + It − F1(R)

∫ t

0

1{|x1(s)|>R}ds +

∫ t

0

ξ(s)ds.

Taking expected values and rearranging terms gives

1

t

∫ t

0

P{|x1(s)| > R}ds ≤
I

F1(R)
+

Ex1(0)

F1(R)
. (24)

Note that rearranging equation (23) and taking expected values gives us the addi-
tional bound

1

t

∫ t

0

EF1(x1(s))ds ≤ I +
Ex1(0)

t
. (25)

Continuing down the chain we considerx2(t):

ẋ2(t) = F1(x1(t)) − F2(x2(t)).
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Integrating gives

x2(t) = x2(0) +

∫ t

0

F1(x1(s))ds −

∫ t

0

F2(x2(s))ds (26)

≤ x2(0) +

∫ t

0

F1(x1(s))ds − F2(R)

∫ t

0

1{|x2(s)|>R}ds

Rearranging terms as before, taking expected values and using equation (25) gives

1

t

∫ t

0

P{|x2(s)| > R}ds ≤
I

F2(R)
+

Ex1(0)

tF2(R)
+

Ex2(0)

tF2(R)

Further, rearranging equation (26) and using equation (25)gives

1

t

∫ t

0

EF2(x2(s))ds ≤ I +
Ex1(0)

t
+

Ex2(0)

t
.

We may continue down the chain in a similar manner and conclude that there are
positive constantsc1, c2, . . . , cn such that for allt ≥ 1

Qtπ
−1
x ({y : sup

i

|yi| > R}) =
1

t

∫ t

0

P{sup
i

|xi(s)| > R}ds (27)

<
∑

i

1

t

∫ t

0

P{|xi(s)| > R}ds <
∑

i

ci

Fi(R)
.

Because eachFi is monotone and unbounded the right side of inequality (27)
above converges to zero uniformly int asR → ∞. Therefore, just as in the proof
of Theorem 2.6, we may invoke Prohorov’s Theorem to guarantee the existence
of a measureµ onR

n×Cae((−∞, 0], R) that is invariant to the dynamics induced
by P̂t. By Kolmogormov’s extension theorem we can use this measureto define a
measure on pairs of noiseξ and solution trajectoriesx starting at−∞ and contin-
uing to∞. The projection of this measure onto the solution coordinate produces
a stationary solution for thex(t) dynamics. One should really view this stationary
solutionx∗ along with its noise trajectoryξ which was constructed along with it.
Part II

Let x∗(t) = x∗(t, ξ) be the stationary solution and matching noise trajectory
found above. Lety(t) be the solution starting from an arbitrary initial condition
y(0) using the same noiseξ(t).

Considerx∗
1(t) andy1(t). If x∗

1(0) = y1(0), thenx∗
1(t) = y1(t) for all time by

uniqueness of solutions. Suppose thatx∗
1(0) > y1(0) (if x∗

1(0) < y1(0) there is a
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symmetric argument). Then,x∗
1(t) > y1(t) for all time. Differentiatingx∗

1(t) −
y1(t) gives

d

dt
(x∗

1(t) − y1(t)) = −(F1(x
∗
1(t)) − F1(y1(t)))

= −(x∗
1(t) − y1(t))

F1(x
∗
1(t)) − F1(y1(t))

x∗
1(t) − y1(t)

.

Defining

H1(t) =
F1(x

∗
1(t)) − F1(y1(t))

x∗
1(t) − y1(t)

, (28)

we have that

x∗
1(t) − y1(t) = (x∗

1(0) − y1(0))e−
R t

0
H1(s)ds.

By the uniform bound given in equation (27), we know that bothx∗
1(t) andy1(t)

spend a positive fraction of time in a compact set on whichH1(t) > d1 > 0
for somed1 > 0 (sinceH1 is an approximation to the derivative ofF1). Thus,
x∗

1(t) − y1(t) → 0, ast → ∞.
We next considerx∗

2(t) andy2(t). Suppose thatx∗
2(0) < y2(0). Let τ2 be the

first timex∗
2(t) = y2(t). Then, up until timeτ2,

d

dt
(y2(t) − x∗

2(t)) = −(F1(x
∗
1) − F1(y1)) − (F2(y2(t)) − F2(x

∗
2(t))).

But, x∗
1 ≥ y1 so(F1(x

∗
1) − F1(y1)) ≥ 0 and

d

dt
(y2(t) − x∗

2(t)) ≤ −(F2(y2(t)) − F2(x
∗
2(t)))

= −(y2(t) − x∗
2(t))

F2(y2(t)) − F2(x
∗
2(t))

y2(t) − x∗
2(t)

.

Defining H2(t) as we didH1(t) we may conclude from the above that up until
timeτ2

y2(t) − x∗
2(t) < (y2(0) − x∗

2(0))e−
R t

0
H2(r)dr.

Therefore, ifτ2 = ∞, then, as in the previous case, we may use the above equation
and the bound (27) to conclude that|x∗

2(t)−y2(t)| → 0, which is the desired result.
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If τ2 is finite, then for all time afterτ2, x∗
2(t) ≥ y2(t). To see this note that if

x∗
2(t) = y2(t), then

d

dt
(x∗

2(t) − y2(t)) = F1(x
∗
1) − F1(y1) ≥ 0,

where the inequality follows sincex∗
1 ≥ y1. Thus, we consider times pastτ2 and

redefine our initial condition to be the valuesx(τ2) andy(τ2).
We note:

d

dt
(x∗

2(t) − y2(t)) = − (F2(x
∗
2) − F2(y2)) + F1(x

∗
1) − F1(y1)

= −(x∗
2 − y2)

F2(x
∗
2) − F2(y2)

x∗
2 − y2

+ F1(x
∗
1) − F1(y1).

(29)

To gain control over the termF1(x
∗
1) − F1(y1) we use the equations governingx∗

1

andy1:

x∗
1(t) − y1(t) = x∗

1(0) − y1(0) +

∫ t

0

F1(x
∗
1(s)) − F1(y1(s))ds. (30)

Rearranging and using thatx∗
1 ≥ y1, we have

∫ t

0

F1(x
∗
1(s)) − F1(y1(s))ds ≤ x∗

1(0) − y1(0). (31)

Thus, ifη1(t) =
∫ t

0
F1(x

∗
1(s))−F1(y1(s))ds, we have thatF1(x

∗
1(t))−F1(y1(t)) =

η′
1(t), and that for allt, η1(t) < x∗

1(0) − y1(0). Therefore,

d

dt
(x∗

2(t) − y2(t)) = −(x∗
2 − y2)H2(t) + η′

1(t),

and integrating by parts gives

x∗
2(t) − y2(t) = (x∗

2(0) − y2(0)e−
R t

0
H2(r)dr +

∫ t

0

η′
1(s)e

−
R t

s
H2(r)drds

= (x∗
2(0) − y2(0)e−

R t

0
H2(s)ds + η1(t) − η1(0)e−

R t

0
H2(r)dr

−

∫ t

0

η1(s)e
−

R t

s
H2(r)drH2(s)ds.

The last two terms are negative and, as before, the exponential terms go to zero as
t → ∞. So,limt→∞ |x∗

2(t) − y2(t)| ≤ η1(t) ≤ x∗
1(0) − y1(0). However, we can
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re-scale time (do the above analysis on the interval[t/2, t] instead of[0, t]) to con-
clude thatlimt→∞ |x∗

2(t)−y2(t)| ≤ limt→∞ η1(t) ≤ limt→∞ (x∗
1(t/2) − y1(t/2)) =

0.
Now we continue down the chain in a similar manner and consider x3 and

y3. Without loss of generality we may assumex∗
2(t) > y2(t) for all time. If

x3(t) < y3(t) for all time, we do the same argument as above to conclude that
|x3(t) − y3(t)| → 0, ast → ∞. Thus, we assumex3(t) > y3(t) for all time.
The argument is the same as that above, except we now have to get control over
F2(x

∗
2(s)) − F2(y2(s)). We have

x∗
2(t) − y2(t) = x∗

2(0) − y2(0) +

∫ t

0

(F1(x
∗
1(s)) − F1(y1(s))) ds

−

∫ t

0

(F2(x
∗
2(s)) − F2(y2(s))) ds.

Rearranging gives
∫ t

0

(F2(x
∗
2(s)) − F2(y2(s))) ds = x∗

2(0) − y2(0) + η1(t).

We may define the above integral to beη2(t) and perform the same analysis as
before. In this way we continue down the chain and conclude that limt→∞ |x(t)−
y(t)| = 0, which was the desired result.

Proof of Theorem 2.8.Let N ε
1 = F−1

1 (I + M + ε), whereε < K −M . If x1(t) >
N ε

1, then by the monotonicity ofF1 we have

ẋ1(t) = I − F (x1(t)) + ξ(t)

≤ I − F (N ε
1) + ξ(t)

= −M − ε + ξ(t)

< −ε.

Therefore, independent of initial conditions,limt→∞ x1(t) < N ε
1. However,ε was

arbitrary, solimt→∞ x1(t) ≤ F−1
1 (I + M). Continuing in this manner down the

chain showslimt→∞ xi(t) ≤ F−1
i (I + M), for eachi. Thus, for larget, there

existsL > 0 such thatE|x(t)| < L. By Chebychev’s inequality we then have

1

t

∫ t

0

P{|x1(s)| > R}ds ≤
L

R
,
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which converges to zero uniformly int asR → ∞. As in the proof of Theorem
2.7, we need to consider the Markov process on the extended state spaceRn ×
Cae((−∞, 0], R). As before, we obtain tightness by using the above estimates
on the marginal of this measure in thex(t) variable since theξ(t) variable is
stationary and hence already tight. We may again use Prohorov’s Theorem to
guarantee the existence of an invariant measure. The proof of uniqueness is the
same is in the proof of Theorem 2.7.

A.4 Proof of Theorem 2.9

Proof of Theorem 2.9.We begin by showing thatlimt→∞ x1(t)/t = 0. Consider
the dynamics governingx1 whereξ(t) satisfies (11)

ẋ1 = I − F1(x1) + ξ(t). (32)

Let x̄1 = F−1(I). Then

d

dt
(x1(t) − x̄1) = I − F1(x1(t)) + ξ(t) = −

I − F1(x1(t))

x̄1 − x1(t)
(x1(t) − x̄1) + ξ(t).

SettingH(t) = I−F1(x1(t))
x̄1−x1(t)

> 0 (which is well defined sinceF1 is assumed differ-
entiable and is positive by the monotonicity ofF1) and using Duhamel’s formula
gives us

(x1(t) − x̄1) = (x1(0) − x̄1)e
−

R t

0
H(s)ds +

∫ t

0

e−
R t

s
H(r)drξ(s)ds.

Integrating by parts gives

(x1(t) − x̄1) = (x1(0) − x̄1)e
−

R t

0
H(s)ds +

∫ t

0

ξ(s)ds

+

∫ t

0

e−
R t

s
H(r)drH(s)

(
∫ s

0

ξ(r)dr

)

ds.

By the positivity ofH(t) and property (11), we then have

lim
t→∞

x1(t)

t
= lim

t→∞

1

t

∫ t

0

e−
R t

s
H(r)drH(s)

(
∫ s

0

ξ(r)dr

)

ds.
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Let ε > 0. There exists anS > 0 such thats > S implies
∣

∣

1
s

∫ s

0
ξ(r)dr

∣

∣ < ε/2.
There exists aT = T (s) > 0 such thatt > T impliessups<S

∣

∣

1
t

∫ s

0
ξ(r)dr

∣

∣ < ε/2.
Therefore, ift > max{S, T} we have that
∣

∣

∣

∣

1

t

∫ t

0

e−
R t

s
H(r)dr H(s)

(
∫ s

0

ξ(r)dr

)

ds

∣

∣

∣

∣

≤

∫ t

0

e−
R t

s
H(r)drH(s)

∣

∣

∣

∣

1

t

∫ s

0

ξ(r)dr

∣

∣

∣

∣

(1{s≤S} + 1{s>S})ds

≤ ε

∫ t

0

e−
R t

s
H(r)drH(s)ds

≤ ε.

Thus,limt→∞ x1(t)/t = 0.
Integrating equation (32), dividing byt and taking the limit ast → ∞ now

gives us

lim
t→∞

1

t

∫ t

0

F (x(s))ds = I,

which proves part 1 of Theorem 2.9 forx1.
Let G(x) = 2

∫ x

0
(F1(y) − I) dy, which, non-coincidentally, is the same func-

tion used in the proof of Theorem 2.2. We have

d

dt
G(x1(t)) = −2(F1(x1(t)) − I)2 + 2(F1(x1(t)) − I)ξ(t).

Integrating and using the inequalityab ≤ (1/2)a2 + (1/2)b2 gives

G(x1(t)) ≤ G(x1(0)) −

∫ t

0

(F1(x1(s)) − I)2ds +

∫ t

0

ξ(s)2ds.

Therefore, part 2 of Theorem 2.9 will be shown forx1 if lim inft→∞ G(x1(t))/t ≥
0. We have

lim inf
t→∞

1

t
G(x1(t)) = 2 lim inf

t→∞

1

t

∫ x1(t)

0

(F1(y) − I)
(

1{y>x̄1} + 1{y≤x̄1}

)

dy

≥ 2 lim inf
t→∞

1

t

∫ x1(t)

0

(F1(y) − I) 1{y≤x̄1}dy

≥ −2I lim
t→∞

x1(t)

t
= 0,
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so part 2 is shown forx1. Note that parts 1 and 2 of Theorem 2.9 show that
F1(x1(t)) − I satisfy condition (11). Therefore, to prove parts 1, 2, and 3for
all xi, one simply continues down the chain consideringFi(xi(t)) as the external
perturbation ofxi+1.

A.5 Proofs of Section 3

The proofs of Theorems 3.2, 3.3, 3.4, and 3.5 can be handled simultaneously.

Proof of Theorems 3.2, 3.3, 3.4, and 3.5.The key to each proof is the recognition
that the species in each complex satisfy constant multiplesof the same (stochastic)
differential equations. Mathematically this means these species can by grouped
and treated as a single substrate with a redefined kinetics. This reduces us to the
case previously studied. More explicitly, there are constantscijk anddijk such that
xj

i (t) = dijkx
k
i (t)+ cijk for all t. Thus, the species of each complex can be solved

for from knowledge of just one species from that complex. Further, a monotone
increase in one translates to a monotone increase in the others. Choosing one
species,yi, from each complex, we may redefine theFi’s (and θδ in the white
noise case) appropriately so that the vector functiony(t) satisfies either (8) or
(9) with theFi’s satisfying Assumption 2.1. Therefore, applying the theorems of
Section 2.2 completes the proof.

B Processes Used in Examples 2.4 and 2.5

In Example 2.4ξ(t) is described as a modified Ornstein-Uhlenbeck process such
that−10 ≤ ξ(t). More precisely,ξ(t) is governed by the following dynamics:

dξ(t) =

{

−ξ(t)dt + 4dB(t) if ξ(t) > −10

−ξ(t)dt if ξ(t) ≤ −10

This dynamics ensures that ifξ(0) > −10 thenξ(t) ≥ −10 for all t.
In Example 2.5,ξ(t) is built from the Ornstein-Uhlenbeck equationdξ(t) =

−ξ(t)dt + 3dB(t), with the added condition that ifξ(t) = −4 or ξ(t) = 4, then
dξ(t) = −ξ(t)dt. More precisely,ξ(t) is governed by the following dynamics:

dξ(t) =











−ξ(t)dt if ξ(t)dt ≥ 4

−ξ(t)dt + 3dB(t) if − 4 < ξ(t) < 4

−ξ(t)dt if ξ(t)dt ≤ −4
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Figures with Captions

Figure 2.1
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Caption:
The horizontal lines represent possible inputs to speciesX2 from speciesX1

and the vertical lines represent the value ofx2 that would give an equilibrium to the
system for a given input. We therefore see that minor fluctuations inF1(x1) = x1

can correspond with large fluctuations inx2.
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