1. (i) For the elliptic curve $E : y^2 = 4x^3 - g_2 x - g_3$, let $g_2, g_3 \to 0$. Show that the same geometric procedure for finding $P_1 + P_2$ on E makes the smooth points of the curve $y^2 = 4x^3$ into an abelian group isomorphic to the additive group of \mathbb{C}. Interpret this in terms of what happens to the lattice and a fundamental parallelogram.

(ii) For the same elliptic curve E, let $g_2 \to 4/3$ and $g_3 \to 8/27$. Show that this yields a curve with a nodal singularity. Show that the same geometric procedure for finding $P_1 + P_2$ on E makes the smooth points of the curve $y^2 = 4x^3 - (4/3)x - (8/27)$ into an abelian group isomorphic to the multiplicative group \mathbb{C}^\ast. Show that this is also isomorphic to the infinite cylinder \mathbb{C}/\mathbb{Z} and interpret this in terms of what happens to the lattice and a fundamental parallelogram.