Show all work.
No notes, no books, no calculators, no cell phones, no pagers, no electronic devices of any kind.

Name

Circle your Discussion Section:

```
DIS 303 12:05p T B235 VAN VLECK
DIS 304 12:05p R B235 VAN VLECK
DIS 307 2:25p T B139 VAN VLECK
DIS 308 2:25p R B309 VAN VLECK
```

Problem	Points	Score
1	4	
2	4	
3	6	
4	6	
5	8	
6	7	
7	7	
8	6	
9	7	
10	8	
11	8	
12	7	
13	7	
14	8	
15	7	
Total	100	

Solutions will be posted shortly after the exam: www.math.wisc.edu/~miller/m240

1. (4 pts) Construct a truth table for the compound proposition:

$$
(p \rightarrow q) \vee(\neg p \rightarrow q)
$$

2. (4 pts) Use a truth table to verify:

$$
(p \rightarrow q) \equiv(\neg q \rightarrow \neg p)
$$

3. (6 pts) Let $P(x)$ be the statement $x+1>x^{2}$ and suppose that the universe of discourse consists of the integers. What are the truth values of the following?
4. $P(0)$
5. $P(1)$
6. $P(-1)$
7. $\exists x P(x)$
8. $\forall x P(x)$
9. $\forall x \exists y \quad((y>x) \wedge P(y))$
10. (6 pts) Determine the truth value of each of the following if the universe of discourse for all variables consists of the positive integers $\mathbb{N}=\{1,2,3, \ldots\}$.
11. $\forall n \exists m \quad n^{2}<m$
12. $\exists m \forall n \quad n^{2}<m$
13. $\exists n \exists m \quad n^{2}+m^{2}=5^{2}$
14. $\exists n \exists m \quad n^{2}+m^{2}=6^{2}$
15. $\forall n \forall m \quad(n \leq m \vee m \leq n)$
16. $\forall n \forall m \quad(n<m \vee m<n)$
17. (8 pts) Determine if the following arguments are correct. If it is correct, what rule of inference is being used. If it is not, what logical error occurs?
(a) If n is an integer with $n \geq 2$, then $n^{3} \geq 8$. Suppose $n<2$. Then $n^{3}<8$.
(b) If n is an integer with $n>2$, then $n^{3}>8$. Suppose $n^{3} \leq 8$. Then $n \leq 2$.
18. (7 pts) How many different elements does $A \times A \times A$ have if A has n elements?
19. (7 pts) What can we say about the sets A and B if $A \oplus B=\emptyset$. The symbol \oplus denotes the symmetric difference.
20. (6 pts) Let $h(x)=\lceil x\rceil$. Find
21. $h^{-1}(\{2\})$
22. $h^{-1}(\{x:-1 \leq x \leq 1\})$
23. $h(\{x:-1 \leq x \leq 1\})$
24. (7 pts) Use the bubble sort to sort the list $3,2,4,5,1$ showing the lists obtained at each step, i.e., after each time you do a comparison.
25. (8 pts) Find the least integer n such that $f(x)$ is $O\left(x^{n}\right)$ where

$$
f(x)=\frac{2 x^{5}+x^{2}+1}{3 x^{2}+4 x \ln (x)}
$$

11. (8 pts) Show that if $2^{n}-1$ is prime, then n is prime.

Hint: $\left(x^{m}-1\right)=(x-1)\left(x^{m-1}+x^{m-2}+\cdots+x+1\right)$
12. (7 pts) Convert the integer 11001111 from binary notation to decimal notation.
13. (7 pts) How much time does an algorithm using 2^{40} bit operations take if each bit operation takes 10^{-9} seconds?
14. (8 pts) Suppose that an integer a is not divisible by the prime p. Show that no two of the integers:

$$
a, 2 a, 3 a, \ldots,(p-1) a
$$

are congruent modulo p.
15. (7 pts) Find $A B$ if

$$
A=\left[\begin{array}{rrr}
1 & -1 & -2 \\
-1 & 2 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rr}
1 & -1 \\
-1 & 2 \\
2 & 0
\end{array}\right]
$$

Answers

1. 1.1-27

This is a tautology.
2. 1.2-3

This is the contrapositive.
3. 1.3-11

TTFTFF
4. 1.4-27

TFTFTF
5. 1.5-13
(a) The logical form of this argument is:
$P \rightarrow Q$
$\neg P$
$\neg Q$.
This is an incorrect inference even though it reaches a correct conclusion.
(b) The logical form of this argument is:
$P \rightarrow Q$
$\neg Q$
$\neg P$.
This is a correct logical inference.
6. 1.6-25
n^{3}.
7. 1.7-31
$A=B$
8. 1.8-35

1. $(1,2]$
2. $(-2,1]$
3. $\{-1,0,1\}$
4. 2.1-35
$\underline{32451}$
23451
23451
23451
$\underline{23415}$
23415

23415
23145
$\underline{23145}$
$2 \underline{3145}$
21345
21345
$\underline{21345}$
12345
followed by the end of this pass and one more pass to check that nothing changes.
10. 2.2-7
$O\left(x^{3}\right)$
11. 2.4-23

Suppose that n is not prime and let $n=k m$ for integers k, m with $1<k, m<n$. Put $x=2^{k}$ and using the hint note that

$$
2^{n}-1=\left(2^{k}\right)^{m}-1=\left(x^{m}-1\right)=(x-1)\left(x^{m-1}+x^{m-2}+\cdots+x+1\right)
$$

and so $2^{n}-1$ is not prime.
12. 2.5-3

207
13. 2.3-11
$2^{40} 10^{-9}$ seconds. A good estimate is to use $2^{10}=1024 \approx 1000$ so

$$
2^{40} 10^{-9}=\frac{2^{40}}{10^{9}}=\frac{\left(2^{10}\right)^{4}}{10^{9}} \approx \frac{(1000)^{4}}{10^{9}}=\frac{\left(10^{3}\right)^{4}}{10^{9}}=\frac{10^{12}}{10^{9}}=10^{3}
$$

14. 2.6-17

Suppose for contradiction that there are i, j integers with $1 \leq i<j \leq p-1$ such that

$$
i a \equiv_{p} j a
$$

Then

$$
0 \equiv_{p}(j-i) a
$$

and so p divides $(j-i) a$. Since p is prime and does not divide a it must divide $j-i$. But this is impossible because $1 \leq j-i<p$.
15. 2.7-3

$$
\left[\begin{array}{rr}
-2 & -3 \\
-3 & 5
\end{array}\right]
$$

The following program was used to pick the problems on this test. In some cases the problem is identical and in others it is just similar.

\#! /usr/ucb/python

import string
import sys
import random
f=open("hmwk1",'r') \# input file
lines=f.readlines()
random.seed("the three stooges")

```
for line in lines:
    s=string.split(line)
    if len(s)> 4:
        section=s.pop(0)
        print random.choice(s).rjust(2) + " "+string.lstrip(line)
```

