1. Let E be an elliptic curve over \mathbb{F}_q.
 (i) Let d be any positive integer. By representing $E[d]$ as the kernel of an isogeny, show that $|E[d]| \leq d^2$.
 (ii) Show that $E(\mathbb{F}_q) \cong \mathbb{Z}/m \times \mathbb{Z}/mn$ for some positive integers m, n with $\gcd(m, q) = 1$. (You may quote previous homeworks.)
 (iii) Look up what the Weil pairing is. Assuming its existence, show that $q \equiv 1 \pmod{m}$.
 (iv) Either find an elliptic curve E over some prime field \mathbb{F}_p with $E(\mathbb{F}_p) \cong \mathbb{Z}/11 \times \mathbb{Z}/11$ or else show that no such p and E exist.