7. Let $y^2 = f(x)$ define an elliptic curve E over \mathbb{Q}, where $f(x) \in \mathbb{Z}[x]$ is a cubic polynomial.

(a) If E has good reduction at p, show that

$$|E(\mathbb{F}_p)| = 1 + p + \sum \left(\frac{f(x)}{p} \right)$$

where () is the Legendre symbol and the sum is over all $x \in \mathbb{F}_p$.

(b) Deduce that E is supersingular (over \mathbb{F}_p) if and only if the coefficient of x^{p-1} in $f(x)^{(p-1)/2}$ is zero. [Hint: calculate $\sum x^i$ over $x \in \mathbb{F}_p$.]

(c) Henceforth assume that $f(x) = x^3 + Dx$. Show that if $(p, 2D) = 1$, then E has good reduction at p.

(d) Show that E is supersingular (over \mathbb{F}_p) if $p \equiv 3 \pmod{4}$.

(e) Assuming that the torsion of $E(\mathbb{Q})$ injects into $E(\mathbb{F}_p)$ for $p \neq 2$, a prime of good reduction, calculate this torsion in terms of D.

(f) You should have found that $E(\mathbb{Q})$ always contains a nontrivial point P of order 2. In such a situation there is always a unique elliptic curve E' and a separable isogeny $\phi : E \to E'$ defined over \mathbb{Q} such that ker(ϕ) = {O, P}, where O is the point at infinity on E.

Show that if E' is given by $y^2 = x^3 - 4Dx$ and $\phi : E \to E'$ by

$$\phi(x, y) = (y^2/x^2, y(D - x^2)/x^2)$$

then this is such an isogeny. What is $\deg(\phi)$? [Remark: this isogeny is useful for calculating the rank of $E(\mathbb{Q})$.]