Do fish stir the ocean?
and other tales of biomixing

Jean-Luc Thiffeault1,2 Steve Childress3 Zhi George Lin2

1Department of Mathematics
University of Wisconsin – Madison

2Institute for Mathematics and its Applications
University of Minnesota – Twin Cities

3Courant Institute of Mathematical Sciences
New York University

Fluid dynamics: From theory to experiment (Stevefest)
Bozeman, Montana, 10 June 2010
Bioturbation

The earliest case studied of animals ‘stirring’ their environment is the subject of Darwin’s last book.

This was suggested by his uncle and future father-in-law Josiah Wedgwood II, son of the famous potter.

“I was thus led to conclude that all the vegetable mould over the whole country has passed many times through, and will again pass many times through, the intestinal canals of worms.”
Munk’s Idea

Though it had been mentioned earlier, the first to seriously consider the role of ocean biomixing was Walter Munk (1966):

```
Abyssal recipes

WALTER H. MUNK*

(Received 31 January 1966)

Abstract—Vertical distributions in the interior Pacific (excluding the top and bottom kilometer) are not inconsistent with a simple model involving a constant upward vertical velocity $w \approx 1.2$ cm day$^{-1}$ and eddy diffusivity $\kappa \approx 1.3$ cm$^2$ sec$^{-1}$. Thus temperature and salinity can be fitted by exponential-like solutions to $[\kappa \cdot d^2/dz^2 - w \cdot d/dz] T, S = 0$, with $\kappa/w \approx 1$ km the appropriate “scale height.” For Carbon 14 a decay term must be included, $[\ldots] ^{14}C = \mu^{14}C$; a fitting of the solution to the observed $^{14}C$ distribution yields $\kappa/w^2 \approx 200$ years for the appropriate “scale time,” and permits $w$ and
```

“. . . I have attempted, without much success, to interpret [the eddy diffusivity] from a variety of viewpoints: from mixing along the ocean boundaries, from thermodynamic and biological processes, and from internal tides.”
Resurgence

The idea lay dormant for almost 40 years; then

- Huntley & Zhou (2004) analyzed the swimming of 100 (!) species, ranging from bacteria to blue whales. Turbulent energy production is $\sim 10^{-5}$ W kg$^{-1}$ for 11 representative species.
- Total is comparable to energy dissipation by major storms.
- Another estimate comes from the solar energy captured: 63 TeraW, something like 1% of which ends up as mechanical energy (Dewar et al., 2006).
- Kunze et al. (2006) find that turbulence levels during the day in an inlet were 2 to 3 orders of magnitude greater than at night, due to swimming krill.
In situ experiments

Katija & Dabiri (2009) looked at jellyfish:

(movie 1) (Palau’s Jellyfish Lake.)
Displacement by a moving body

Maxwell (1869); Darwin (1953); Eames et al. (1994)
A sequence of kicks

Inspired by Einstein’s theory of diffusion (Einstein, 1905): a test particle initially at \(x(0) = 0 \) undergoes \(N \) encounters with an axially-symmetric swimming body:

\[
x(t) = \sum_{k=1}^{N} \Delta L(a_k, b_k) \hat{r}_k
\]

\(\Delta L(a, b) \) is the displacement, \(a_k, b_k \) are impact parameters, and \(\hat{r}_k \) is a direction vector.

\(a > 0, \) but \(b \) can have either sign.)
Effective diffusivity

Putting this together,

\[\langle |x|^2 \rangle = \frac{2 Un t}{L} \int \Delta^2_L(a, b) \, da \, db = 4 \kappa t, \quad 2D \]

\[\langle |x|^2 \rangle = \frac{2\pi Un t}{L} \int \Delta^2_L(a, b) \, da \, db = 6 \kappa t, \quad 3D \]

which defines the effective diffusivity \(\kappa \).

If the number density is low \((nL^d \ll 1)\), then encounters are rare and we can use this formula for a collection of particles.
Simplifying assumption

\[\kappa = \frac{\pi}{3} \text{Un} \int a^2 \Delta_L^2(a, b) \, d(\log a) \, d(b/L) \] 3D

Notice \(\Delta_L(a, b) \) is nonzero for \(0 < b < L \); otherwise independent of \(b \) and \(L \).

\[a\Delta_L^2(a, b) \text{ (cylinder)} \quad a^2\Delta_L^2(a, b) \text{ (sphere)} \]
Displacement for cylinders

Small a: $\Delta \sim -\log a$

Large a: $\Delta \sim a^{-3}$

(Darwin, 1953)

$$\int_0^1 \Delta^2(a) da \simeq 2.31$$

$$\int_1^\infty \Delta^2(a) da \simeq .06$$

\Rightarrow 97% dominated by “head-on” collisions (similar for spheres)
Numerical simulation

- Validate theory using simple simple simulations;
- Large periodic box;
- N_{swim} swimmers (cylinders of radius 1), initially at random positions, swimming in random direction with constant speed $U = 1$;
- Target particle initially at origin advected by the swimmers;
- Since dilute, superimpose velocities;
- Integrate for some time, compute $|\mathbf{x}(t)|^2$, repeat for a large number N_{real} of realizations, and average.
A ‘gas’ of swimmers

[movie 2] 100 cylinders, box size = 1000
How well does the dilute theory work?

\[\frac{\langle |x|^2 \rangle}{2nU\ell^3} \]

- \(n = 10^{-3} \)
- \(n = 5 \times 10^{-4} \)
- \(n = 10^{-4} \)
- Theory
Squirmers

Considerable literature on transport due to microorganisms: Wu & Libchaber (2000); Hernandez-Ortiz et al. (2006); Saintillian & Shelley (2007); Underhill et al. (2008); Ishikawa (2009); Leptos et al. (2009)

Lighthill (1952), Blake (1971), and more recently Ishikawa et al. (2006) have considered squirmers:

- Sphere in Stokes flow;
- Steady velocity specified at surface, to mimic cilia;
- Steady swimming condition imposed (no net force on fluid).

(Drescher et al., 2009) (Ishikawa et al., 2006)
Typical squirmer

3D axisymmetric streamfunction for a typical squirmer, in cylindrical coordinates (ρ, z):

$$\psi = -\frac{1}{2} \rho^2 + \frac{1}{2r^3} \rho^2 + \frac{3\beta}{4r^3} \rho^2 z \left(\frac{1}{r^2} - 1 \right)$$

where $r = \sqrt{\rho^2 + z^2}$, $U = 1$, radius of squirmer = 1.

β is the amplitude of the stresslet (distinguishes pushers/pullers).

We will use $\beta = 5$ for most of the remainder.
Squirmer displacements $a^2 \Delta_L^2(a, b)$
Squirmers: Transport

\[\langle |x|^2 \rangle \]

\[x \times 10^{-4} \]

\[t \]

0 50 100 150 200
The two peaks in the displacement plot come from ‘incomplete’ trajectories:

For long path length, the effective diffusivity is independent of the swimming path length, and yet the dominant contribution arises from the finiteness of the path (uncorrelated turning directions).
Far field: Displacements $a^2 \Delta^2_L(a, b)$

inset: only stresslet term (far field) ($\lambda \equiv L$)

Unlike potential sphere, mid-range field dominates.
Transport as a function of β

When stresslet dominates, effective diffusivity $\sim \beta^2$:

At these low densities, no difference between pushers and pullers.
Finite Reynolds number: Displacements
Finite Reynolds number: Transport

The graph shows the relationship between the dimensionless quantity κ/Un^4 and the Reynolds number Re. The line on the graph is given by the equation $5.9 Re^{-0.61}$. The x-axis represents the Reynolds number (Re), and the y-axis represents the dimensionless quantity κ/Un^4. The plot illustrates how the dimensionless quantity decreases as the Reynolds number increases.
So, do the fish stir the ocean?

- Consider spheres of radius 1 cm (the size of typical krill) moving at 5 cm/sec, with $n = 5 \times 10^{-3}$ cm$^{-3}$, we get an effective diffusivity of 7×10^{-3} cm2/sec.
- This is 5 times the thermal molecular value 1.5×10^{-3} cm2/sec, and about 500 times the molecular value 1.6×10^{-5} cm2/sec for salt.
- With viscosity: assume correlation length of $L \simeq 1$ m; for rigid spheres: $\kappa \simeq 0.8$ cm2/sec, about 500 times the thermal molecular value. (Compare to Munk's 1.3 cm2/sec)
- But buoyancy is the enemy... need mechanism to keep fluid from sinking back.

(Numerical values from Visser (2007).)
Conclusions

- Biomixing: no verdict yet;
- Simple *dilute model* works well for a range of swimmers;
- Slip surfaces have an effective diffusivity that is independent of path length, for long path length;
- Get semi-analytic formula for pusher/pullers at low densities;
- No-slip flows dominated by *sticking* and have a log dependence on path length;

Future work:

- Wake models and turbulence;
- PDF of scalar concentration;
- Buoyancy effects;
- Schooling: longer length scale?
This work was supported by the Division of Mathematical Sciences of the US National Science Foundation, under grants DMS-0806821 (J-LT) and DMS-0507615 (SC). ZGL is supported by NSF through the Institute for Mathematics and Applications.

