MATH 844: HOMEWORK 9, DUE DEC 6.

(a) Let E be an elliptic curve over \mathbb{Q} with $j(E) \neq 0$. Show that E has a Weierstrass equation over $\overline{\mathbb{Q}}$ of the form

$$y^2 + axy + y = x^3 \quad (a \in \overline{\mathbb{Q}})$$

and that $(0, 0)$ is a torsion point on E. What is its order?

(b) Let n be a positive integer and consider the problem of finding all nonzero integers u, v, w satisfying

$$(*) \quad \frac{u}{v} + \frac{v}{w} + \frac{w}{u} = n$$

Show that this amounts to finding $E_n(\mathbb{Q})$ for a certain elliptic curve E_n so long as $n \neq 3$.

(c) Show that the torsion subgroup of $E_n(\mathbb{Q})$ always has order divisible by 3. Find an n for which the torsion subgroup has order larger than 3.

(d) Show that the rank of $E_6(\mathbb{Q})$ is greater than 0. Find an upper bound for this rank. Find a non-torsion point in $E_6(\mathbb{Q})$ and the corresponding solution to $(*)$. Show that there are infinitely many solutions to $(*)$ with $n = 6$ and $u, v, w > 0$.

Typeset by AMSTeX