Show all work. Circle your answer.
No notes, no books, no calculator, no cell phones, no pagers, no electronic devices at all.

Solutions will be posted shortly after the exam: www.math.wisc.edu/~miller/m240
Name

Problem	Points	Score
1	6	
2	6	
3	6	
4	6	
5	6	
6	6	
7	6	
8	5	
9	5	
10	8	
11	8	
12	8	
13	8	
14	8	
15	8	
Total	100	

1. (6 pts) Show that $p \rightarrow q$ and $(\neg q) \rightarrow(\neg p)$ are logically equivalent.
2. (6 pts) Construct a truth table for the following propositional sentence:

$$
(p \vee q) \rightarrow(p \wedge r)
$$

3. (6 pts) Find a statement which is logically equivalent to

$$
\neg[(\exists x P(x)) \rightarrow(\forall y Q(y))]
$$

but in which the negation sign appears (if at all) only in front of the predicate symbols.
4. (6 pts) Let $A=\{1,2\}$ and $B=\{1,3,5\}$. Find $A \times B$.
5. (6 pts) Let $A=\{1,3,4\}, B=\{2,4\}$, and $C=\{3,4,5,6\}$. Find
(a) $|A|$
(b) $B \backslash C$
(c) $(A \cup B) \cap C$
6. (6 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\lfloor x\rfloor
$$

Let $S=\{2,5\}$. Find $f^{-1}(S)$.
7. (6 pts) Compute the following double sum:

$$
\sum_{i=1}^{2} \sum_{j=1}^{3}(i+j)
$$

8. (5 pts) How large a problem can be solved in 10 seconds or less using an algorithm that when input n requires $f(n)=n^{2}$ bit operations where each bit operation is carried out in 10^{-9} seconds?
9. (5 pts) The value of the Euler ϕ-function at the positive integer n is defined to be the number of positive integers less than or equal to n that are relatively prime to n. Find $\phi(12)$.
10. (8 pts) What is smallest positive integer k such that the function

$$
f(n)=(n \log (n)+1)^{2}
$$

is $\mathcal{O}\left(n^{k}\right)$?
11. (8 pts) Show that $2^{n}>2 n+1$ for all integers $n \geq 3$.
12. (8 pts) Let f_{n} be the $n^{\text {th }}$ element of the Fibonacci sequence. Prove that

$$
f_{1}+f_{3}+f_{5}+\cdots+f_{2 n-1}=f_{2 n}
$$

for every positive integer n.
13. (8 pts) Find a 2×2 matrix A so that

$$
A\left[\begin{array}{rr}
1 & 2 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]
$$

Hint: Solve a system of linear equations.
14. (8 pts) Let $n=\left(\ldots a_{k} a_{k-1} \ldots a_{2} a_{1} a_{0}\right)_{2}$ be any positive integer written in binary.

Let E be the set of even k such that $a_{k}=1$ and
let O be the set of odd k such that $a_{k}=1$.
Show that n is divisible by 3 if and only if $|E|+2|O|$ is divisible by 3 .
15. (8 pts)
(a) Find $d=\operatorname{gcd}(54,17)$ using the Euclidean Algorithm.
(b) Find integers a and b such that $d=a 54+b 17$

Answers

1. $p \rightarrow q$ is false iff p is true and q is false.
$(\neg q) \rightarrow(\neg p)$ is false iff $\neg q$ is true and $\neg p$ is false.
Hence they have the same truth table.
2.

p	q	r	$(p \vee q) \rightarrow(p \wedge r)$		
T	T	T	T	T	T
T	T	F	T	F	F
T	F	T	T	T	T
T	F	F	T	F	F
F	T	T	T	F	F
F	T	F	T	F	F
F	F	T	F	T	F
F	F	F	F	T	F

3. $(\exists x P(x)) \wedge(\exists y \neg Q(x))$
4. $\{(1,1),(1,3),(1,5),(2,1),(2,3),(2,5)\}$
5. $|A|=3, B \backslash C=\{2\},(A \cup B) \cap C=\{3,4\}$
6. $\{x: 2 \leq x<3$ or $5 \leq x<6\}=[2,3) \cup[5,6)$
7. 21
8. $n=10^{5}$
9. 4
10. $k=3$ because $\log (n)$ is $\mathcal{O}\left(n^{\epsilon}\right)$ for any real $\epsilon>0$.
11. This is proved by induction.

Basis: $n=3$ this true because $2^{3}=8>7=2 * 3+1=7$
Inductive step. Assume $2^{n}>2 n+1$ and $n \geq 3$. Then

$$
2^{n+1}=2 * 2^{n}=2^{n}+2^{n}>2 n+1+2^{n}>2 n+1+8>2(n+1)+1
$$

By inductive hypothesis and since $2^{n} \geq 2^{3}=8$. Hence

$$
2^{n+1}>2(n+1)+1
$$

as we needed to show.
12. This is proved by induction.

Basis: $f_{1}=1=f_{2}$
Inductive Step: Assume true for n. Then

$$
f_{1}+f_{3}+f_{5}+\cdots+f_{2 n-1}+f_{2 n+1}=f_{2 n}+f_{2 n+1}
$$

by inductive hypothesis. But by the definition of Fibonacci sequence

$$
f_{2 n}+f_{2 n+1}=f_{2 n+2}=f_{2(n+1)}
$$

and so noting that $2(n+1)-1=2 n+1$

$$
f_{1}+f_{3}+f_{5}+\cdots+f_{2(n+1)-1}=f_{2(n+1)}
$$

as was to be shown.
13.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

14. If k is even, say $k=2 l$ then

$$
2^{k}=2^{2 l}=4^{l}
$$

But $4 \equiv{ }_{3} 1$ so it follows that

$$
2^{k} \equiv_{3} 4^{l} \equiv_{3} 1^{l} \equiv_{3} 1
$$

If k is odd, then $k-1$ is even and hence

$$
2^{k}=2 * 2^{k-1} \equiv_{3} 2
$$

Now since $n=\sum_{k \in E} 2^{k}+\sum_{k \in O} 2^{k}$ it follows from above that

$$
n \equiv_{3} \sum_{k \in E} 1+\sum_{k \in O} 2
$$

but

$$
\sum_{k \in E} 1+\sum_{k \in O} 2=|E|+2|O|
$$

so 3 divides n iff $n \equiv_{3} 0$ iff $|E|+2|O| \equiv_{3} 0$ iff 3 divides $|E|+2|O|$
15.
$54,17 \quad 54=3(17)+3$
$3,17 \quad 17=5(3)+2$
3,2 and we see that gcd is 1 .
$1=-1(3)+2(2)$ using $2=17-5(3)$ we get
$1=-1(3)+2(17-5(3))=-11(3)+2(17)$
$1=-11(3)+2(17)$ using $3=54-3(17)$ we get
$1=-11(54-3(17))+2(17)=-11(54)+35(17)$

