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MULTIPLE
INTEGRALS

The first seven sections of this chapter develop the double and triple integral. They
depend on Sections 11.1 and 11.2 on surfaces and continuous functions, but are
independent of Chapter 10 on vectors.

Sections 8 through 10 of this chapter discuss the relationship between
multiple integrals, line integrals, and surface integrals. Chapters 10 on vectors and 11
on partial derivatives are prerequisites.

DOUBLE INTEGRALS

The double integral is the analogue of the single integral (definite integral) suggested
by Figure 12.1.1. Figure 12.1.1(a) shows the area A bounded by the interval [a, b] and
the curve y = f(x), and corresponds to the single integral

A= Lbf(x)dx.

Figure 12.1.1(b) shows the volume V bounded by the plane region D and the surface
z = f(x, y), and corresponds to the double integral

V= J‘J-f(x, y) dx dy.
D

Our development of double integrals will be similar to our development of
single integrals in Chapter 4. Before going into detail, we give a brief intuitive preview.

Instead of closed intervals [u, v] in the line, we deal with closed regions D
in the plane. A volume function for f(x, y) is a function B, which assigns a real number
B(D) to each closed region D, and has the following two properties: Addition Property
and Cylinder Property.

71



712 12 MULTIPLE INTEGRALS

S(x)

(a) Area (b) VYolume
Figure 12.1.1

ADDITION PROPERTY

If D is divided into two regions D, and D, which meet only on a common
boundary curve, then

B(D) = B(D,) + B(D,).

(Intuitively, the volume over D is the sum of the volumes over D, and D, )
This property is illustrated in Figure 12.1.2(a).

CYLINDER PROPERTY

Let m and M be the minimum and maximum values of f(x, y) on D and let A be
the area of D. Then

mA < B(D) < MA.
(Intuitively, the volume over D is between the volumes of the cylinders over

D of height m and M. This corresponds to the Rectangle Property for single
integrals.)

This property is illustrated in Figure 12.1.2(b).

We shall see at the end of this section that the double integral

j[)ff(—\'s y)dxdy

is the unique volume function for a continuous function f(x, y). The double integral
will be constructed using double Riemann sums, just as the single integral was
constructed from single Riemann sums.

We now begin the construction of the double integral, starting with a careful
discussion of closed regions in the plane.

A closed region in the (x, y) plane is a set D of real points (x, y) given by
inequalities

a; < x < a,, bi(x) < )y < by(x),
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(a) Addition Property (b) Cylinder Property
Figure 12.1.2

where b,(x) and b,(x) are continuous and b;(x) < b,(x) for x in [a,,d,] (Figure
12.1.3(a)). The boundary of D is the set of points in D which are on the curves

X =da,, X = a,, y = b,(x), ¥y = by(x).
The simplest type of closed region is a closed rectangle
a4y £ x < a,, by <y <b,,
shown in Figure 12.1.3(b).

Remark In this course we are restricting our attention to a very simple type of closed
region, sometimes called a basic closed region. In advanced calculus and
beyond, a much wider class of closed regions is studied.

An open region is a set of real points defined by strict inequalities of the
form

¢ <X <y, d(x) <y < dyx).

y y
2
D

by

|

— 1+

x a, s X
(a) Closed region (b) Closed rectangle

Figure 12.1.3

713



714

12 MULTIPLE INTEGRALS

We shall usually be working with closed regions. So from now on when we
use the word region alone we mean closed region.
To simplify our treatment we shall consider only continuous functions.

PERMANENT ASSUMPTION FOR CHAPTER 12

W henever we refer to a function f(x, y) and a region D, we assume that f(x, y)
Is continuous on some open region containing D.

If £(x, y) = 0 on D, the double integral is intuitively the volume of the solid
over D between the surfaces z = 0 and z = f(x, y); i.e, the solid consisting of all
points (x, y, z) where (x, y) is in D and

0<z<f(xy).

If f(x, y) < O on D the double integral is intuitively the negative of the volume
of the solid under D between the surfaces z = f{x, y) and z = 0. Thus volumes above
the plane z = 0 are counted positively and volumes below z = 0 are counted
negatively (Figure 12.1.4).

Figure 12.1.4 X

We now define the double Riemann sum and use it to give a precise definition
of the double integral. We first consider the case where D is a rectangle

a; <X =< a,, b, <y <b,,

shown in Figure 12.1.5.

Let Ax and Ay be positive real numbers. We partition the interval [a,, a;]
into subintervals of length Ax and [b,, b,] into subintervals of length Ay. The partition
points are

Xog=4da;, X;=d;+ AX, X,
Yo=by, yi=b +Ay, 1

Il

a;, + 2Ax,...,x, =a, +nAx,
by +2Ay....,y,=b, + pAy

Il

where X, < d, < x, + Ax, yp < by <y, + Ay
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y
by
D
by —-——— | !
i |
| |
i —+
aj az *
Figure 12.1.5

If Ax and Ay do not evenly divide a, — a, and b, — b,, there will be little
pieces left over at the end. We have partitioned the rectangle D into Ax by Ay sub-
rectangles with partition points

(X, y). 0<k<n 0<I<p,

as in Figure 12.1.6.

1 by
yp“"
Yp—-1T
P 2
Yot
Ay
T T
_}'0 _Lbl
al_>| |-—Ax az
Xp X1 Xg Xno1” Xy
Figure 12.1.6

The double Riemann sum for a rectangle D is the sum
n P
Y2 S0 AXAy = 3 3 f(x, ) Ax Ay.
D k=01=0

This is the sum of the volume of the rectangular solids with base Ax Ay and height

S (x> m)-

As we can see from Figure 12.1.7,
20 (x,y) Ax Ay
D
approximates the volume of the solid over D between z = O and z = f(x, y).
Now let D be a general region
a < x < a,, bi(x) =y < by(x).
The circumscribed rectangle of D is the rectangle

a; < x < a,, B, <y<B,,

715
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z Double Riemann Sum

Figure 12.1.7 X

where B, = minimum value of b, (x),
B,
It is shown in Figure 12.1.8.

maximum value of b,(x).

y The circumscribed rectangle
82 T
[)2(_\')
D
by(x)
By
| !
! !
a, as X
Figure 12.1.8

Given positive real numbers Ax and Ajy. we partition the circumscribed
rectangle of D into Ax by Ay subrectangles with partition points

(X 3 0<k<un 0<I<p

DEFINITION

The double Riemann sum over D is defined as the sum of the volumes of the
rectangular solids with base Ax Ay and height f(x.. ) corresponding to
partition points (x,, v,) which belong to D. In symbols.

Y S NAxXAy = Yy flxe ) Ax Ay
D

(X y)in D

Notice that in the double Riemann sum over D, we only use partition points
(x. yp) which belong to D (Figure 12.1.9).
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N
NN

X

Figure 12.1.9 Double Riemann Sum

EXAMPLE 1 Find the double Riemann sum

where D, is the square

and

The partition of D, is shown in Figure 12.1.10 and the values of x?y at the
partition points are shown in the table.

2 _ 1 — 2 —_ 3 — 4
X7y Yo=0 i =5 1 Y2=5 Ya =35 Ye =5
T
X =0 0 0 0 0 0

I
— 1 1 2 3 4
Xy =3 0 30 80 80 80
_1 4 8 12 16
X2 =3 0 80 80 80 80
3 9 18 27 36
X3 =34 0 80 80 80 80

The double Riemann sum is
Yy x*y Ax Ay
Dy
=(1+2+3+44+4+8+124+16+9+ 18 + 27 + 36)g5-1-4 = 0.0875.

A similar computation with Ax = 5, Ay = {5 gives

S x%y Ax Ay = 0.12825.
D
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EXAMPLE 2 Find the double Riemann sum
>N x*y Ax Ay,
DZ
where D, is the region
0<x<I, <y < Jx

and
Ax = :11—‘ Ay =

wl—

The circumscribed rectangle of D, is the unit square. The partition and D,
are shown in Figure 12.1.11 and the partition points which actually belong to
D, are circled. The table shows the values of x?y at the partition points which
belong to D,. It is a part of the table from Example 1.

-2, — PR G ] — 3 ) — 4
X7y Yo =0 Yi=3s5 = VYa2=35 | V3 =3 Ya =3
I
Xg =0 0 : ‘ !
L | #2—"7¢*
X = 4 80 . 50 1
1”—?—h-k |
X _ 1 . , 8 12
252 i i 30 80 i
N IE—— ! -
:
V. =2 " “ 27 C 36
37— 4 80 ! 80

The double Riemann sum is
Y xPy Ax Ay
D>
1 2 8 12 27 3611 1 86

=it ot ot o

) e = = 0.05375.
8078078 T80 "8 T80)45 8045

A similar computation with Ax = #5, Ay = 5 gives

3> x*y Ax Ay = 0.04881.
D,

[TYEN

:
I
|

|
N
N

Dl i / Dg

win e

2
|/
1] 1
1 g
0 0
o 1 2 3 o 1L 2 3 , x
q g ] 4 g g
Figure 12.1.10 Figure 12.1.11
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Given the function f(x, y) and the region D, the double Riemann sum

2.2 f(x, y) Ax Ay
D

1s a real function of Ax and Ay. When we replace Ax and Ay by positive infinitesimals
dx and dy (Figure 12.1.12), we obtain (by the Function Axiom) the infinite double
Riemann sum

ZDZ f(x, yydxdy.

The infinite double Riemann sum is in general a hyperreal aumber. Intuitively, it is
equal to the sum of the volumes of infinitely many rectangular solids of infinitesimal
base dx dy and height f(xg, y;). The double integral is defined as the standard part of
the infinite double Riemann sum. The following lemma, based on our Permanent
Assumption for Chapter 12, shows that this sum has a standard part.

Infinite Double Riemann Sum
Figure 12.1.12 x

LEMMA
For any positive infinitesimals dx and dy, the double Riemann sum

ZDZ J(x,y)dx dy

is a finite hyperreal number and thus has a standard part.

We omit the proof, which is similar to the proof that single Riemann sums
are finite. We are now ready to define the double integral.

DEFINITION

Given positive infinitesimals dx and dy, the double integral of a continuous
Sunction f(x, y) over D is the standard part of the double Riemann sum-

[[renaay = s (ZDZf(x, Ydx dy).
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Here is a list of properties of the double integral. Each property is analogous
to a property of the single integral given in Chapter Four and has a similar proof.

INDEPENDENCE OF dx AND dy

The value of the double integral [[p, f(x, y) dx dy does not depend on dx and dy.
That is, if dx, d,x, dy, and d|y are positive infinitesimals then

[ - [[rsnasa
D D

This theorem shows that the value of the double integral depends only on
the function f and the region D. From now on we shall usually use the simpler notation
dA = dx dy for the area of an infinitesimal dx by dy rectangle, and

Jfo-(x, y)dA for J;)ff(x, y)dx dy.

ADDITION PROPERTY

Let D be divided into two regions D, and D, which meet only on a common
boundary as in Figure 12.1.13. Then

J‘ff(,\‘, ydA = JAJ-]"(,\‘, vydA + JJ‘f(x, y)dA.
D D, D,

—

D,
D,y
Dy

Figure 12.1.13 (a) (b)

)

Interpreting the double integral as a volume, the Addition Property says that
the volume of the solid over D is equal to the sum of the volume over D, and the
volume over D,, as shown in Figure 12.1.14.

A continuous function z = f(x, y} always has a minimum and maximum
value on a closed region D. The proof is similar to the one-variable case.
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(a) (b)

Figure 12.1.14 Addition Property

CYLINDER PROPERTY

Let m and M be the minimum and maximum values of f(x, y) on D and let A be
the area of D. Then

md < J.Jf(x, y)dA < MA.

D

This corresponds to the Rectangle Property for single integrals. The solid
with base D and constant height m is called the inscribed cylinder, and the solid with
base D and height M is called the circumscribed cylinder. The inscribed cylinder and
the circumscribed cylinder are shown in Figure 12.1.15. Intuitively, the volume of a
cylinder is equal to the area of the base A times the height. Thus the Cylinder Property
states that the volume of the solid is between the volumes of the inscribed and circum-
scribed cylinders.

Here are two consequences of the Cylinder Property.

circumscribed
cylinder

m

inscribed
cylinder

Figure 12.1.15 Cylinder Property
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COROLLARY 1

The area of D is equal to the double integral of the constant function 1 over D,

(Figure 12.1.16):
A= ffdA.
D

Figure 12.1.16

PROOF Both mand M areequaltol,s0 1.4 < ffd/l < 1.4

D
COROLLARY 2

If f(x,5)=0 on D then [{, f(x,y)dA =0. If f(x,y) <0 on D then
fipfx,3)dA <0,

To really be sure that the double integral corresponds to the volume, we
need to know that it is the only operation that has the Addition and Cylinder
Properties. To make this precise, we introduce the notion of a volume function.

We suppose f(x, y) is continuous at every point of an open region Dy, and
consider subregions D of Dy. A volume function for f is a function B which assigns
a real number B(D) to each subregion D of Dy and has the Addition Property

B(D) = B(Dy) + B(D,)
and the Cylinder Property
mA < B(D) < MA,

where m is the minimum and M the maximum value of f on D.

UNIQUENESS THEOREM

The double integral ([ f(x,y)dA is the only volume function for f. That is,
if B is a function which has the Addition and Cylinder Properties, then

B(D) = fff(x, yv)dA  for every D.
D
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Given a continuous function f such that f(x, y) = 0 for all (x, y), the function
V(D) = volume over D

certainly has the Addition and Cylinder Properties. Thus we are justified in defining
the volume as the double integral.

DEFINITION

Let f(x,y) =0 for (x,y) in D. Then the volume over D between z = 0 and
z = f(x, y) is the double integral

V= J;ff(x, y)dA.

When f(x, y) is the constant 1, we have

A=deAzV.

D

That is, the area of D is equal to the volume of the cylinder with base D and height 1,
as in Figure 12.1.17.

Given any unit of length (say meters), if the height is one meter then the area
is in square meters and the volume has the same value but in cubic meters.

% ‘.ffi;”p ™

Volume ij Tdd=A

i

i

e
hY

.
e Area=A
Height=1|. " D
!
Figure 12.1.17
PROBLEMS FOR SECTION 12.1
Compute the following double Riemann sums.
1 DY Bx+4)AxAy, Ax=14%, Ay=4%, D:0<x<] 0<y<]
D
2 Y 4+ 2x — 50 AxAy, Ax=13, Ay=1%, D:-2<x<2 —i<y<|
D
3 Y52+ y)AxAy. Ax=4, Ay=3, D:-2<x<2 -2<y<2
D
4 Y)Y (14 xp)AxAy, Ax=3 Ay=4%, D:0<x<2 0=<y<]
D

5 ZZ%AxAy, Ax=1 Ap=1% Dil<x<2 1<y<2
D
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6 E;)Z:(COS.\' + siny)Ax Ay, Ax = g Ay = g, D:— g <x < g 0<y=n
7 Z;)Z (cosxsinyyAx Ay, Ax = g Ay = g D:— % <x < g 0<y<nm
8 Yy xe*AxAy. Ax=13. Ar=1, D:0<x<2 -2<y<3
9 ZDZeZ""-"Ax Ay, Ax=1. Ay=1, D:-2<x<2 -2<y<2
10 ZDZ(.\'+2_V)A.\‘A;'. Ax =1 Ay=14i. DO0<x<l O<y<x
11 {Z(2+.\'+3_\')A.\'Ay. Ax=1L Ay=4 D:0<x<1 x<yp<i
12 ZDZ(.\'3+\}‘)A.\'A_\‘. Ax=1% Ay=4 Di—-1<x<1 0<y<y?
D
13 Z})Z ysinx Ax Ay, Ax = 72[ Ay = }1, D:0< x<nm sin®y <y <2sinx
14 Yo e+ eNAxAy. Av=1. Ar=1, D:-3<x<3 -—x<y<x
D
15 YS4AxAy, Ax=1. Ay=1, D:x*4+3y'<9
D
16 TY —10AxAy. Ax=1 Ay=1, D:-3<x<3 x*<y<I8—y?
D
o 17 Show that if D is a region with area 4 and ¢ is constant. then [|, ¢ dA4 = cA.
0O 18 Prove the Constant Rule:

Y‘Z ef(x, ¥y Ax Ay = ¢ Y f(x,y) Ax Ay,
b

ch/ X, ¥y dxdy
O 19 Prove the Sum Rule:
ZY/(H \\)A\A\~ZZ/(\)A\AJ+ZZg\}A\A)

H

¢ ”1,/'(«\“ ¥ydxdy.
)

f_/'(.\'. Y+ gl y)dydy = fJ flx,mydxdy + J J glx, y)dxdy.

D D D

12.2 ITERATED INTEGRALS

In this section we shall learn how to evaluate double integrals. A double integral
can be evaluated by two single integrations. The Iterated Integral Theorem gives the

key formula.,
a2 ba(x)
J [f S y) dy]dx
ay bi{x)

The iterated integral
is an integral of an integral of f(x, y). It is evaluated in two stages. First evaluate the
inside integral

ba(x)
glx) = j Sl ydy

bi(x)
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by ordinary definite integration, treating x as a constant. This gives us a function of x
alone. Second, evaluate the outside integral

as az ba(x)
f §(x) dx :j [ (5, ) dy} dx
a ay b1(x)

by a second definite integration.
We shall usually drop the brackets around the inside integral and write the
iterated integral as

az pba(x)
[ rxnayax

a; vbi(x)
ITERATED INTEGRAL THEOREM
Let D be a region

a; £ x < a,, bi(x) <y < by(x).

The double integral over D is equal to the iterated integral:

reonda= [ roo v s
If )

Discussion For a fixed xo, {3259 f(xo, y) dy is the area of the cross section shown
in Figure 12.2.1. The Iterated Integral Theorem states that the volume is
equal to the integral of the areas of the cross sections.

The proof of the Iterated Integral Theorem is given at the end of this section.
When using iterated integrals we must be sure that:

(1) a; < a,and by(x) < b,(x).
(2) The differentials dx and dy appear in the right order.
(3) The outer integral sign has constant limits.

bi(xe)  ba(xo) y

Figure 12.2.1 X

725



726 12 MULTIPLE INTEGRALS
While the order of the differentials, dx dy or dy dx, does not matter in a

double integral, it is important in an iterated integral. The inside integral sign goes
with the inside differential, and is performed first.

ba(x)
f J f(x, y)d) d\
bl(x)

‘ | do first '

do second

When the region D is a rectangle, there are two possible orders of integration,
because all the boundaries are constant. Thus there are two different iterated integrals
over a rectangle. Integrating first with respect to y we have

az pby
[ renavax
ay Vb,
and integrating first with respect to x we have

ba pas
J S (x, y)dxdy.

by Ya,

Using the Iterated Integral Theorem twice, we see that both iterated integrals must
equal the double integral.

L N :zf(x, Ddyds = [ [ e
e D

ba pas
f [ f(x,y)dxdy=Ljf(x,y)dA

by Yay

Therefore the two iterated integrals are equal to each other. We have proved a
corollary.

COROLLARY

The two iterated integrals over a rectangle are equal:
az by pas
f f x, Vdydx = f fx, y)dx dy.

Discussion This corollary is the simplest form of a result known as Fubini’s Theorem.
Remember that by our Permanent Assumption, f(x, y) is continuous on D,
For an idea of the difficulties that arise when f(x, y) is not assumed to be
continuous, see Problem 49 at the end of this section.

There are also other regions besides rectangles over which we can integrate
in either of two orders, such as Example 5 in this section.

In the following two examples we evaluate the double integrals which were
approximated by double Riemann sums in the preceding section.
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EXAMPLE 1 Evaluate jfxzy dA
D,

where D; is the unit square
0<x<1 0<y<l.

The limits of the outside integral are given by 0 < x < 1, and those of the
inside integral are given by 0 < y < 1. The iterated integral is thus

i1
J-szydAzf f x?y dy dx.
: 0Jo

The inside integral is

1 y=1
f xtydy = %xz),z} = 1x%
=

(4] =0
1

Then fszji dA = f Ix?dx = éx;J =+~ 0.16667.

0 0

Dy

Since D, is a rectangle we may also integrate in the other order, and should
get the same answer.

1 pl
ffxzydA :f f x?y dx dy.
0Jo
D
1 1
f x’ydx = %xa)] =1y
0

1 1

0

The Riemann sums in Section 12.1 were 0.0875, 0.12825.

EXAMPLE 2 Evaluate [[, x’ydA4 where D, is the region in Figure 12.2.2:
0<x<1, xZSyS\/;c.
The limits on the outside integral are given by 0 < x < 1, and those on the

inside integral by x? < y < \/;c, so the iterated integral is

y

Figure 12.2.2
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1 pdx
foz)!dA=JJ x*ydy dx.
D 0 Jvx2

Jx

x =5
f X’y dy = éxzyﬂ =57 — 8
x2

. 1 y=x2 1
foz)f dA = f (Gx? — 18 dx = Ix* — %4\7}
D2 0

= & ~ 0.05357.
The Riemann sums in Section 12.1 were 0.05375, 0.04881.

In many applications the region D is given verbally, and part of the problem
is to find inequalities which describe D.

EXAMPLE 3 Let D be theregion bounded by the curve xy = l andtheliney = 3 — x.
Find inequalities which describe D, and write down an iterated integral

equal to {[, f(x, y) dA.
Step 1 Sketch the region D as in Figure 12.2.3,

y

Figure 12.2.3
Step 2 The line and curve intersect where

x(3 —x) =1,

x> —3x+1=0,

(x —Hx -2 =0

x =13, x =2

For 1/2 < x < 2, the curve y = 1/x is below the line y = 5/2 — x. Therefore
D is the region

< x <2, IIx<yp<3-x

ol

Step 3 The inequalities for x give the limits of the outside integral, and those for y
give the limits of the inside integral. Thus

2 (5/2)—x
jff(X, vdA = J J JS(x, y)dy dx.
D 1/2v 1;x
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EXAMPLE 4 Find the volume of the solid bounded by the surfacesz = 0,z = y — x2,
y =1

Step 7 Sketch the solid and the region D, as in Figure 12.2.4.

R I,

Figure 12.2.4

Step 2 Find the inequalities describing the region D.

This is the hardest step, and gives us the limits of integration. The surfaces
z=0and z = y — x* intersect at the curve y = x*. We see from the figure
that D is the region between the curves y = x* and y = 1, so D is given by

—-1<x<1, x2<y<l.

Step 3 Set up the iterated integral and evaluate it.

1 1
V=ij—x2dA=f J y — x?dydx.
— 1 x2
D

1 1
f y—xzdy=%y2—x2y]

x X2

=G 12 - x201) — G(x?? — x2-x?)
=7 — x>+ 3x*
1
V= 1 —x* +4x*dx =48,

Multiple integration problems can be solved by a three-step process as shown
in Examples 3 and 4.

Step 7 Sketch the problem.
Step 2 Find the inequalities describing the region D.
Step 3 Set up the iterated integral and evaluate,

We can also integrate over a region in the (y, x) plane instead of the (x, y)
plane. A region D in the (y, x) plane has the form

by <y <b,, a;(y) = x < ay(y),

as shown in Figure 12.2.5.
The double integral over D is equal to the iterated integral with dy on the

outside and dx inside,
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¥

ay) as(y)

b]_ _____

Figure 12.2.5

L va(y)

J.ff(xs y)daA = f:z asz(x, y) dx dy.
D

Some regions, such as rectangles and ellipses, may be regarded as regions in either
the (x, y) plane or the (y, x) plane (Figure 12.2.6).

v y
b
2(x) byd o _
aly) asy)
!
| :
1 | hl T
l bi(x) :
i |
t f
ay (75 X X
(a) Dasan (x, y) Region (b) Dasaf(y, x) Region
Figure 12.2.6

EXAMPLE 5 Let D be the region bounded by the curves
x:yz, X=y+42
Evaluate the double integral [, xy dA.

Step 17 The region D is sketched in Figure 12.2.7.

Figure 12.2.7
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Step 2 Find inequalities for D. To do this we must find the points where the curves
x=y% x=y+2
intersect. Solving for y and then x, we see that they intersect at
(1, -1), (4, 2).

We see from the figure that D is a region in either the (x, y) plane or the (y, x)
plane. However, the boundary curves are simpler in the (y, x) plane. D is the
region

—1<y<2 yP’<x<y42

Step 3 Set up the iterated integral and evaluate.

2 y+2
JJ-xydA =J f xy dx dy.
D Ty
2 yt+2

y+
f xy dx = %xz}]
yZ y2

=3y + 2%y — 30*)%y
=3y° + 27 4+ 2y — 3y

2

[[waa=] we2rv o=y
-1

D

PROOF OF THE ITERATED INTEGRAL THEOREM For any region D, let B(D) be
the iterated integral over D. Our plan is to prove that B has the Addition and
Cylinder Properties, so that by the Uniqueness Theorem B(D) will equal the
double integral.

PROOF OF ADDITION PROPERTY

Case 7 Let D be divided into D; and D, as in Figure 12.2.8(a). By the Addition
Property for single integrals,

bi(x)

as pba(x) az pba(x)
—J fdycl)c+J~ fdydx

a; vYbi(x) az vby(x)

= B(D,) + B(D,).

ay pba(x)
mm:f fdy dx

Case 2 Let D be divided into D, and D, as in Figure 12.2.8(b). Then
az pba(x)
B(D) = f f fdydx

by(x)

az ba(x) ba(x)
=J'[ rdy + fd{kx

bi(x) b3(x)

ax rbs(x) ay ~ba(x)
=J fdydx+f fdydx

ay vby(x) ap vbi(x)

= B(D,) + B(D,).

731



732 12 MULTIPLE INTEGRALS

y y
balx)
D, D,

1

, |

1 [

1 L

; by(x) | :

a, ay as X *

(a) (b)
Figure 12.2.8

PROOF OF CYLINDER PROPERTY Let m be the minimum value and M the
maximum value of f(x, y) on D For each fixed value of x,

ba(x) ba(x)
f mdy < j fx, y)dy.
bi(x) bi(x)
Integrating from «, to a,,

uy pba(x) as

f f mdydx < f

a; Ybi(x) ap
az

ba(x)
f fdydx = B(D).

by(x)
az pba(x)
But f J mdydx = j mby(x) — b {x)) dx
ay Ybi(x} a;
= mJ (b,y(x) — by(x))dx = mA.
Therefore mA < B(D).
By a similar argument, B(D) < MA.

Since B has both the Addition and Cylinder Properties,

B(D) = fff(x, V) dA.
D

The Constant, Sum, and Inequality Rules for double integrals follow easily
from the corresponding rules for single integrals, using the Iterated Integral Theorem.

CONSTANT RULE

ffc/'(x, y)dA = ch/'(x, y)dA.
D D

SUM RULE

ff/'(x, ¥+ glx, y)dA = JJ.‘)"(,\‘, y)dA + ffg(x, y)dA.
D D D
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INEQUALITY RULE

If f(x, y) < glx, y) for all (x,y) in D,
[[reenan< [ [awaa
b D

PROOF As an illustration we prove the Sum Rule.

az mba(x)
fjf+gdA=f [+ gdydx

D a; vby(x)
as) ba(x) ba(x)
=f[ fdy+f gdy}dx
ax b1(x) bi(x)

ay pba(x) a; pba(x)
:J. fdydx+f J gdydx

ay vby(x) bi(x)
= jffdA + fjgdA.
D D

The Iterated Integral Theorem gives another proof that the area of D is equal
to the double integral of 1 over D.
By definition of area between two curves,

A=) - biGa
Using iterated integrals,
az pba(x)
ffdA = f dy dx
ay Ybi(x)
D

- f “(ba(0) — by(x)dx = A.

PROBLEMS FOR SECTION 12.2

In Problems 1-16, evaluate the double integrals (compare these with the problems from Section
12.1).

1 JJ(3x+4y)dA, D:0<x<1,0<y<1
D

2 ff(4+2x—5y)dA, D:—2<x<2 —-1<y<1
D

3 J‘J‘(xz—{—yz)dA, D —2<x<2 -2<y<2
D

4 U(ny)dA, P:0<x<20<y<l

D

733
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10

11

12

13

14

15

16

12 MULTIPLE INTEGRALS

X

fff(lA, Dilsx=<21<y<2
¥

D

fj(cosx +siny)dA, D: —m2 < x <2 0<y=<n

D

Jj(cosx siny)dA, D: —aR2 <x<n20<yv <1

D

jfxe-"dA. D:0<x<2 -2<y<3

D

”el-""‘(m, D:—2<x<2 -2=<y<2

D

jf(.\'+2y)dA. D:0<x<1,0yp<x

D

A
P

A
IN

JIQ + x4+ 3dA, D:0<x<

D

o

jf(xz + \/T\')dA, D:—1=<x<,0y<x

D

fjJ’sindi, D:0< x<msin?x <y <2sinx

D

fJ.(""HI- eNdA, D:—3<x<3 —x<y<x

D

Jf4dA, D:x?+3y2<9

D

ff—lOdA, D: —3<x<3x*<yp<[8—x?

D

In Problems 17-24, evaluate the iterated integral. Then check your answer, by evaluating in the
other order.

17

19

21

23

1l
f f (2y — 3xy? 4 S)dy dx 18 f
0vo

1 1
f xy(2y + 1)dydx

1]

4 A6

0
6 8
f dy dx 20 f 3xdydx
3vo2 2V
72 ami2 1 2 y
f ( sin(x + y) dy dx 22 J f ———dydx
0o “o 1Yo Lt x
3 p6 JEE— 2l 1
J f VX A+ ydydx 24 f f dy dx
01 1v0 X+ ¥

In Problems 25-30 evaluate the iterated integral.

25

I pex moel
f f dy dx 26 J J dy dx
0vo i

0 ¥sinx
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2 pfa=x2 JI-x?
27 le ydydx 28 J.f x% + yrdydx
ovo ~J1- xz

3 pl3y
29 f f x*ydxd 30 f j ~dxdy
0vy2 Y 0Jo /1 — x?

In Problems 31-38, find inequalities which describe the given region D, and write down an
iterated integral equal to [f, f(x,y) dA.

31 The triangle with vertices (0, 0}, (5, 0), (0, 5).

32 The triangle with vertices (1, —2), (1, 4), (5, 0).

33 The circle of radius 2 with center at the origin.

34 The bottom half of the circle of radius 1 with center at (2, 3).

35 The region bounded by the parabola y = 4 — x? and the line y = 3x.

36 The region above the parabola y = x? and inside the circle x> + y? = 1.

37 The region bounded by the curves x = L and x = 1/(1 + y?).

38 The region bounded by the curves x = 12 + y* and x = y*.

39 Find the volume of the solid over the region x* + y* < 1 and between the surfaces

z=0,z=x%
40 Find the volume of the solid over the region
Dil<x<2,x<y<x?

and between the surfaces z = 0, z = y/x.

41 Find the volume of the solid between the surfaces z =0, z =2 + 3x — y, over the
region0 < x<2,0<y<x
42 Find the volume of the solid between the surfaces z = 0, z = \/y — x, over the region
0<x=<lx=<sy<l
43 Find the volume of the solid bounded by the plane z =0 and the paraboloid
1 xZ y2
zZ = b (,? — b—2
44 Find the volume of the solid bounded by the three coordinate planes and the plane
ax + by + cz = 1, where a, b, and c¢ are positive.
45 Show that

j " S0 dydx = (b, —b,)j 109 d
46 Show that
az pby az b2
j ,, f(x)+g(y)dydx=(bz—b1)f f(X)dX+(az—a1)L ¢0) dy.

47 Show that
az b
j " 1980) dy dx = ( f fix dx) ( [ e dy).
b1 by
48 Show that
b rg(x)
f J. ydydx = Q.
adJ —g(x)
_Jy if x is rational,
9 Let S = {1 —~y  if xisirrational.
Show that:
1 1 1
(@) [ [ renayas= [ yax =1,
o Jo 0

(b) For each constant y, # , the function g(x) = f(x, y,)is everywhere discontinuous,
so that the iterated integral {3{5 f(x, y) dx dy is undefined.
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12.3 INFINITE SUM THEOREM AND VOLUME

The double integral, like the single integral, has a number of applications to geometry
and physics. The basic theorem which justifies these applications is the Infinite Sum
Theorem. It shows how to get an integration formula by considering an infinitely
small element of area.

An element of areais a rectangle AD whose sides are infinitesimal and parallel
to the x and y axes. Given an element of area AD, we let

(x, y) = lower left corner of AD,
Ax, Ay = dimensions of AD,
A4 = Ax Ay = area of AD.

AD is illustrated in Figure 12.3.1.

(x,»)

An element of area
Figure 12.3.1

INFINITE SUM THEOREM

Let h(x, y) be continuous on an open region Dy and let B be a function which
assigns a real number B(D) to each region D contained in D, . Assume that
(i) B has the Addition Property B(D) = B(D,) + B(D,).
(i) B(D) = 0 for every D.
(ii1) For every element of area AD, B(AD) =~ h(x, y) AA (compared to AA).

Then B(D) = fj‘h(x, V) dA.

D

We shall use the notation
AB = B(AD).
Given (i) and (ii), the theorem shows that if we always have
AB x h(x, y) AA (compared to AA)
then B(D) =~ )Y h(x, y) AA.

D

The proof is simplest in the case that D is a rectangle.
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PROOF WHEN D IS A RECTANGLE Choose positive infinitesimal Ax and Ay and
partition D into elements of area AD (Figure 12.3.2). Since B has the Addition
Property, B(D) is the sum of the AB’s. Let ¢ be any positive real number. For
each AD we have

AB = hi(x,y)AA (compared to AA),

AB
AA
AB AB
Kg—c<h(x,y)<—A—A+c,

AB — ¢ AA < h(x, y) AA < AB + ¢ AA.

=~ h(x, y),

Letting A4 be the area of D and adding up,
B(D) — cA < ).y h(x,y) AA < B(D) + cA.
D

Taking standard parts,

B(D) — cA < f f h(x, y)dA < B(D) + cA,

D

h(x,y) A

Figure 12.3.2

The proof in the general case is similar except that some of the elements of
area AD will overlap the boundary of D and thus be only partly within D. (See Figure
12.3.3.) The method of proof is to change D to include all instead of part of each AD,
use hypothesis (ii) to show that the new B(D) is infinitely close to the old one, and
then show as above that the new B(D) is infinitely close to the double integral
{fp hlx, y)dA.

In most applications of the Infinite Sum Theorem, hypotheses (i) and (ii) are
automatic. To get a formula for B(D) in practice, we take an element of area AD and

737
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Figure 12.3.3 ~_| 7

find an h(x, y) such that
AB =~ h(x, y) AA (compared to AA).

Our first application is to the volume between two surfaces.

DEFINITION

Let f{x,y) < g(x, y) for (x,y) in D and let E be the set of all points in space
such that

(x,y)isin D, Jxy) <z < glx, y).

The volume of E is

V= ffg(Ys )’) - f(x! y) dA.
D

V is called the volume over D between the surfaces z = f(x.))and z = g(x, 1)
(Figure 12.3.4).

X

Figure 12.3.4 Volume between two surfaces
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JUSTIFICATION The part AE of the solid E over an element of area AD is a rectangu-
lar solid with base A4 and height g(x, y) — f(x, y), except that the top and
bottom surfaces are curved (Figure 12.3.5). Therefore the volume of AE is

AV =~ (g(x, y) — f(x,y)) AA (compared to AA).
By the Infinite Sum Theorem,

V= [[etxn - seenaa
D

z
&(x, »)
AE
fGe, )8
¥y
SR
(x; y) J ! I
AD }
AA AD
X
Figure 12.3.5
exampLE 1 Find the volume of the solid
0<x<1,- 0<y<x, x+y<z<ety
Step 1 D is the triangle shown in Figure 12.3.6.
Step2 Distheregion0 < x<1,0<y=<x.
y
I
D,
0 i x

Figure 12.3.6
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Step 3 V= ffe"+~" — (x + y)dA

D
1 ax

= J‘ f e — (x + y)dydx.
0vJo .

f T —(x + V)dy =t — xy — 3y
0

2l eZ.\‘ — ¥ — %\, .

1
V= f e — ¥ — 3x?dx = 3e? — e
4]

EXAMPLE 2 Find the volume of the solid bounded by the four planes

x =0, y=0, z=Xx4y, z=1—-—x—y

Step 1 Sketch the planes. We see from Figure 12.3.7 that z = x + y is below

z=1—x—

D
v X
Figure 12.3.7
Step 2 Find inequalities for the region D. Since the two planes
z=Xx4y z=1—-x—y

meet at the line 2x + 2y = 1, y=1%-x

D is the region 0<x<4d, 0<y<i_—«x
Step 3 Vsz(l—x—y)—(x+y)dA= fl—2x—2ydA

D

Dl/2 1/2-x
= J J 1 — 2x — 2ydydx.
o Jo
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1/2—-x 1j2—-x
f 1—2x—2ydy:y_2xy_y2]

[

Il

0
Fox =23 - x) -G —xP =F—x+x%

Vv

1

/2

1 2 _ 1

J_ i — X+ x“dx = 55.
0

EXAMPLE 3 Find the volume of the solid bounded by the plane z = 2y and the
paraboloid z = 1 — 2x? — 3?2

Step 7 The surfaces and the region D are sketched in Figure 12.3.8.

z
z=1-—2x2— )% ¥

¥ i ¥
L/E// y TN

-~ = 4_

S X
i/
N D
,—‘f"/
=/ /
74
74
4 z//
7/
i,
7,
7
z=2y
x
Figure 12.3.8

Step 2 The two surfaces intersect on the curve

2y =1-—2x* — y%

or solving for y, y=—14+ .2 -2x%

Therefore D is the region

—1<x<1, 11— /2 —-2x2<y< —1+ /2 —2x%.

Step 3 We see from the figure that the plane is the lower surface and the paraboloid
is the upper surface.

V= Jj(l —2x? —y?) —2ydA

D

1 -1+ J/2-2x2
=f (1 — 2x* — y* — 2y)dydx.
~1

—1-J/2-2x2
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~1+/2-2x2

»(~l—~/2~2x2

Put x = sin0,

Figure 12.3.9

Answer V = \/FZn.

12 MULTIPLE INTEGRALS

J2-2x2
(1 —2x2 — p* — 2y)dy :[ , (2 — 2x* —u?)du
—J/2-2x2
8./2
= %(1 _ X2)3/2_

182
v=]

| — x2 = cosf, dx = cosf do (Figure 12.3.9).

— x?)32 gx.

/1 — x?

vV

f cos* 0 do
—n/2

>

nj2

\s\ \«

-b\w-bM—‘

3/1 1
cos?@sin0 + = (—cos@ sin@ + = 0

412 2
_ /i

Il

-2

L
3 2"

PROBLEMS FOR SECTION 12.3

Find the volumes of the

following solids in Problems 1-8.

1 0<x<1, 0=yp=<1], xy<z=I

2 0<x<2 0<yp<2 x*4y’<z<38

3 0<x<l, 1€£y<2 x<z=Z=y

4 0<x<4 0<y=<l1 x=<z=xe

5 0<x<2 0y<x, y<z=<x

6 [€x<4, x<y<4 y<x=<xy

7 —1<x<1l, ¥*<y<, xJy<z<y

8 0<x<n -—sinx<y<sinx, —sinx=<z=<sinx

In Problems 9-16, find the volume of the solid bounded by the given surfaces.

9
10

The planes y = 0,
The planes x =0,

x+y=2
y=0 2x+3y+:z=

Z= —X, Z=X

4, 6x+p—z=28
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11 z:x2+yz, z=4 12 z=x2+yz+l, z=2x+ 2y
13 y=0, z=x*4+y, z=1 14 x=0, x=y zZ=1-y
15 x2+3y2=9, x24+22=9 16 z=x*+y?, z=2-x2— )
. Xy g2
17 Find the volume of the ellipsoid =z + e + 2= 1.
18 Find the volume of the solid bounded by the paraboloid z = x*/a? + y?/b® and the

plane z = ¢, where c is positive.

12.4 APPLICATIONS TO PHYSICS

In this section we obtain double integrals for mass, center of mass, and moment of
inertia.

DEFINITION

If a plane object fills a region D and has continuous density p(x, y), its mass is
m = [ [px. s
D

On an element of area AD, the density is infinitely close to p(x, y) (Figure
12.4.1). Therefore the mass is

Am x p(x, y) AA {compared to AA).
By the Infinite Sum Theorem m = ([, p(x, y) dx dy.

AD

(xa. y0)
mass Am

Figure 12.4.1

In Chapter 6 we were able to find the mass of a plane object whose density
p(x) depends only on x by a single integral,
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m= sz plx}(by(x) — by(x)) dx.

Our new formula for mass reduces to the old formula in this case, for by the Iterated
Integral Theorem,
m= ffp(x) dA
Hz ba(x)
j J x)dy dx
ag vbi(x)
= [ plateato) = b0

Now we can find the mass of a plane object whose density p(x, y) depends on both x
and y instead of on x alone.

EXAMPLE 1 Find the mass of an object in the shape of a unit square whose density
is the sum of the distance from one edge and twice the distance from a second

perpendicular edge.

Step 7 The region D is shown in Figure 12.4.2,

Y

D

Figure 12.4.2

Step 2 Place the object so the first two edges are on the x and y axes. Then D is the
region

Step 3 The density is p(x, v) = y + 2x.

11
m:ij—kadAsz y + 2xdydx.
0o
D

1

i
f y+ 2xdy =4y + 2.\'}] =1+ 2x.
o] 0

1
m= f 34+ 2vdy = 3.
0]

DEFINITION

A plane object which fills a region D and has continuous density p(x, y) has
moments about the x and y axes given by
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M, = nyp(x, y)dA
M, = fop(x, y)dA

M, and M, are sometimes called first moments to distinguish them from
moments of inertia (which are called second moments).

The center of mass of the object is the point (X, y) with coordinates

L [P
o o

e

" e

JUSTIFICATION The piece of the object on an element of area AD has mass
Am =~ p(x, y) AA (compared to AA).
A point mass m at (x, y) has moments
M, = ym, M, = xm.
Therefore the piece of the object at AD has moments

AM, =~ yAm = yp(x, y) AA (compared to AA),
AM, ~ x Am = xp(x, y) AA (compared to AA).

The double integrals for M, and M, now follow from the Infinite Sum
Theorem.

An object will balance on a pin at its center of mass (Figure 12.4.3). The
center of mass is useful in finding the work done against gravity when moving the

Center of mass

Figure 12.4.3
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object. The work is the same as if the mass were all concentrated at the center of mass,
and is given by

W = mgs

where s is the distance the center of mass is raised and g is constant.

EXAMPLE 2 A triangular plate bounded by the lines x =0, x =y, y =1 has
density p(x, y) = x + y. Find the moments and center of mass.

Step 7 Sketch the region D, as in Figure 12.4.4,

y
y=1
o D
X
Figure 12.4.4
Step 2 We see from the figure that D is the region
0<x<=1, x<y=<1

Step 3 Set up and evaluate the iterated integrals for the mass m and moments M,

and M.
1 pl
m:J.fx + ydA =J~ J x + ydydx
0vJx
D

1
fx+ydy

I
=
+
w|

|
ok
=

(ST

1
m:f x+4—3x%dx =
0

1 a1
MX=J.J‘y(x+y)dA=J-f yx + y? dydx.
0vx
D

1
[ rar=tri-ge

1
0
1 pl
My=jfx(x+y)d/1 =Jf x? + xydydx
5 0Jx
1
fx2+xydy=x 3x = 3x°

M=Jx+x—7xd = 3.
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The answers are M, = 224, M, = ;4
Y—M*'—5/24— 5
m 12 12
_ M, 9724 9
T T T

The point (¥, ¥) is shown in Figure 12.4.5.

EXAMPLE 3 The object in Example 2 is lying horizontally on the ground. Find the
work required to stand the object up with the hypotenuse of the triangle on
the ground (Figure 12.4.6).

We use the formula W = mgs.

From Example 2, m = 3. We must find s.

9 .
s = minimum distance from ( —) to the line x = y.

12’12
5)2 912
= ini l = _ _—
s = minimum value of z /(x 12) +(x 12)
. 28 106
EE TR T g
dz 28\1 _,,
E_,(‘lx_lz)iz ‘
dz 28 7
t—i;=0 at 4x=E, =1
_ L7\ _28. 7 1062
- 12 T12°12 T 144 6
i 2 2
W=mgs=38 =128

The second moment, or moment of inertia, of a point mass m about the origin
is the mass times the square of the distance to the origin,

.
(%.7)

(—x“ 7)

Figure 12.4.5 Figure 12.4.6
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I =m(x*+ y%).

The moment of inertia is related to the kinetic energy of rotation. A mass i moving at
speed v has kinetic energy

KE = {mv*.

Hence if m is rotating about the origin with angular velocity w radians per second,

its speed is v = w./x* + y* and
KE = tm(o/x* + y2)* = Hw?,

Thus moment of inertia is the rotational analogue of mass.

DEFINITION

Given a plane object on the region D with continuous density p(x,y), the
moment of inevtia about the origin is

I = pr(x, Y(x* + y*)dA.
D

JUSTIFICAT/ION On an element of volume AD, the moment of inertia is
Al = (x* + y) Am =~ p(x, y)(x? + y?) AA (compared to AA).
The integral for I follows by the Infinite Sum Theorem.

EXAMPLE 4 Find the moment of inertia about the origin of an object with constant
density p = 1 which covers the square shown in Figure 12.4.7:

1 . 1 1 1
—75x%573, —3Sy=3.

1/2 1/2
I = ff(xz + ¥y dA = f J x? + y? dydx.
D —1/24 =172

12 12
J. xt+ yrdy = x*y + %yﬂ = x>+ 15.

—-1/2 —1;2

—
Il

1/2
j x? + f5dx = L.
-122

o —

| —
o—

N —

Figure 12.4.7
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PROBLEMS FOR SECTION 124

In Problems 1-10, find (a) the mass, (b) the center of mass, (c) the moment of inertia about the
origin, of the given plane object.

1 —a<x=<ag -b=<y<bh oplxy=k

2 0<x<a 0Zy<h px,y=k

3 0<x<1 x2<y<I, px,y)=k

4 0<x<a 0=y<bx, px.y)=k

5 0<x<2 x=<y=<2x px,N=x+y+1
6 0<x<1 0=y<x, px,y)=x—y

7 0<x=<1 0=Zy<x? p(x,y)=ﬁ+\/;
8 1€x<2, x<y<x?y p(x,y):l/\/x\y

9 0<x=2 e*<y=e’, pxy=1

10 —1<x<1, 0<sy<1/J/1+x% px,v)=y

11 Find the mass of an object in the shape of a unit square whose density is the sum of the
four distances from the sides.

12 Find the mass of an object in the shape of a unit square whose density is the product of
the distances from the four sides.

13 An object on the triangle 0 < x < 1,0 < y < x has density equal to the distance from
the hypotenuse y = x. Find the amount of work required to stand the object up (a) on
one of the short sides, (b) on the hypotenuse.

14 An object in the shape of a unit square has density equal to the distance to the nearest
side. Find the mass and the amount of work needed to stand the object up on a side.

15 An object on the plane region —1 < x < 1, x? < y < 1 has density p(x, y) = 1 4+ x + \[y
Find the mass and the work needed to stand the object up on the flat side.

16 An object on the unit square 0 < x < 1,0 < y < 1 has density p(x,y) = ax + by + ¢.
Find the mass and center of mass.

O 17 The moment of an object of density p(x, y) in the region D about the vertical line x = a
is defined as
Myoma = [ [x = apl sy da
Show that D
M, ,_,=M,—a-m
where M is the moment about the y-axis and m is the mass.
O 18 The moment of inertia of an object in the region D of density p(x, y) about the point

P(a, b) is defined as

I = f f p(e )(Cx — @) + (y — BY)dA.
Show that D
Ip=1 —2aM, — 2bM, + m(a® + b)

where I is the moment of inertia about the origin, M, and M are the first moments, and
m is the mass.

12.5 DOUBLE INTEGRALS IN POLAR COORDINATES

A point with polar coordinates (8, r) has rectangular coordinates

(x, y) = (rcos 6, rsin 8).
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DEFINITION
A polar region is a region D in the (x,y) plane given by polar coordinate
inequalities
a<0<p, a(@) < i < b(0),

where a(f) and b(0) are continuous. To avoid overlaps, we also require that
for all (8, r) in D,

0<0<2m and 0=

The last requirement means that the limits « and f are between 0 and 2,
while the limits a(0) and b(0) are =0. Figure 12.5.1 shows a polar region.
The simplest polar regions are the polar rectangles

a<0=<p, a=<r=h

We see in Figure 12.5.2 that the 0 boundaries are radii and the r boundaries are
circular arcs.

b(8)

; D

S N>

A polar region

Figure 12.5.1
b
D
B
N a o
\,
A P
N P
N e
AN i
A polar rectangle
Figure 12.5.2 P &

The polar rectangle
2 <0< B, 0<r<b

is a sector of a circle of radius b (Figure 12.5.3(a)).
The polar rectangle

0<0<2n, 0<r<h

is a whole circle of radius b (Figure 12.5.3(b)).
Less trivial examples of polar regions are the circle with diameter from (0, 0) o
(0, b),
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b
b
8
(a4
(a) sector: (b) circle:

a<0<B,0<r<bh 028<2m,0<r<h

Figure 12.5.3
0<60<nm, 0<r<bsind,

and the cardioid 0<0 < 2nm, 0<r<1+cosh.

Both of these regions are shown in Figure 12.54.

We shall use the Infinite Sum Theorem to get a formula for the double
integral over a polar region. In the proof we take for AD an infinitely small polar
rectangle.

POLAR INTEGRATION FORMULA
Let D be the polar region
o< 0<p, a(@) < r < b(6).
The double integral of f(x, y) over D is
B (O
fj flx,y)dA = J f(x, y)rdrdo
. @

a(8)

B prb(®)
= J‘ f{rcos 8, rsin B)r dr db.

a(0)

Notice that in the iterated integral for a polar region we do not integrate
f(x,y) but the product of f(x,y) and r. Intuitively, the extra r comes from the fact
that a polar element of area is almost a rectangle of area r AG Ar (see Figure 12.5.6(b)).

PROOF We shall work with the rectangular (0, r) plane. Let C be the region in the
(6, r) plane given by the inequalities
<0< B, a(@) < r < b(0).

Thus C has the same inequalities as D but they refer to the (4, r) plane instead
of the (x, y) plane. D and C are shown in Figure 12.5.5.

f J flx, y)dxdy = j j f(x, y)rdo dr.

D C

We must prove that

781
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(a) circle: (b) cardioid:
0<8<m0<r<bhsind 0<80<2m, 05 r<Il+4cosé
Figure 12.5.4
! v
o B 8 D
| o
| | \ -
| | N L7
: -
o B U x
Figure 12.5.5

Our plan is to use the Infinite Sum Theorem in the (8, r) plane. Assume
first that f(x, y) > 0 for all (x, y) in D.

For any (0, r) region C; corresponding to a polar region D, in the (x,y)
plane, let

B(C)) = ” £, y) dx dy.
D,

Then B has the Addition Property and is always =0. Consider an e¢lement of
area AC in the (0,r) plane with area A0 Ar. AC corresponds to a polar
rectangle AD in the (x, y) plane. As we can see from Figure 12.5.6, AD is
almost a rectangle with sides A0 and Ar and area r A Ar.

The volume over AD is almost a rectangular solid with base of area r A0 Ar
and height

f(x,3) = f(rcos8,rsin0).
Therefore B(AC) =~ f(x, y)r AO Ar (compared to A8 Ar).
By the Infinite Sum Theorem

B(C) = Hf(x, o do dr.
C

and by definition B(C) = Jff(.\', y)dxdy.
D
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) y
AD
/ Ar
g
(r, 0)
r x
(a) Under microscopes
0 v
£,
AC /97
/Ae//r
(r, &) s
/7
/ /
///
r x
(b) Exaggerated scale

Figure 12.5.6

Finally we consider the case where f(x,y) is not always positive. Pick a
real constant k > 0 such that f(x, y) + k is always positive for (x, y) in D.
By the above proof,

L f (S p) + k) dx dy = U (f(x, y) + kyr dO dr,

ff kdxdy = J.f kr do dr.

D C

When we use the Sum Rule and subtract the second equation from the first,
we get

fff(x, Y dx dy = j.f f(x, yydo dr.

D C

In a double integration problem where the region D is a circle or a sector
of a circle, it is usually best to take the center as the origin and represent D as a polar
rectangle.

EXAMPLE 1 Find the volume over the unit circle x* + y? < [ between the surfaces
z=0and z = x%

Step 7 Sketch D and the solid, as in Figure 12.5.7.

753
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~
N2

Figure 12.5.7

Step 2 D is the polarregion 0 < 0 < 2x,0 < r < 1,

2z p1 2rn pl
Step 3 V= fj xtdxdy = f f x%dr do = J- f (r cos 0)%r dr dO
0o Jo 0o Jo
D

2n 1
= j f r3cos? 6drdf
o Jo
2n 2n

= f Lcos?0do = i(4sinfcos 0 + %H;I = n/4.
0 —

o

For comparison let us also work this problem in rectangular coordinates.
We can see that it is easier to use polar coordinates.

Dis the region —1 < x < 1, —J1l=x*<y< /1 — X2
i J1—x2 1
V='”-x2dxdy=J‘ f xzdydx=f 2x3 /1 — x% dx.
—1J-J1=%2 -1
D

We make the trigonometric substitution shown in Figure 12.5.8:

x=sin¢, J1 —x*=cos¢p, dx = cos¢pdp.

[J]
Figure 12.6.8 V1 —x?

Then¢ = —nf2atx = —land ¢ =n/2at x = 1, so

nf2
V=f 2sin? ¢ cos® ¢ dop
M 1 — cos2¢\ (1 + cos2¢

e e L

—n/2
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/2
=f 11 = cos? 2¢) dp

-2

= JL 1 — cos® u) du

n

= Hu — $cosusinu —5ui| = /4.

—n
EXAMPLE 2 Find the mass and center of mass of a flat plate in the shape of a semi-

circle of radius one whose density is equal to the distance from the center
of the circle.

Step 7 The region D is sketched in Figure 12.5.9.

Step 2 Take the origin at the center of the circle and the x-axis as the base of the
semicircle. D is the polar region 0 <8 < 7w, 0 <r < 1.

Step 3 The density is

ple, y) = /x* + ¥ =1
T pl
mszﬁ/xz-i—ysz:f f rerdrdd
g 0 Jo
n 1 7:1 T
=ffﬁmw=f—M=<
M, ffy x? + y?*dA = jfrsm@;rd;d@
f f +* sin 0 dr d0 —J +sinf6do = 1.
1]

M, ffx x2 4+ y?d4 = Jlj.icosf)rid;de

J f r cosf)d;d@—f tcos0df = 0.
0

M, M, 3
Answer mzz, X=—2=0, y=—"=——~0477.
3 m m 2n

The point (X, ) is shown in Figure 12.5.10.

D $ X, 7)

Figure 12.5.9 Figure 12.5.10
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EXAMPLE 3 Find the moment of inertia of a circle of radius b and constant density
p about the center of the circle.

Step 7 Draw the region D (Figure 12.5.11).

Figure 12.5.11

Step 2 Put the origin at the center, so D is the polar region

0<0=<2n 0<r=<h

SO
2n pb
I= ffp S(x? 4+ ¥ dA = f J pr v dr do
o Jo
D

2n pb 2n
=pf fr%ird@:pf Lptdo
o Jo )

_ pb*n
=5

Step 3 x* + y* =13

PROBLEMS FOR SECTION 12.5

In Problems 1-16, find the volume using polar coordinates.
1 x4+ y2<], 0<z2<6

2 x4y <1, 0<z2<x 4 y?

3 x4+ y2<4 0<z<x+2

4 x* 4+ y? <4, OSZS\//,\'—Z—i-iy2

5 X2+ p?<9, xP+pP<z<9

6 X242 <25 0S¥

7 l<x?2 42 <4, (P +p) <z x4y 12
8 1<x?4+y2<9, 14/x+yP<z<1

9 0<x<I, OS}’S\//]—XZ, OSzS.\‘\/}
10 —2<x<2 0<y<./4—x% x<z<y+2
13| nd<0<m/3, 0<r<] 0<z<;?

12 0<0<n6, 1<r<2 0sz<./9-,2

13 0<f<nm 0<r<2sin0, 0<z<r

14 0<0<np2 0<r<cosh r<z<y?

15 0<0<2r, 0<r<0, 0<zZ<r2P +20
16 0<0<2n, 0<r<¢l Oézé\/):
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17 Find the volume of the solid over the cardioid r = 1 + cos & between the plane z = 0
and the cone z = r.

18 Find the volume of the solid over the cardioid r = 1 + cos 8§ between the paraboloids
z=r*andz = 8 — 2%

19 Find the volume of the solid over the circle r = sin 0 between the plane z = 0 and the
hemisphere z = /1 — 1.

20 Find the volume of the solid over the circle r = 2 cos 8 between the plane z = 0 and the
conez=2—r.

21 Find the volume of the solid over the polar rectangle o < 8 < f§,a < r < b, between the
plane z = 0 and the cone z = r.

22 Find the volume of the portion of the hemisphere 0 < z < ./1 — r? over the polar
rectangle « < 6 < B, a < r < b (assuming b < 1).

23 A circular object of radius b has density equal to the distance from the outside of the
circle. Find (a) the mass, (b) the moment of inertia about the origin.

24 A circular object of radius b has density equal to the cube of the distance from the center.
Find (a) the mass, (b) the moment of inertia about the origin.

25 Find the moment of inertia about the origin of a circular ring a <+ < b, 0 < § < 2n,
of constant density k.

26 Find the moment of inertia of a circular object of radius b and constant density k about

a point on its circumference. (The center can be put at (0, b), so the object is on the polar
region 0 < r < 2bsinf,0 <0 < 1)

27 An object has constant density k on the circular sector 0 < x < 1,0< y < . /1 — x2
Find (a) the center of mass, (b) the moment of inertia about the origin.

28 An object of constant density k covers the cardioid * < 1| + cos 8,0 < 6 < 2x. Find
(a) the center of mass, (b) the moment of inertia about the origin.

29 An object of constant density k covers the region inside the circle r = 2bsin 8 and
outside the circle r = b. Find (a) the center of mass, (b) the moment of inertia about the
origin.

30 An object of constant density k covers the polar region

0=<0<m/72, 0<r<bsin26.

Find (a) the center of mass, (b) the moment of inertia about the origin.

o 3 (a) Use polar coordinates to evaluate J ) f B dy dx.

[ a}

o

(®) ShowthatJ" f e P dydx = (f e dx

—

(c) Now evaluate the single integral j e dx.

12.6 TRIPLE INTEGRALS
A closed region in space, or solid region, is a set E of points given by inequalities
ay £ x < a,, bi(x) <y < b,(x), ci(x,y) €z < cy(x,y)
where the functions b (x), b,(x) and ¢,(x, y), ¢,(x, y) are continuous.

The boundary of E is the part of E on the following surfaces:

The planes x = a;, x = a,.
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The cylinders y = b(x), y = b,(x).

The surfaces z = ¢,(x, y), z = c,(x, ).

The simplest type of closed region is a rectangular solid, or rectangular box,
a; < x < a,, by <y=<b,, ¢, <z=<c,.

Figure 12.6.1 shows a solid region and a rectangular box.

z z
y y
ay ai
gy’ oo AL
as
X dog P
Region in space Rectangular box
Figure 12.6.1

An open region in space is defined in a similar way but with strict inequalities.
As in the two-dimensional case, the word region alone will mean closed region.

PERMANENT ASSUMPTION

Whenever we refer to a function f(x, y, z) and a solid region E, we assume rhat
f(x, v, 2) is continuous on some open region containing E.

The triple integral ijf(x, y,z)dx dydz
E

is analogous to the double integral.
The first step in defining the triple integral is to form the circumscribed
rectangular box of E (Figure 12.6.2). This is the rectangular box

a; < x < a,, B, £y<B,, C, £z50,,
where B, = minimum value of b,(x),
B, = maximum value of b,(x),
C, = minimum value of ¢,(x, y),
C, = maximum value of c,(x, y).
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¥y
ai
x adoy
Figure 12.6.2 The circumscribed rectangular box

Our next step is to define the triple Riemann sum. Given positive real
numbers Ax, Ay, and Az, we partition the circumscribed rectangular box of E into
rectangular boxes with sides Ax, Ay, and Az (Figure 12.6.3). The partition points of
this three-dimensional partition have the form

(Xks Vi> Zm)s 0<k<n, 0<1<p, 0<m=yq.
The triple Riemann sum of f(x, y,z) Ax Ay Az over E is defined as the sum

Y22 Sy, 2 AxAyAz = YN f(x, v, 2,) Ax Ay Az,
E

(XK, ¥1,2m) in E

When we replace Ax, Ay, Az by positive infinitesimals dx, dy, dz we obtain an infinite
triple Riemann sum

Y3Y Sy, 2) dx dy dz,
E

Ay

A partition
Figure 12.6.3 X

759
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LEMMA
For all positive infinitesimals dx, dy, and dz, the triple Riemann sum

ZZZ fx.v,z)ydxdyd:z
E

is a finite hyperreal number and therefore has a standard part.

We are now ready to define the triple integral (see Figure 12.6.4).

Figure 12.6.4 X

DEFINITION

Given positive infinitesimal dx, dy, and dz, the triple integral of a continuous
Junction f(x, y, z) over E is

ij flx,y 2)dxdydz = st|> > f(x,y,z)dxdydz).
E
E

We shall now briefly state some basic theorems on triple integrals, which
are exactly like the corresponding theorems for double integrals.

INDEPENDENCE OF dx, dy, AND 4z

The value of jjj"E f(x, y, z)dx dy dz does not depend on dx, dy, or dz.

We shall usually use the notation dV = dxdydz for the volume of an
infinitesimal dx by dy by dz rectangular box, and write

J.l-f f(x.y,z)dV  for JEIJ J(x,y,2)dx dy dz.

ADDITION PROPERTY

If E is divided into two regions E, and E, which meet only on a common
boundary then

JJ.J-./'(X, y,z)dV = JJJ-/‘(X’ 2y dV + JJI/(* b2V,
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ITERATED INTEGRAL THEOREM
If E is the region

a; £ X = a,, bi(x) < y < by(x), ci(x, y) = 2 Z ¢y(x, y),
ba(x) poa(x, ))
then jfj fx,y,2)dV = J J f f(x,y,2z)dzdydx.
h bi(x) Yei(x,»)

If the region E is a rectangular box
a; £x<a,, b, £y <bh,, ¢y = z=c,,

there are six different iterated integrals over E, corresponding to six different orders
of integration. Here they are (in “‘alphabetical” order).

(1) f L ) Sty ndzdydx () f f : 1(x, y, 2) dy dz dx

c2 b3
j fx, y,2)dz dx dy f f f f(x,y,z)dx dz dy
by

b

cx pdx pb:
f f f(x, y,2)dydxdz (6) f J- f f(x,y,2)dxdydz.
1 ag by

The Iterated Integral Theorem shows that each of these iterated integrals is equal to

the triple integral
[[[renaav
E

EXAMPLE 1 Evaluate JJJ xy?z® dV where E is the rectangular box

0<x<2, 0<sy<1, 0<z<4,

There are six iterated integrals which all have the same value. We compute
one of them, and then another to check our answer.

2 1 4
FIRST SOLUTION f”xyzz%n/:f J J xy?z3 dz dy dx.
J 0 v0 YO
E

The inside integral is

The second integral is

The final answer is
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4 2 pl
SECOND SOLUTION ij xy?z? def j f xy*z3dydxdz.
0 Jo 0
E

The inside integral is

1 1
j xy?z3dy = %xy3z3J = 4xz°
0 0

The second integral is

The final answer is

Triple integrals can be evaluated by iterated integrals.

EXAMPLE 2 Evaluate fff y + zdV where E is the region shown in Figure 12.6.5,
E

0<x<n/A2, 0<y<sinx, 0<z<ycosx.

Figure 12.6.5

n/2 psinx pycosy
SOLUTION .”-j y+ zdV = J J j y + zdz dydx.
¢] 0 0
E

We first evaluate the inside integral.
ycosx ycosx
J y+zdz=yz+ %zz} = y?cos x + 3y? cos? x.
0 0
Now we evaluate the second integral.

sinx sin x
f y2cosx + 1y? cos? x dy = 1y*(cos x + %coszx)]
o 0

= {sin® x(cos x + 4 cos? x).

Finally we evaluate the outside integral.
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0

/2
fJ‘fy-l— zdV = f 1sin® x(cos x + % cos? x)dx
E

= f 11 — cos? x)(cos x + % cos? x) sin x dx
1]
0

= f =41 — v?)(u + 3u*) du
1

1
i 1,2 31,4 _ 19
=f 3+ 3u° — u’ —3u") du = 150
0

COROLLARY

The volume of a region E in space is equal to the triple integral of the constant 1
over E as illustrated in Figure 12.6.6,

- [ffar

Figure 12.6.6 x

PROOF E is the solid over the plane region D given by
a; < x < a,, bi(x) <y < by(x)

between the surfaces z = ¢y(x,y) and z = c,(x, y). By definition of the
volume between two surfaces,

V= [[ e - citraa.

D
Using the Iterated Integral Theorem,
ba(x) pca(x,y)
JIJ dVv = j j f dz dy dx
ay vbi(x) 1(x,y)

b2(x)

f [ teatron) - eitx i dy e =

bi(x)

We now come to the Infinite Sum Theorem for triple integrals, which is,
again, the key result for applications.
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We shall use Ax, Ay, and Az for positive infinitesimals. By an element of
volume we mean a rectangular box AE with sides Ax, Ay, and Az (Figure 12.6.7).
The volume of AE is

AV = Ax Ay Az.

Y

Figure 12.6.7 - An element of volume

INFINITE SUM THEOREM

Let h(x, y, z) be continuous on an open region E, and let B be a function which
assigns a real number B(E) to each region E contained in Ey. Assume that:

(1) B has the Addition Property.
(1) B(E) = 0 for every E.
(1)  For every element of volume AE,

B(AE) ~ h{x,y,z) AV (compared to AV).
Then B(E) = JII hix, y,z)dV.
E

Here are some applications of the triple Infinite Sum Theorem. Perhaps
the simplest physical interpretation of the triple integral is mass as the triple integral
of density.

DEFINITION

The mass of an object filling a solid region E with continuous density p(x, y, z) is

m = fff o(x, ¥, z)dV.
E

JUSTIFICATION At every point of an element of volume AE the density is infinitely
close to p(x, ¥, z), so the element of mass is

Am = p(x, y,z) AV (compared to AV),
(See Figure 12.6.8.) By the Infinite Sum Theorem,

m = J-Ffj p(x, y, z) AV.
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Figure 12.6.8 X

EXAMPLE 3 Find the mass of an object in the unit cube
0<x<1, 0<y<l 0<z<I

with density plx,y,2)=x+y+z

m=J-fo+y+de
J f f X+ y+zdzdydx

f J x+y+3 dydx-f x+ 35+ 5dx =3,
0
An object in space has a moment about each coordinate plane.

DEFINITION

If an object in space fills a region E and has continuous density p(x, y, z), its
moments about the coordinate planes are

M, = J-EJJ‘ zp(x, y, z)dV.
M, = JEH yp(x, y,z)dV.

M, = J;U‘xp(x, v, z)dV.

The center of mass of the object is the point (X, y, Z), where m is mass and

__Myz = sz Mxy

= y: . Z’_—
m m m

|
-

JUSTIFICATION A point mass m has moment M, = mz about the (x,y) plane
(Figure 12.6.9). In an element of volume AE, the object has moment

AM,, = zAm = zp(x, y, z2) AV (compared to AV).
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Figure 12.6.9 X

By the Infinite Sum Theorem,
M,, = JJJ zp(x, y, z) dV.
o

EXAMPLE 4 An object has constant density and the shape of a tetrahedron with
vertices at the four points

(0,0,0), (1,0,0), (0, 1, 0), (0,0, 1).
Find the center of mass.

Step 7 The region is sketched in Figure 12.6.10.

Figure 12.6.10

Step 2 The region E is the solid bounded by the coordinate planes and the plane
X+ y + z =1 which passes through (1,0,0), (0, 1,0), (0,0, 1). Solving for
z, the plane is

z=1—-—x—x

This plane meets the plane z =0 at the line | —x — y =0, 0r y =1 — v,
Therefore E is the region

0<x <, 0<y=<1 —x, 0<z<1 —x—1.
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Step 3 Let the density be p = 1.

1 1-x pl—x—y%
111=ijdV:f f f dz dy dx
0 Jo 0
E
1 pl-x
:Jf 1 —x — ydydx
0 Yo

1
:J%(l—x)zdx=é.

[¢]

M,, = ijde
E
1 1-x pl—x-—y
:J j J xdzdydx
o Jo 0

i 1—x
=J f x(1 — x — y)dydx
0o Jo
1

= f Ix(1 — x)? dx = 2.
o

M, 124 1
X=—"=—"7=

m 1/6 4
1 1
Similarly y = 1 e

o [t11
(’\ayaz) - (4’112)

NI
I
|

The center of mass is

An object in space has a moment of inertia about each coordinate axis.
Intuitively, the moment of inertia about an axis is the analogue of mass for rotations

about the axis.

DEFINITION

If an object in space fills a region E and has continuous density p(x,y,z),

its moments of inertia about the coordinate axes are

Ix = jff (y2 + ZZ)P(X’ Y Z) dV’
E

I, = _Uf (x* + 2%)p(x, y, 2) dV,
E

I = J'jf (x* + y*)p(x, y,z)dV.
E

JUSTIFICATION A point mass m has a moment of inertia about the x-axis of

I = (y* + 2%)m.

767
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On an element of volume AE, the object has moment of inertia
Al = (y* + z8)Am = (2 + 29p(x, y,z) AV (compared to AV).

The triple integral for I, follows by the Infinite Sum Theorem.

EXAMPLE 5 Find the moments of inertia about the three axes of an object with
constant density 1 filling the cube shown in Figure 12.6.11,

0<x<aq, 0= y=<aq, 0<z=<a.

AZM, av - HJHWM\

a5.

Similarly, I, = 3%a° I, =

[

7
Figure 12.6.11 X

PROBLEMS FOR SECTION 12.6

In Problems 1-8, evaluate the iterated integral.

1 a4 3
1 fJ fxyzdzdydx
0 2 1
2 2 p4
2 f f j (x — 2y + 4z)dz dy dx
0 -1
4 1 1
3 j J. J (3y? + 62%) dz dy dx
2 p2
"
0
1
s L
4]
1
o LI
0
7 fJ f vz dzdydx
4] 4]
2

/. cosx pysinx
8 j j f (x + 2z)dzdydx
0

0 o

f "t dzdydx
j x? 4 yz)dzdy dx

2x%zdz dy dx
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12.7 CYLINDRICAL AND SPHERICAL COORDINATES

In Problems 9-16, evaluate the triple integral.

9 fff(erZy)dV, E0<x<21<y<32<:<4
E
10 Jjszyde, E:0<x<1,0<y<1,0<2<1
E
11 f”(4xy+yz)dv, E0<x<10,0<y<x30<z<xy
E
1 2 3
12 Jff ol ol dV, E:1<x<el<y<x1<z<x
JIx Ty oz
13 jJ‘fex+2"+3de, E:-1<x<iL,x<y<l,x<z<y
14 fffxe"”dV, E:1<x<20<y<Inx0<:z<y
E
15 J-‘”.\/x«l—y+de, EQ0<x=<1,0<y<x,y<z<2y
E
16 Jfde, EZOSXSI,XZS_}JSX,XZ}VSZSX\/}
E

In Problems 17-26, find (a) the mass, (b) the center of mass, (c) the moments of inertia about the
three coordinate axes, of an object with density p(x, y, z) filling the region E.

17 E:0<x<1,0y=<1,0<z<1 px, y,2)=x + 2y + 3z

18 E0<x<L,0<y<1,0<z<1  p(x,2)=x>+ y* + 22

19 EO0=x<[,0<y=x0<z<x+y px,y,z)=2

20 Ei—1<x<L,x*<y<1,x*<z<1 px,y,z2) =1z

21 E:OSxSI,OSySI,\/x—ySZSI plx, v,2) = xyz

22 E0sx<1,x<y<1,x<z<y plx,y,2) =10

23 E is the tetrahedron with vertices at (0, 0, 0), (4, 0, 0), (0, b, 0), (0,0, ¢), p(x, y, z) = k.

24 E is the tetrahedron with vertices (0, 0, 0), (1,0,0),(1, 1,0), (1,0, 1), p(x, y, 2) = x + y + z.
25 Eistherectangular box 0 < x <2, 0< y < h,0<z < ¢ p(x,y,2) = k.

26 Eis the rectangularbox —a < x <a, —bh <y <h —c<z< ¢ plx,y,2) =k

CYLINDRICAL AND SPHERICAL COORDINATES

In evaluating triple integrals it is sometimes easier to use cylindrical or spherical
coordinates instead of rectangular coordinates.
A point (x, y, z) has cylindrical coordinates (0, r, z) if

X = rcosf, y = rsinf, z =z

That is, as we see in Figure 12.7.1, (6, r) is a polar coordinate representation of (x, y),

and z is the height above the (x, y) plane.
The name cylindrical coordinates is used because the graph of the cylindrical
coordinate equation r = constant is a circular cylinder as shown in Figure 12.7.2.

769



770 12 MULTIPLE INTEGRALS

N~

=
-
/

¥ = constant

o . 1
Cylindrical coordinates X
Figure 12.7.1 Figure 12.7.2
DEFINITION

A cylindrical region is a region E in (x,y, z) space given by cylindrical co-
ordinate inequalities

a <0 <P, a(@)y < r < b(0), 0, 1) < z < ¢,(0,r),

where all the functions are continuous. To avoid overlaps we also require
that for (8, r, z) in E,

0<6<2r and 0=<r.

A cylindrical region is shown in Figure 12.7.3.
The simplest kind of cylindrical region is the eylindrical box

o< 0 <P, a <r <b, ¢ £z=Zc,.

This is a cylinder whose base is a polar rectangle and whose upper and lower faces
are horizontal, as in Figure 12,74,

ca(f, 1)

A cylindrical region A cylindrical box
Figure 12.7.3 Figure 12.7.4
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The cylinder box
0<0<2n, 0<r=<b ;= z=< 0y

is a cylinder whose base is a circle of radius b and whose top and bottom faces are
horizontal (Figure 12.7.5).
The cylindrical box

0<8<2nm, a<r<b, ¢y <z=<c,

is a circular pipe with inner radius a and outer radius b (Figure 12.7.6).

Figure 12.7.5 Figure 12.7.6

To get a formula for the triple integral over a cylindrical region E, we use
the Infinite Sum Theorem but take for AE an infinitely small cylindrical box instead
of rectangular box.

CYLINDRICAL INTEGRATION FORMULA
Let E be the cylindrical region
o< 0=<B, a(f) < r < b(O), c,(0,7) £ z < ¢,(0, 7).
The triple integral of f(x, y, z) over E is

b(@) pe2(8,0)
ijf(x v, z)dV = f J. f(x, , 2)r dz dr db.
a® Jei(d,0

To evaluate the triple integral we substitute
f(x,y,2z) = f(rcos8,rsinf, z).
This is like the Polar Integration Formula but has an extra variable z.
In the iterated integral we do not integrate f(x, y, z) but the product of f(x, y, z) and r.
PROOF Let C be the region in the rectangular (8, r, z) space given by
o< 0=<B, a(0) < r < b(0), c1(0,r) £ z < ¢y(8, 7).
The region C is shown in Figure 12.7.7.
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z

N D N g

\/

Figure 12.7.7

We must prove that

jJ.J.f(x, yzydxdydz = J:fjf(x, vz d0drdz.
E C

Assume first that f(x, y, z) > Oon E. For any (0, , z) region C, corresponding
to a cylindrical region E,, define

B(C,) = J.fff(x,)!, z)dx dy dz.
Eo

B has the Addition Property and is =0. An element of volume AC in the
(8, r, z) space has volume A Ar Az. As we can see from Figure 12.7.8, AC cor-
responds to a cylindrical box AE. AE is almost a rectangular box with sides
1 AD, Ar, and Az, and volume r A8 Ar Az

At any point of AE, f has value infinitely close to
S(x, v, 2z) = f(rcos b, rsin (0, z).
Therefore B(AC) = f(x, y,z)r AO Ar Az (compared to A8 Ar Az).

4_7 A rAQ

ST
ot
S
< /\{

8
~
B
B
>

0 X

Figure 12.7.8
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By the Infinite Sum Theorem

_ f Cj f 1%, y, 2)r d0 dr dr,

and by definition
B(C) = fff f(x, y,2)dx dy dz.
E

The general case where f(x, y, z) is not always positive is dealt with as in the
Polar Integration Formula proof.

When integrating over a solid region E whose base is a circle or polar
rectangle, it is often easier to use cylindrical instead of rectangular coordinates.

eXAMPLE 1 Find the moment of inertia of a cylinder of height #, base a circle of
radius b, and constant density 1, about its axis.

Step 7 Draw the region as in Figure 12.7.9.

Step 2 The problem is greatly simplified by a wise choice of coordinate axes. Let
the z-axis be the axis of the cylinder and put the origin at the center of the
base. Then the region E in rectangular coordinates is

—b<x<bh, PP -xXP<y< B -x% 0<z<h,
and in cylindrical coordinates is
0<0<2r, 0<r<h 0£:z<h
Step 3 The problem looks easier in cylindrical coordinates.

x+y =r?

I, —Jff(x + y3)dV = JZHJ j ¥ dz dr d6

=j f f r>dz dr df
o JoJo

2t pb 2n 4
=f j r3hdrd9=f Lptnag =™
¢} 4] 4

0

2

Figure 12.7.9
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774
eXxaAMPLE 2 Find the center of mass of a cone of constant density with height h
and base a circle of radius b.
Step 7 The region is sketched in Figure 12.7.10.

Step 2 Put the origin at the center of the base and let the z-axis be the axis of the
cone. E is the cylindrical region

0<6<2nm 0<r<hph, OSZS/I—?I‘.
)

Step 3 Let the density be 1.

» 2n ab ph—hrjb
m = Jjjdl/ = J f f 1 dz dr do
Y 0o JoJo

2n pb /1
= f j r (h — r) dr do
o Jo b
2n 2n 2
L, 1 .h 1 nbh
= —b%h — =b3-| do = f Zb2hdb = .
L (21) 1 3 b)d . 6b hd 3

A2 ab ah—hrib
M, = fJdeV: J f J zr dz dr df
’ o Jo Jo
E
2n b el 2
= J f 1r(h - l) dr d0
0o Jo 2 b

1 2n pb 2".7. ’.3
el -2 e
S . 7 p +b2d1d0

0
l 2] 2 b3 bt
:~]2 - 2___‘ =N
21 . 2b 3% +4b2d()
i ] nb?h?
= L2 =T
2" L b 40 =

Since the cone is symmetric about the z-axis, ¥ = 0 and 7 = 0.

1 1
Mo oLy = (0, O’Z”)'

m 4

[\

The point (X, ¥, Z) is shown in Figure 12.7.11.

(*,7,2)

Figure 12.7.10 Figure 12.7.11
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To express a point P(x, y, z) in spherical coordinates we let p (rho) be the
distance from the origin to P, let 8 be the same angle as in cylindrical coordinates,
and let ¢ be the angle between the positive z-axis and the line OP. Note that ¢ can
always be chosen between 0 and 7.

)
w
[«
Q
Q.
f y (b, 0, p)
A p
5\
N ¥y
L]
L8 X,
) %
.és }=3
Q
V4

+/ y = psin ¢ sin
Figure 12.7.12 X

We see from Figure 12.7.12 that a point (x, y, z) has spherical coordinates (6, ¢, p) if
X = psin ¢ cos 0, y = psin ¢ sin 0, zZ = pcos .

The graph of the equation p = constant is a sphere with center at the origin (hence
the name spherical coordinates). The graph of ¢ = constant is a vertical cone with
vertex at the origin. The graph of 8 = constant is a half-plane through the z-axis.
These surfaces are shown in Figure 12.7.13.

p = constant

¢ = constant

* 9 =constant

Figure 12.7.13

DEFINITION

A spherical region E is a region in (x, y, z) space given by spherical coordinate
inequalities
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a4y S0 < a,, i) < ¢ < By(0), e (0,9) = p < cy(0, ),

where all the functions are continuous. To avoid overlaps we also require

that for (0, ¢, p) in E,
0<0<2nm 0<¢ <, 0=<np.

A spherical box is a spherical region of the simple form
oy <0 <oy, P ==, ¢ £ p=<c,.

The 0-boundaries are planes, the ¢-boundaries are portions of cone surfaces, and
the p-boundaries are portions of spherical surfaces. Figure 12.7.14 shows a spherical

box.

Figure 12.7.14 v A spherical box

The spherical box
0<6<2n, 0<¢ <m, 0<p<c
is a sphere of radius ¢ with center at the origin.
The spherical box
0 <0< 2n 0<¢<ph, 0=sp<=<c
is a cone whose vertex is at the origin and whose top is spherical instead of flat.

(See Figure 12.7.15.)

Cone with spherical top

Figure 12.7.15
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Another important example is the spherical region
0<80<2nm 0< ¢ <72, 0<p=<ccosd,

which is a sphere of radius 4c whose center is on the z-axis at z = Jc¢ (Figure 12.7.16).

z
c
% 0<6=<2mw
=4 0<¢ =<2
: ?& 0O<ps=sccos¢
g
S
¢
y
Sphere
Figure 12.7.16 x

When integrating over a solid region £ made up of spheres or cones, it is
often easiest to use spherical coordinates.

SPHERICAL INTEGRATION FORMULA

Let E be a spherical region
0 SO0<ay,  Bi(0) < ¢ < p), 16, ¢) < p = c,0,9)
The triple integral of f(x,y, z) over E is

a3 pB2(8) pcaie,B)
f f f oy, 2)dV = f j S5y, 2)p* sin ¢ dp dep do.
% o c

B1(0) Yci(,0)

In practice we make the substitution
f(x,v,2) = f(psin ¢ cos b, psin ¢ sin B, p cos @)

before integrating.

PROOF Let C be the region in the rectangular (0, ¢, p) space which has the same
inequalities as E. We prove

[[[roraraxayaz = [[ [ rexyzip?sin g avdi ap.
E ¢
As usual we let f(x, y,2) > 0 on E and put

B(C)) = fff f(x,v,z)dx dy dz.
E,

Consider an element of volume AC. As we see from Figure 12.7.17, AC
corresponds to a spherical box AE. AE is almost a rectangular box with

sides
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A
z AE IA/‘p ¢
/
- LF Dp
P L 3
AC p sin ¢ Ab
A'! %‘
Ap | i
pAe
A
¢ A
é Af y
-l
9 %
& E\
* p sin ¢ Af

Figure 12.7.17 Spherical Element of Volume

Ap, pAp, psind AD
and volume p?sin ¢ AG A Ap.
Thus B(AC) = f(x,y.z)p’sin ¢ A8 Ag Ap (compared to A8 Ad Ap).

By the Infinite Sum Theorem
B(C) = JJJ f(x, y, 2)p? sin ¢ dO d¢p dp,
C

and by definition

B(C) = JJJ f(x,p,z)dxdydz.
E

The triple integral for volume,

V:jﬂdv.

gives us iterated integral formulas for volume in rectangular, cylindrical, and
spherical coordinates.

ay pba(x) pealxy)
Rectangular V= j J dz dy dx.
ay bi(x) Yer(xy)
B b(O) pc26,r)
Cylindrical V= f j r dz dr do.
x ai() ci(8,r)
xx pfa(0) pcald,@)
Spherical V= ( f f p?sin ¢ dp d¢ do.
vay YO Yei(0,¢)

The rectangular formula is really equivalent to the double integral for the
volume between two surfaces. Similarly, the cylindrical formula is equivalent to the
double integral in polar coordinates for the volume between two surfaces.
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On the other hand, the volume formula in spherical coordinates is something
new which is useful for finding volumes of spherical regions.

examMmPLE 3 Find the volume of the region above the cone ¢ =  and inside the
sphere p = c.
The region, shown in Figure 12.7.18, is given by

0=<0<2mn, 0=<¢ <5,

0<p=<c
2n pf pe
V=J- f fpzsinc;bdpdd)dﬁ
V] 0 vo

2a pf c3

_ J S sind do do
0 0
27 3

- J (1 — cos ﬁ)%d@ = %”(1 — cos f)c.
()]

Figure 12.7.18

EXAMPLE 4 A sphere of diameter a passes through the center of a sphere of radius
b, and a > b. Find the volume of the region inside the sphere of diameter a
and outside the sphere of radius b.

Step 7 The region is sketched in Figure 12.7.19.

~

y
/
Figure 12.7.19
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Step 2 We let the z-axis be the line through the two centers and put the origin at
the center of the sphere of radius b. The two spheres have the spherical
equations

p = dcos ¢, p=h.
. b
They intersect at cos ¢ =—.
a
Thus E is the region

b
0<0<2n, 0 < ¢ < arccos -, b<p<=<acosp.
a

arccos (b/a) acosq
Step3 V= J f j p*sin ¢ dp d¢ dO

arccos (b/a) 1
:f J (a cos® ¢ — b%)sin ¢ d¢p db.

Put u = cos ¢, du = —sin ¢ d¢. Then

2n pbla 1
= f f — =(@*u® — b*)dudo
o 1 3

1 2n 1 3 3 5
=~f J a’u® — b° du db
3 0 bja

! 2m g3 3 bt 7 b
2 _p3a’ a3
=3 3 + 15 df = 6(a 4b° + 37

~ &
—

EXAMPLE 5 Find the mass of a sphere of radius ¢ whose density is equal to the
distance from the surface. The sphere is shown in Figure 12.7.20.

Figure 12.7.20

Put the center at the origin. The sphere is then given by
0<0<2nm, 0< ¢ =<m, 0<p<=c
The density at (8, ¢, p) is
density = ¢ — p.
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The mass is

2n pm pc
m=J. J‘ (¢ — p)p*sinp dp deg df

4]
2n pm 1
=L L(ga—zc‘*) sin ¢ g do
L
12

¢*sin ¢ dop do

PROBLEMS FOR SECTION 12.7

In Problems 1-6, evaluate the integral using cylindrical coordinates.

1

10

11

12

13

14

J‘J‘J:/xz + y?zdV, Eisthecylinder x2+y2<1,0<z<?2
E

fffxz + zdV, Eisthecylinder x> + 2 <9,0<z<6
E

fffx2+y2dV, Eisthecone x> + y* < 1,0 < z < | — /x? + y?
E

fff4+\/2dV, Eisthecone x? + y* <1, /x* + y? <z <1
E

jjf (x +y)zdV, Eistheregion0<x<20<y<./4—-x30<z<x?+y?
E

.”.J-——Z&dV, Eistheregion 1 < x* + y* < 4,0 < z < ||
x4y

E
Find the mass of an object in the shape of a cylinder of radius b and height & whose
density is equal to the distance from the axis.
Find the mass of an object in the shape of a cylinder of radius b and height h whose
density is equal to the distance from the base.

Find the mass of an object in the shape of a cone of radius b and height  whose density
is equal to the square of the distance from the axis.

Find the mass of an object in the shape of a cone of radius b and height h whose density

is equal to the sum of the distance from the base and the distance from the axis.

Find the center of mass of an object of constant density filling the region above the
paraboloid z = x? + y? and below the plane z = 1.
Find the center of mass of an object of constant density filling the region

x> 4+y?<h  0<z< /x4y
Find the moment of inertia of an object of constant density k in the cylinder 0 < r < b,
—c¢ =< z £ ¢, about the x-axis.

Find the moment of inertia of an object of constant density k in the cylindrical shell
a<r<bh, —c=<z=<c,about the z-axis.

781
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15

16
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Find the moment of inertia of an object of constant density k in a cone of radius b and
height h about its axis.

Find the moment of inertia of an object of constant density k in a cone of radius b and
height /1 about a line through its apex and perpendicular to its axis.

In Problems 17--24, evaluate the integral using spherical coordinates.

17

18

19

20

21

22

23

25
26
27
28
29

30

31

32

33

34

35
36

Jff x2 + y* + z2dV, Eis the sphere x2 + y* + 22 < b?
E

JJ [ VAT y2 + 224V, Eis the sphere x? + y2 + 22 < b2
S

ff[xz dV, Eisthesphere x? + y> + z2 < 1

A

J.Jf z2dV, Eis the sphere x? + y? + 22
E

J.j (de, E is the sphere p < 2bcos ¢
4

ij. (x2 + y2 + z3)*24dV, E is the intersection of the spheres p < 2bcos ¢, p < b
E

fff 2 /X + 32 + z2dV, Eis the region above the cone ¢ = = and inside the sphere
E
p=>5

N 1 . '
IJJ m dV, Eisthe Spher]cal shell a < P <b
E

Find the volume of the spherical shell a < p < b.

Find the volume of the spherical box o} < 0 < %,, i, < ¢ < f,,¢;, < p < ¢y,

Find the volume of the region above the cone ¢ = f§ and inside the sphere p = b cos ¢.
Find the volume of the spherical region 0 < 0 < 27,0 < ¢ < 1,0 < p < sin ¢.

Find the mass of an object in the shape of a sphere of radius ¢ whose density is equal
to the distance from the center.

Find the mass of a spherical shell ¢« < p < b whose density is equal to the reciprocal
of the distance from the center.

Find the moment of inertia of a spherical object of radius b and constant density k
about a diameter of the sphere.

Find the moment of inertia of a spherical shell ¢ < p < b of constant density k about
any diameter.

A hole of radius a is bored through a sphere of radius b, and the surface of the hole
passes through the center of the sphere, ¢ = 3b. Find the volume removed.

A hole of radius a is bored through a cone of height h and base of radius b, and the
axis of the cone is on the surface of the hole (@ < 1b). Find the volume removed.

Find the center of mass of a hemisphere of constant density and radius b.

Find the moment of inertia of an object of constant density & in the ellipsoid
2 2 2
P y' ooz
St+m+5=1
at bt ot

about the z-axis. Hinr: Change variables x; = x/a, y; = y/b, z; = z/c and use spherical
coordinates.
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EXTRA PROBLEMS FOR CHAPTER 12

1

10
11

12

13

14

15

16

17

18

19

21

22

Compute the Riemann sum

22X — y?AxAy, Ax =5, Ay =14, D:—
D

I
IA
=
IA
N

|

N
IA

=
IA
o

Compute the Riemann sum
2 x?— ﬁAxAy,Ax =1, Ay =
D

p—

, Di—1<x<1,0<y=<1-x2%

.

EvaluateJAJ.xZ —y2dA, D:-2<x<2, -2<y<2
2

Evaluatefjx2 —ﬁdA, D:i—1=<x<1,0<y<—x2

D
J2/2 pf1-2x2
Evaluate f f xdydx.
0

—-J1-2x2
1 1
EvaluateJ- J ye* dy dx.
0 JJ/x

Find the volume of the solid over the region —1 < x £ 1,0 < y < I — x? and between
the surfacesz =0,z =1 — y.
Find the volume of the solid over the region x* + y? = 4 and between the surfaces
z=0andz=y?> + x + 2.
Find the volume of the solid 1 < x < 2,0 <y <inx,y/x €<z < 1/x.
Find the volume of the solid x* + y* < 1,x%3 <z < 1.
Find the volume of the solid bounded by the planes
x =1, X =9, zZ=X4+Y, z=x+ 2.

Find the volume of the solid bounded by the cylinders

X2 4+y2=1, x*+z22=1
Find the mass, center of mass, and moment of inertia about the origin of the plane

object )
0<x<mn, 0<y<sinx, plx,y) = k.

Find the mass, center of mass, and moment of inertia about the origin of the plane object
0<x<1, x<y=<1, plxy) = xy
A circular disc filling the region x* + y* < #2 has density p(x, y) = y% Find the mass,
center of mass, and moment of inertia about the origin.
A semicircular object on the region
—r<x=<ry, OSysm
has density p(x, y) = y. Find the work required to stand the object up on its flat side.
Using polar coordinates, find the volume of the solid
X +3y?<9,  y<z<x+5.
Find the volume of the solid over the region 0 < r < 3 + cos8 between the plane
z = 0 and the cone z = r.
Find the volume of the solid over the circle 0 < r < a between the plane z = 0 and the
surface z = 1/r.

Find the mass and the moment of inertia about the origin of a semicircular object
0 <r<1,0<0 < rwhose density is p(r, 6) = ro.

A plane object covers the circle 0 < r < g and its density depends only on the distance
r from the center, p(r, 8) = f(r). Show that the center of mass is at the origin.

n pnf2 a1
Evaluate J J j zsinx + zcos ydzdy dx.
0 Y0 0

783



784

23

25

26

27

29

30

31

32

33

34

35
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x2

1 E
Evaluate J [

0«0

12

Y
f X+ y+ zdzdydx.

0
Evaluate the triple integral

jJ.fy;:de, E:lsx=<4l=<y=sx1=<z=<y
E

An object has constant density & in the region
E0=x=20=2y=<1—x,0<z<xy.

Find its center of mass and its moments of inertia about the coordinate axes.
Use cylindrical coordinates to evaluate mE z dV, where E is the region inside the cylinder
x? 4+ y? = 1 which is above the plane z = 0 and within the sphere x? + y? + 22 = 9,
An object of constant density k has the shape of a parabolic bowl

0<f<2m, O0=<r<bh r=<z=<r+c
Find its center of mass and its moment of inertia about the z-axis.

Use spherical coordinates to evaluate the integral

fff x+y+zdl,
E
E is the spherical octant

Xy, 0 < x, 0<y, 0<z

A spherical shell a < p < b has density equal to the distance from the center. Find its
mass and its moment of inertia about a diameter.

Prove that the double Riemann sum ZZDJ'(X, y)dx dy is finite whenever f(x, y) is
continuous, D is a closed region, and dx, dy are positive infinitesimals,

Suppose a plane object is symmetric about the x-axis, that is, it covers a region D of
the form

Dia<x<h —gx)<y<=<gx
and has density p(x, y) = p(x, — y). Prove that the center of mass is on the x-axis.

The moment of inertia about the x-axis of a point in the plane of mass m is I, = my>
Use the Infinite Sum Theorem to show that the moment of inertia about the x-axis
of a plane object with density p(x, y) in the region D is I, = [f, plx, y)y? dA.

The kinetic energy of a point of mass m moving at speed v is KE = $mo?. A rigid object
of density p(x, y) in the plane region D is rotating about the origin with angular velocity
@ (so a point at distance d from the origin has speed wd). Use the Infinite Sum Theorem
to show that the kinetic energy of the object is

KE = [j 1w?(x? + y)p(x, y) dA = 0l
D

Suppose a plane object is symmetric about the origin; that is, it fills a polar region

0<r=<g@),—=n <8 <mn, such that g(8 + n) = g(0), and its density has the property

p(r, 6) = p(r, 8 + n). Show that the center of mass is at the origin.

Use the Infinite Sum Theorem to show that if D is a polar region of the form a < r < b,

a(r) < 0 < B(r), then

J-f f(x,y)dA = r pmf(r, Oy do dr.

D a x(r)



