33. Let \(G = \langle x, y \mid x^3 = y^3 = (xy)^3 = 1 \rangle \). Show that \(G \) is the semidirect product of \(A \) by \(\langle t \rangle \), where \(A = \langle a \rangle \times \langle b \rangle \) is the direct product of two infinite cyclic groups, \(t \) has order 3, and the action of \(t \) is given by \(a^t = b, b^t = a^{-1}b^{-1} \).

Hint: Show that \(\langle xyx, x^2y \rangle \) is a normal abelian subgroup.

34. Let \(G \) be a nonabelian simple group and \(\tilde{G} \) its universal covering group. Show that \(\text{Aut}(G) \cong \text{Aut}(\tilde{G}) \).

35. Let \((G_i : i \in I) \) be perfect groups and \(\tilde{G}_i \) the universal covering group of \(G_i \). Show that the universal covering group of the direct product \(G \) of the groups \(G_i \) is the direct product of the covering groups \(\tilde{G}_i \) and hence that the Schur multiplier of \(G \) is the direct product of the Schur multipliers of the groups \(G_i \).

36. Show that a cyclic group has no nontrivial central extensions. Find all central extensions of the Klein 4-group \(C_2 \times C_2 \).