1. (i) For the elliptic curve \(E : y^2 = 4x^3 - g_2x - g_3 \), let \(g_2, g_3 \to 0 \). Show that the same geometric procedure for finding \(P_1 + P_2 \) on \(E \) makes the smooth points of the curve \(y^2 = 4x^3 \) into an abelian group isomorphic to the additive group of \(\mathbb{C} \). Interpret this in terms of what happens to the lattice and a fundamental parallelogram.

(ii) For the same elliptic curve \(E \), let \(g_2 \to 4/3 \) and \(g_3 \to 8/27 \). Show that this yields a curve with a nodal singularity. Show that the same geometric procedure for finding \(P_1 + P_2 \) on \(E \) makes the smooth points of the curve \(y^2 = 4x^3 - (4/3)x - (8/27) \) into an abelian group isomorphic to the multiplicative group \(\mathbb{C}^* \). Show that this is also isomorphic to the infinite cylinder \(\mathbb{C}/\mathbb{Z} \) and interpret this in terms of what happens to the lattice and a fundamental parallelogram.

2. (i) Let \(K \) be a field of characteristic two. Let \(E \) be the curve \(y^2 + xy = x^3 + ax^2 + b \), where \(a, b \in K, b \neq 0 \). Show that \(E \) is an elliptic curve. If \(P \) is the point \((u, v) \) on \(E \), find a formula for \(2P \).

(ii) For \(K \) and \(E \) as in (i), find \(E[2], K(E[2]), E[4], \) and \(K(E[4]) \). What is \([K(E[4]) : K]\) and is it always a separable extension?