25. Let G be a finite group and A a subgroup of its automorphism group such that $([G], |A|) = 1$. Suppose that $(G_i : 0 \leq i \leq n)$ is an A-invariant normal series for G such that A centralizes (i.e. acts trivially on) G_{i+1}/G_i for $0 \leq i < n$. Show that A centralizes G (so $A = 1$). Produce a counterexample when $([G], |A|) \neq 1$.

HINT: Reduce to the case when A is a p-group and look at orbit sizes modulo p.

26. Let G act transitively on set X, $x \in X$, $H = G_x$, and $K \leq H$. Let S be the subset of X of elements fixed by K. Show that $N_G(K)$ is transitive on S if and only if $K^G \cap H = K^H$.

27. Show that every group of order 30 is isomorphic to one and only one of the following groups: $C_{30}, C_5 \times D_6, C_3 \times D_{10}, D_{30}$.

HINT: Show that G is an extension of C_{15} by C_2.

28. Show that for every integer $n \geq 1$ there exists a solvable finite group of derived length n (i.e. $G^{(n-1)} \neq G^{(n)} = 1$).

HINT: Show that if G is a finite group of derived length n, then the wreath product of G with C_2, $G \ wr C_2$, has derived length $n + 1$.