Eulerian and Lagrangian Pictures of Mixing

Jean-Luc Thiffeault
Department of Mathematics
Imperial College London

with
Steve Childress
Courant Institute of Mathematical Sciences
New York University

http://www.ma.imperial.ac.uk/~jeanluc
Experiment of Rothstein et al.: Persistent Pattern

Disordered array of magnets with oscillatory current drive a thin layer of electrolytic solution.

periods $2, 20, 50, 50.5$

[Rothstein, Henry, and Gollub, Nature **401**, 770 (1999)]
Evolution of Pattern

- “Striations”
- Smoothed by diffusion
- Eventually settles into “pattern” (eigenfunction)
Local vs Global Regimes of Mixing

Local theory:

• Based on distribution of Lyapunov exponents.
Local vs Global Regimes of Mixing

Local theory:

- Based on distribution of Lyapunov exponents.

- [Antonsen et al., Phys. Fluids (1996)]
 Average over angles
- [Balkovsky and Fouxon, PRE (1999)]
 Statistical model
- [Son, PRE (1999)]
 Statistical model
Local vs Global Regimes of Mixing

Local theory:

• Based on distribution of Lyapunov exponents.

• [Antonsen et al., Phys. Fluids (1996)]
 [Balkovsky and Fouxon, PRE (1999)]
 [Son, PRE (1999)]

Global theory:

• Eigenfunction of advection–diffusion operator.
Local vs Global Regimes of Mixing

Local theory:

• Based on distribution of Lyapunov exponents.

• [Antonsen et al., Phys. Fluids (1996)] Average over angles
 [Balkovsky and Fouxon, PRE (1999)] Statistical model
 [Son, PRE (1999)] Statistical model

Global theory:

• Eigenfunction of advection–diffusion operator.

• [Pierrehumbert, Chaos Sol. Frac. (1994)] Strange eigenmode
 [Fereday et al., Wonhas and Vassilicos, PRE (2002)] Baker’s map
 [Sukhatme and Pierrehumbert, PRE (2002)]
 [Fereday and Haynes (2003)] Unified description
Local vs Global Regimes of Mixing

Local theory:

- Based on distribution of Lyapunov exponents.
- [Antonsen et al., Phys. Fluids (1996)]
- [Balkovsky and Fouxon, PRE (1999)]
- [Son, PRE (1999)]

Global theory:

- Eigenfunction of advection–diffusion operator.
- So far, local theories are **Lagrangian** and global theories are **Eulerian**.
Local vs Global Regimes of Mixing

Local theory:

• Based on distribution of Lyapunov exponents.

• [Antonsen et al., Phys. Fluids (1996)] Average over angles
 [Balkovsky and Fouxon, PRE (1999)] Statistical model
 [Son, PRE (1999)] Statistical model

Global theory:

• Eigenfunction of advection–diffusion operator.

• So far, local theories are Lagrangian and global theories are Eulerian.

• Today: Try to connect the two pictures.
Local vs Global Regimes of Mixing

Local theory:

- Based on distribution of Lyapunov exponents.
- [Antonsen et al., Phys. Fluids (1996)]
- [Balkovsky and Fouxon, PRE (1999)]
- [Son, PRE (1999)]
- Average over angles
- Statistical model
- Statistical model

Global theory:

- Eigenfunction of advection–diffusion operator.
- So far, local theories are Lagrangian and global theories are Eulerian.
- Today: Try to connect the two pictures.
- Cannot often do this! Map allows (mostly) analytical results.
A Bit of History

Eulerian *(spatial)* coordinates are due to...
Eulerian (\textit{spatial}) coordinates are due to...

d’Alembert
A Bit of History

... and Lagrangian (material) coordinates to...

d’Alembert
A Bit of History

... and Lagrangian (material) coordinates to...
The people responsible for the confusion...
The people responsible for the confusion...

Lagrange

Dirichlet

(See footnote in Truesdell, *The Kinematics of Vorticity.*)
The Map

We consider a diffeomorphism of the 2-torus $\mathbb{T}^2 = [0, 1]^2$,

$$\mathcal{M}(x) = \mathbb{M} \cdot x + \phi(x),$$

where

$$\mathbb{M} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}; \quad \phi(x) = \frac{\varepsilon}{2\pi} \begin{pmatrix} \sin 2\pi x_1 \\ \sin 2\pi x_1 \end{pmatrix};$$

$\mathbb{M} \cdot x$ is the **Arnold cat map**.

The map \mathcal{M} is **area-preserving and chaotic**.

For $\varepsilon = 0$ the stretching of fluid elements is **homogeneous in space**.

For small ε the system is still **uniformly hyperbolic**.
Advection and Diffusion: Eulerian Viewpoint

Iterate the map and apply the heat operator to a scalar field (which we call temperature for concreteness) distribution \(\theta^{(i-1)}(x) \),

\[
\theta^{(i)}(x) = \mathcal{H}_\kappa \theta^{(i-1)}(\mathcal{M}^{-1}(x))
\]

where \(\kappa \) is the diffusivity, with the heat operator \(\mathcal{H}_\kappa \) and kernel \(h_\kappa \),

\[
\mathcal{H}_\kappa \theta(x) := \int_{\mathbb{T}^2} h_\kappa(x - y) \theta(y) \, dy;
\]

\[
h_\kappa(x) = \sum_k \exp(2\pi ik \cdot x - k^2 \kappa).
\]

In other words: advect instantaneously and then diffuse for one unit of time.
Transfer Matrix

Fourier expand $\theta^{(i)}(x)$,

$$\theta^{(i)}(x) = \sum_k \hat{\theta}_k^{(i)} e^{2\pi i k \cdot x}.$$

The effect of advection and diffusion becomes

$$\hat{\theta}_k^{(i)}(x) = \sum_q T_{kq} \hat{\theta}_q^{(i-1)},$$

with the transfer matrix,

$$T_{kq} := \int_{T^2} \exp \left(2\pi i (q \cdot x - k \cdot M(x)) - \kappa q^2 \right) \, dx,$$

$$= e^{-\kappa q^2} \delta_{0,Q_2} i^{Q_1} J_{Q_1} \left((k_1 + k_2) \varepsilon\right), \quad Q := k \cdot M - q,$$

where the J_Q are the Bessel functions of the first kind.
In the absence of diffusion ($\kappa = 0$) the variance $\sigma^{(i)}$

$$\sigma^{(i)} := \int_{\mathbb{T}^2} |\theta^{(i)}(\boldsymbol{x})|^2 \, d\boldsymbol{x} = \sum_k \sigma_k^{(i)}, \quad \sigma_k^{(i)} := |\hat{\theta}_k^{(i)}|^2$$

is preserved. (We assume the spatial mean of θ is zero.) For $\kappa > 0$ the variance decays.

We consider the case $\kappa \ll 1$, of greatest practical interest.
In the absence of diffusion ($\kappa = 0$) the variance $\sigma^{(i)}$

$$\sigma^{(i)} := \int_{\mathbb{T}^2} |\theta^{(i)}(\bm{x})|^2 \, d\bm{x} = \sum_{\kappa} \sigma^{(i)}_{\kappa}, \quad \sigma^{(i)}_{\kappa} := |\hat{\theta}^{(i)}_{\kappa}|^2$$

is preserved. (We assume the spatial mean of θ is zero.)

For $\kappa > 0$ the variance decays.

We consider the case $\kappa \ll 1$, of greatest practical interest.

Three phases:

- The variance is initially constant;
In the absence of diffusion ($\kappa = 0$) the variance $\sigma^{(i)}$

$$\sigma^{(i)} := \int_{\mathbb{T}^2} |\theta^{(i)}(\mathbf{x})|^2 \, d\mathbf{x} = \sum_k \sigma^{(i)}_k, \quad \sigma^{(i)}_k := |\hat{\theta}^{(i)}_k|^2$$

is preserved. (We assume the spatial mean of θ is zero.)

For $\kappa > 0$ the variance decays.

We consider the case $\kappa \ll 1$, of greatest practical interest.

Three phases:

- The variance is initially constant;
- It then undergoes a rapid superexponential decay;
Variance: A Measure of Mixing

In the absence of diffusion ($\kappa = 0$) the variance $\sigma^{(i)}$

$$\sigma^{(i)} := \int_{\mathbb{T}^2} |\theta^{(i)}(\mathbf{x})|^2 \, d\mathbf{x} = \sum_k \sigma_k^{(i)} , \quad \sigma_k^{(i)} := |\hat{\theta}_k^{(i)}|^2$$

is preserved. (We assume the spatial mean of θ is zero.)

For $\kappa > 0$ the variance decays.

We consider the case $\kappa \ll 1$, of greatest practical interest.

Three phases:

- The variance is initially constant;
- It then undergoes a rapid superexponential decay;
- $\theta^{(i)}$ settles into an eigenfunction of the A–D operator that sets the exponential decay rate.
Decay of Variance

\[\varepsilon = 10^{-3} \]

\[e^{-15.2i} \]

\[\kappa = 10 \]

\[10^{-5} \]

\[10^{-2} \]

\[0.5 \]

Eulerian and Lagrangian Pictures of Mixing – p.11/30
Variance: 5 iterations for $\varepsilon = 0.3$ and $\kappa = 10^{-3}$
Eigenfunction for $\varepsilon = 0.3$ and $\kappa = 10^{-3}$

(Renormalised by decay rate)
Decay Rate

For small ε, the dominant Bessel function is J_1, so the decay factor μ^2 for the variance is given by

$$\mu = \left| T_{(0 \ 1), (0 \ 1)} \right| = e^{-\kappa} J_1 (\varepsilon) = \frac{1}{2} \varepsilon + \mathcal{O}(\kappa \varepsilon, \varepsilon^2).$$

Hence, for small ε the decay rate is limited by the $(0 \ 1)$ mode. The decay rate is independent of κ for $\kappa \to 0$.
Decay Rate

For small ε, the dominant Bessel function is J_1, so the decay factor μ^2 for the variance is given by

$$\mu = |\mathbb{T}_{(0 \ 1),(0 \ 1)}| = e^{-\kappa} J_1 (\varepsilon) = \frac{1}{2} \varepsilon + O(\kappa \varepsilon, \varepsilon^2).$$

Hence, for small ε the decay rate is limited by the $(0 \ 1)$ mode. The decay rate is independent of κ for $\kappa \to 0$.

This is an analogous result to the baker’s map [Fereday et al., Wonhas and Vassilicos, PRE (2002)]. Here the agreement with numerical results is good for ε quite close to unity.
For small ε, the dominant Bessel function is J_1, so the decay factor μ^2 for the variance is given by

$$
\mu = \left| \mathbb{T}_{(0,1),(0,1)} \right| = e^{-\kappa} J_1(\varepsilon) = \frac{1}{2} \varepsilon + \mathcal{O}(\kappa \varepsilon, \varepsilon^2).
$$

Hence, for small ε the decay rate is limited by the $(0\ 1)$ mode. The decay rate is independent of κ for $\kappa \to 0$.

This is an analogous result to the baker’s map [Fereday et al., Wonhas and Vassilicos, PRE (2002)]. Here the agreement with numerical results is good for ε quite close to unity.

In the baker’s map the discontinuity imply a slow convergence of the Fourier modes. However, it is a one-dimensional problem.
Decay Rate as $\kappa \to 0$
Lagrangian Viewpoint

- Puzzle: Superexponential decay in Lagrangian coordinates.
Lagrangian Viewpoint

- Puzzle: Superexponential decay in Lagrangian coordinates.
- Fix this by averaging over initial conditions: local argument (Antonsen et al., 1996). No “pattern” possible.
Puzzle: Superexponential decay in Lagrangian coordinates.

Fix this by averaging over initial conditions: local argument (Antonsen et al., 1996). No “pattern” possible.

How to reconcile? Try to do analytically as far as feasible, for our map with small ε.
Puzzle: Superexponential decay in Lagrangian coordinates.

Fix this by averaging over initial conditions: local argument (Antonsen et al., 1996). No “pattern” possible.

How to reconcile? Try to do analytically as far as feasible, for our map with small ε.

Discover what large-scale eigenfunction looks like in Lagrangian coordinates (hint: they are not eigenfunctions!).
Puzzle: Superexponential decay in Lagrangian coordinates.

Fix this by averaging over initial conditions: local argument (Antonsen et al., 1996). No “pattern” possible.

How to reconcile? Try to do analytically as far as feasible, for our map with small ε.

Discover what large-scale eigenfunction looks like in Lagrangian coordinates (hint: they are not eigenfunctions!).

Why do this? The two viewpoints are a priori unrelated, because they for these highly-chaotic systems they are connected by an extremely convoluted transformation!
Lagrangian Viewpoint

- Puzzle: Superexponential decay in Lagrangian coordinates.
- Fix this by averaging over initial conditions: local argument (Antonsen et al., 1996). No “pattern” possible.
- How to reconcile? Try to do analytically as far as feasible, for our map with small ε.
- Discover what large-scale eigenfunction looks like in Lagrangian coordinates (hint: they are not eigenfunctions!).
- Why do this? The two viewpoints are a priori unrelated, because they for these highly-chaotic systems they are connected by an extremely convoluted transformation!
- But must give same answer for a scalar quantity like the decay rate.
Advection-diffusion (A–D) equation:

\[\partial_t \theta + \mathbf{v} \cdot \partial_x \theta = \kappa \partial_x^2 \theta. \]
Advection-diffusion (A–D) equation:

\[
\partial_t \theta + \mathbf{v} \cdot \partial_x \theta = \kappa \partial_x^2 \theta.
\]

We define Lagrangian coordinates \(\mathbf{X} \) by

\[
\dot{\mathbf{x}} = \mathbf{v}(\mathbf{x}, t), \quad \mathbf{x}(0) = \mathbf{X}.
\]
Advection-diffusion (A–D) equation:

\[\partial_t \theta + \mathbf{v} \cdot \partial_x \theta = \tilde{\kappa} \partial_{xx}^2 \theta. \]

We define Lagrangian coordinates \(\mathbf{X} \) by

\[\dot{\mathbf{x}} = \mathbf{v}(\mathbf{x}, t), \quad \mathbf{x}(0) = \mathbf{X}. \]

Transform A–D equation to Lagrangian coordinates,

\[\dot{\theta} = \partial_{\mathbf{X}} (\mathbb{D} \cdot \partial_{\mathbf{X}} \theta). \]

Anisotropic diffusion tensor, in terms of metric or Cauchy–Green strain tensor:

\[\mathbb{D} := \tilde{\kappa} \mathbf{g}^{-1}; \quad g_{pq} := \sum_i \frac{\partial x^i}{\partial X^p} \frac{\partial x^i}{\partial X^q}. \]
Velocity field doesn’t enter the Lagrangian equation directly: regard the time dependence in \mathbb{D} as given by map rather than flow. The solution of the A–D equation in Fourier space is then

$$
\hat{\theta}^{(i)}_{k} = \sum_{\ell} \exp(G^{(i)})_{k\ell} \hat{\theta}^{(i-1)}_{\ell},
$$

where i denotes the ith iterate of the map, and

$$
G^{(i)}_{k\ell} = -4\pi^2 T \int_{\mathbb{T}^2} (k \cdot \mathbb{D}^{(i)} \cdot \ell) e^{-2\pi i (k-\ell) \cdot X} d^2 X.
$$
Velocity field doesn’t enter the Lagrangian equation directly: regard the time dependence in \mathcal{D} as given by map rather than flow. The solution of the A–D equation in Fourier space is then

$$\hat{\theta}^{(i)}_k = \sum_\ell \exp(\mathcal{G}^{(i)}_{k\ell}) \hat{\theta}^{(i-1)}_\ell,$$

where i denotes the ith iterate of the map, and

$$\mathcal{G}^{(i)}_{k\ell} = -4\pi^2 T \int_{\mathbb{T}^2} (k \cdot \mathcal{D}^{(i)} \cdot \ell) e^{-2\pi i (k-\ell) \cdot X} \, d^2 X.$$

This is an exact result, but the great difficulty lies in calculating the exponential of $\mathcal{G}^{(i)}$. We shall accomplish this perturbatively.
\[\mathcal{M}(x) = \mathbb{M} \cdot x + \phi(x), \]
\[\mathbb{M} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}; \quad \phi(x) = \frac{\varepsilon}{2\pi} \begin{pmatrix} \sin 2\pi x_1 \\ \sin 2\pi x_1 \end{pmatrix}; \]

The eigenvalues of \(\mathbb{M} \) are
\[\Lambda_u = \Lambda = \frac{1}{2}(3 + \sqrt{5}) = \cot^2 \theta, \quad \Lambda_s = \Lambda^{-1} = \frac{1}{2}(3 - \sqrt{5}) = \tan^2 \theta \]
and the corresponding eigenvectors,
\[(\hat{u} \ \hat{s}) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \]
\[\mathcal{M}(\bm{x}) = \mathbb{M} \cdot \bm{x} + \phi(\bm{x}), \]

\[\mathbb{M} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}; \quad \phi(\bm{x}) = \frac{\varepsilon}{2\pi} \begin{pmatrix} \sin 2\pi x_1 \\ \sin 2\pi x_1 \end{pmatrix}; \]

The eigenvalues of \(\mathbb{M} \) are

\[\Lambda_u = \Lambda = \frac{1}{2}(3 + \sqrt{5}) = \cot^2 \theta, \quad \Lambda_s = \Lambda^{-1} = \frac{1}{2}(3 - \sqrt{5}) = \tan^2 \theta \]

and the corresponding eigenvectors,

\[(\hat{\bm{u}} \quad \hat{\bm{s}}) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \]

\(\Lambda^{-1} \) Contract

\(\Lambda \) Stretch
The coefficients of expansion and characteristic directions for the linear cat map are uniform in space. Perturb off this.

To leading order in ε, the coefficient of expansion is written as

$$
\Lambda^{(i)}_\varepsilon = \Lambda^i (1 + \varepsilon \eta^{(i)})
$$

where Λ is the coefficient of expansion for the unperturbed cat map; the perturbed eigenvectors are similarly written

$$
\hat{u}^{(i)}_\varepsilon = \hat{u} + \varepsilon \zeta^{(i)} \hat{s}, \quad \hat{s}^{(i)}_\varepsilon = \hat{s} - \varepsilon \zeta^{(i)} \hat{u}.
$$
The coefficients of expansion and characteristic directions for the linear cat map are uniform in space. Perturb off this.

To leading order in ε, the coefficient of expansion is written as

$$\Lambda^{(i)}_{\varepsilon} = \Lambda^i (1 + \varepsilon \eta^{(i)})$$

where Λ is the coefficient of expansion for the unperturbed cat map; the perturbed eigenvectors are similarly written

$$\hat{u}^{(i)}_{\varepsilon} = \hat{u} + \varepsilon \zeta^{(i)} \hat{s}, \quad \hat{s}^{(i)}_{\varepsilon} = \hat{s} - \varepsilon \zeta^{(i)} \hat{u}.$$

Simple application of matrix perturbation theory to Jacobian matrix of the map. The symmetrised Jacobian is the metric:

$$g^{(i)}_{\varepsilon} = [\Lambda^{(i)}_{\varepsilon}]^2 \hat{u}^{(i)}_{\varepsilon} \hat{u}^{(i)}_{\varepsilon} + [\Lambda^{(i)}_{\varepsilon}]^{-2} \hat{s}^{(i)}_{\varepsilon} \hat{s}^{(i)}_{\varepsilon}.$$
Perturbation Results

\[\Lambda^{(i)}_{\varepsilon} = \Lambda^{i} (1 + \varepsilon \eta^{(i)}), \quad \hat{\mathbf{u}}^{(i)}_{\varepsilon} = \hat{\mathbf{u}} + \varepsilon \zeta^{(i)} \hat{\mathbf{s}}, \]

\[\eta^{(i)} = \frac{1}{2} \sin 2\theta \sum_{j=0}^{i-1} \cos \left(2\pi (M^{j} \cdot \mathbf{X})_{1} \right); \]

\[\zeta^{(i)} = \frac{1}{\Lambda^{2i} - \Lambda^{-2i}} (\zeta^{(i)}_{+} + \zeta^{(i)}_{-}), \]

\[\zeta^{(i)}_{\pm} = \frac{1}{2} (\cos 2\theta \mp 1) \sum_{j=0}^{i-1} \Lambda^{\pm2(i-j)} \cos \left(2\pi (M^{j} \cdot \mathbf{X})_{1} \right). \]

Observe that the perturbation to the eigenvectors converges exponentially, as required.
Perturbed Metric Tensor

\[\mathbb{D}^{(i)} = \kappa \left[g^{(i)}_{\varepsilon} \right]^{-1}; \quad \left[g^{(i)}_{\varepsilon} \right]^{-1} = \left[\Lambda^{(i)}_{\varepsilon} \right]^{2} \hat{s}^{(i)} \hat{s}^{(i)} + \left[\Lambda^{(i)}_{\varepsilon} \right]^{-2} \hat{u}^{(i)} \hat{u}^{(i)}. \]

To leading order in \(\varepsilon \), we have

\[\left[g^{(i)}_{\varepsilon} \right]^{-1} = \Lambda^{2i} \hat{s} \hat{s} + \Lambda^{-2i} \hat{u} \hat{u} + 2\varepsilon \eta^{(i)} (\Lambda^{2i} \hat{s} \hat{s} - \Lambda^{-2i} \hat{u} \hat{u}) - \varepsilon \zeta^{(i)} (\Lambda^{2i} - \Lambda^{-2i}) (\hat{u} \hat{s} + \hat{s} \hat{u}), \]

where the only functions of \(X \) are \(\eta^{(i)} \) and \(\zeta^{(i)} \).
Perturbed Metric Tensor

\[\mathbb{D}^{(i)} = \kappa \left[g^{(i)}_\varepsilon \right]^{-1}; \quad \left[g^{(i)}_\varepsilon \right]^{-1} = \left[\Lambda^{(i)}_\varepsilon \right]^2 \hat{s}^{(i)} \hat{s}^{(i)} + \left[\Lambda^{(i)}_\varepsilon \right]^{-2} \hat{u}^{(i)} \hat{u}^{(i)}. \]

To leading order in \(\varepsilon \), we have

\[\left[g^{(i)}_\varepsilon \right]^{-1} = \Lambda^{2i} \hat{s} \hat{s} + \Lambda^{-2i} \hat{u} \hat{u} + 2\varepsilon \eta^{(i)} \left(\Lambda^{2i} \hat{s} \hat{s} - \Lambda^{-2i} \hat{u} \hat{u} \right) - \varepsilon \zeta^{(i)} \left(\Lambda^{2i} - \Lambda^{-2i} \right) \left(\hat{u} \hat{s} + \hat{s} \hat{u} \right), \]

where the only functions of \(X \) are \(\eta^{(i)} \) and \(\zeta^{(i)} \).

Recall the solution to the A–D equation:

\[\hat{\theta}^{(i)}_{k} = \sum_{\ell} \exp \left(g^{(i)}_{k\ell} \right) \hat{\theta}^{(i-1)}_{\ell}. \]
The Exponent $G^{(i)}$

\[
G^{(i)}_{k\ell} = -4\pi^2 T \int_{T^2} (\mathbf{k} \cdot \mathbf{D}^{(i)} \cdot \mathbf{l}) e^{-2\pi i (k_0 - \ell_0) \cdot X} d^2 X \\
= A^{(i)}_{k\ell} + \varepsilon B^{(i)}_{k\ell}
\]
The Exponent $\mathcal{G}^{(i)}$

\[\mathcal{G}_{k\ell}^{(i)} = -4\pi^2 T \int_{\mathbb{T}^2} (k \cdot \mathbb{D}^{(i)} \cdot \ell) \, e^{-2\pi i (k-\ell) \cdot X} \, d^2 X \]

\[= A_{k\ell}^{(i)} + \varepsilon B_{k\ell}^{(i)} \]

where

\[A_{k\ell}^{(i)} = -\kappa \left(\Lambda^{2i} k_s^2 + \Lambda^{-2i} k_u^2 \right) \delta_{k\ell}, \quad \kappa := 4\pi^2 \tilde{\kappa} T \]

\[B_{k\ell}^{(i)} = -\kappa \left(2 \left(\Lambda^{2i} k_s \ell_s - \Lambda^{-2i} k_u \ell_u \right) \eta_{k\ell}^{(i)} \right. \]

\[- \left(k_u \ell_s + k_s \ell_u \right) \left(\zeta_{-k\ell}^{(i)} + \zeta_{k\ell}^{(i)} \right) \left. \right) \]

with $k_u := (k \cdot \hat{u})$, $k_s := (k \cdot \hat{s})$.

Eulerian and Lagrangian Pictures of Mixing – p.23/30
The Exponent $G^{(i)} = A^{(i)} + \varepsilon B^{(i)}$ (cont’d)

The diagonal part, $A^{(i)}$, inexorably leads to superexponential decay of variance, because it grows exponentially. Upon making use of the Fourier-transformed $\zeta^{(i)}$ and $\eta^{(i)}$, we find

$$B_{k\ell}^{(i)} = -\frac{1}{2} \kappa \sum_{j=0}^{i-1} B_{k\ell}^{ij} \left(\delta_{k,\ell+\hat{e}_1 \cdot Mj} + \delta_{k,\ell-\hat{e}_1 \cdot Mj} \right)$$

$$B_{k\ell}^{ij} = \sin 2\theta \left(\Lambda^{2i} k_s \ell_s - \Lambda^{-2i} k_u \ell_u \right)$$

$$+ (k_u \ell_s + k_s \ell_u) \left(\Lambda^{2(i-j)} \sin^2 \theta - \Lambda^{-2(i-j)} \cos^2 \theta \right).$$

So $B^{(i)}$ is not diagonal (it couples different modes to each other).

\longrightarrow Dispersive in Fourier space.
But can we Compute the Exponential, $\exp(G^{(i)})$?

To leading order in ε, for A diagonal, we have

$$[\exp(A^{(i)} + \varepsilon B^{(i)})]_{k\ell} = e^{A_{kk}^{(i)}} \delta_{k\ell} + \varepsilon E_{k\ell}^{(i)}; \quad E_{k\ell}^{(i)} = B_{k\ell}^{(i)} \frac{e^{A_{kk}^{(i)}} - e^{A_{\ell\ell}^{(i)}}}{A_{kk}^{(i)} - A_{\ell\ell}^{(i)}}.$$

- From Eulerian considerations, we know we must avoid superexponential decay of $\theta^{(i)}$ for long times.
But can we Compute the Exponential, $\exp(G^{(i)})$?

To leading order in ε, for A diagonal, we have

$$ [\exp(A^{(i)} + \varepsilon B^{(i)})]_{k\ell} = e^{A_{kk}^{(i)}} \delta_{k\ell} + \varepsilon E_{k\ell}^{(i)}; \quad E_{k\ell}^{(i)} = B_{k\ell}^{(i)} \frac{e^{A_{kk}^{(i)}} - e^{A_{\ell\ell}^{(i)}}}{A_{kk}^{(i)} - A_{\ell\ell}^{(i)}}. $$

- From Eulerian considerations, we know we must avoid superexponential decay of $\theta^{(i)}$ for long times.
- However, the Λ^{2i} term in $A_{kk}^{(i)}$ precludes any optimism about the situation: it dooms us to a grim superexponential death.
But can we Compute the Exponential, $\exp(\mathcal{G}^{(i)})$?

To leading order in ε, for A diagonal, we have

$$[\exp(A^{(i)} + \varepsilon B^{(i)})]_{k\ell} = e^{A_{kk}^{(i)}} \delta_{k\ell} + \varepsilon E_{k\ell}^{(i)}; \quad E_{k\ell}^{(i)} = B_{k\ell}^{(i)} \frac{e^{A_{kk}^{(i)}} - e^{A_{\ell\ell}^{(i)}}}{A_{kk}^{(i)} - A_{\ell\ell}^{(i)}}.$$

- From Eulerian considerations, we know we must avoid superexponential decay of $\theta^{(i)}$ for long times.
- However, the Λ^{2i} term in $A_{kk}^{(i)}$ precludes any optimism about the situation: it dooms us to a grim superexponential death.
- For $\varepsilon = 0$, this is indeed what happens. But for a finite value of ε, the E term breaks the diagonality of \mathcal{G}, so that given some initial set of wavevectors, the variance contained in those modes can be transferred elsewhere.
A Few Words about Numerics

- Impractical to take the matrix exponential for large matrices.
• Impractical to take the matrix exponential for large matrices.
• Perturbative expansion sidesteps this problem.

\[\exp(-i k^2 u s) \]
A Few Words about Numerics

- Impractical to take the matrix exponential for large matrices.
- Perturbative expansion sidesteps this problem.
- However, still need to go to extremely high wavenumber
 ... impossible to use mesh, since would have to refine
 exponentially fast.
A Few Words about Numerics

- Impractical to take the matrix exponential for large matrices.
- Perturbative expansion sidesteps this problem.
- However, still need to go to extremely high wavenumber ... impossible to use mesh, since would have to refine exponentially fast.
- So keep track of only the required wavevectors: their number should grow exponentially ... but it doesn’t!
Impractical to take the matrix exponential for large matrices.

Perturbative expansion sidesteps this problem.

However, still need to go to extremely high wavenumber . . . impossible to use mesh, since would have to refine exponentially fast.

So keep track of only the required wavevectors: their number should grow exponentially . . . but it doesn’t!

This is because as \(i \) increases, most modes are damped as

\[
\exp \left(-\kappa \left(\Lambda^{2i} k_s^2 + \Lambda^{-2i} k_u^2 \right) \right),
\]

except for those that have very small \(k_s = (k \cdot \hat{s}) \), i.e., those that are aligned with \(\hat{u} \).
A Few Words about Numerics

- Impractical to take the matrix exponential for large matrices.
- Perturbative expansion sidesteps this problem.
- However, still need to go to extremely high wavenumber . . . impossible to use mesh, since would have to refine exponentially fast.
- So keep track of only the required wavevectors: their number should grow exponentially . . . but it doesn’t!
- This is because as \(i \) increases, most modes are damped as
 \[
 \exp\left(-\kappa \left(\Lambda^{2i} k_s^2 + \Lambda^{-2i} k_u^2\right)\right),
 \]
 except for those that have very small \(k_s = (k \cdot \hat{s}) \), i.e., those that are aligned with \(\hat{u} \).
- Just let computer take care of pruning via underflow!
A Few Words about Numerics

- Impractical to take the matrix exponential for large matrices.
- Perturbative expansion sidesteps this problem.
- However, still need to go to extremely high wavenumber ... impossible to use mesh, since would have to refine exponentially fast.
- So keep track of only the required wavevectors: their number should grow exponentially ... but it doesn’t!
- This is because as i increases, most modes are damped as $\exp \left(-\kappa \left(\Lambda^{2i} k_s^2 + \Lambda^{-2i} k_u^2 \right) \right)$, except for those that have very small $k_s = (k \cdot \hat{s})$, i.e., those that are aligned with \hat{u}.
- Just let computer take care of pruning via underflow!
- The surviving modes need to become more and more aligned with \hat{u} as time goes on.
Comparison: Eulerian and Lagrangian Views

![Graph showing comparison between Eulerian and Lagrangian views.](image)

- **Graph**: Comparison of variance over iterations for different diffusion coefficients ($D=0.1$, $D=0.01$, $D=0.001$, $D=0.0001$) and Lagrangian view. The variance decreases significantly, indicating effective mixing.

- **Key Points**:
 - The plots demonstrate how variance reduces as iterations increase.
 - The diffusion coefficient D significantly affects the rate of variance reduction.

- **Legend**:
 - Green: $D=0.1$
 - Blue: $D=0.01$
 - Purple: $D=0.001$
 - Cyan: $D=0.0001$
 - Red: Lagrangian view

- **Equation**: $\varepsilon = 10^{-4}$

Eulerian and Lagrangian Pictures of Mixing – p.27/30
iteration $= 4$

$\kappa = 0.01$
Rescaled Pattern for $i = 6, \ldots, 12$

$\varepsilon = 10^{-4}$

$\kappa = 0.1$
Conclusions

- In the Eulerian view, large-scale eigenmode dominates exponential phase, as for baker’s map.
Conclusions

- In the Eulerian view, large-scale eigenmode dominates exponential phase, as for baker’s map.
- Global structure matters!
Conclusions

• In the Eulerian view, large-scale eigenmode dominates exponential phase, as for baker’s map.

• Global structure matters!

• It is not possible to simply transform the Eulerian result to Lagrangian coordinates, since orbits are chaotic . . . must solve Lagrangian problem from the start.
Conclusions

- In the Eulerian view, large-scale eigenmode dominates exponential phase, as for baker’s map.
- **Global structure matters!**
- It is not possible to simply transform the Eulerian result to Lagrangian coordinates, since orbits are chaotic . . . must solve Lagrangian problem from the start.
- There exists a kind of pattern in Lagrangian coordinates (not eigenfunction) that is cascading to large wavenumbers.
Conclusions

• In the Eulerian view, large-scale eigenmode dominates exponential phase, as for baker’s map.

• **Global structure matters!**

• It is not possible to simply transform the Eulerian result to Lagrangian coordinates, since orbits are chaotic . . . must solve Lagrangian problem from the start.

• There exists a kind of pattern in Lagrangian coordinates (**not** eigenfunction) that is **cascading** to large wavenumbers.

• Pattern confined to dominant mode in Eulerian coordinates, but dispersed in Lagrangian space.
Conclusions

- In the Eulerian view, large-scale eigenmode dominates exponential phase, as for baker’s map.
- **Global structure matters!**
- It is not possible to simply transform the Eulerian result to Lagrangian coordinates, since orbits are chaotic . . . must solve Lagrangian problem from the start.
- There exists a kind of pattern in Lagrangian coordinates (not eigenfunction) that is **cascading** to large wavenumbers.
- Pattern confined to dominant mode in Eulerian coordinates, but dispersed in Lagrangian space.
- Could the numerical economy be scaled to more difficult problems?
Conclusions

• In the Eulerian view, large-scale eigenmode dominates exponential phase, as for baker’s map.

• **Global structure matters!**

• It is not possible to simply transform the Eulerian result to Lagrangian coordinates, since orbits are chaotic . . . must solve Lagrangian problem from the start.

• There exists a kind of pattern in Lagrangian coordinates (not eigenfunction) that is **cascading** to large wavenumbers.

• Pattern confined to dominant mode in Eulerian coordinates, but dispersed in Lagrangian space.

• Could the numerical economy be scaled to more difficult problems?

• Still some kinks to iron out!