Show all work on problems 5-9 for partial credit.

No notes, no books, no calculators, no cell phones, no pagers, no electronic devices of any kind.

Name_____

Circle your Discussion Section:

DIS	301	9:55	Т	B305 VAN VLECK
DIS	302	9:55	R	115 INGRAHAM
DIS	305	1:20p	Т	B105 VAN VLECK
DIS	306	1:20p	R	B333 VAN VLECK

Problem	Points	Score
1	9	
2	10	
3	12	
4	10	
5	12	
6	10	
7	12	
8	15	
9	10	
Total	100	

Solutions will be posted shortly after the exam: www.math.wisc.edu/ \sim miller/m240

1. (9 pts) Match each of these with the statement which is closest to its negation.

Circle the letter: (a) (b) (c) of the statement closest to the **negation** of the given statement.

- 1. Today is Wednesday.
 - (a) Tomorrow is Wednesday.
 - (b) Yesterday was not Tuesday.
 - (c) Today is never Wednesday.
- 2. There is pollution in Lake Michigan.
 - (a) There is no pollution in the Great Lakes.
 - (b) Lake Erie is really polluted.
 - (c) Lake Michigan is not polluted.
- 3. In the summer in Wisconsin, there are many mosquitos.
 - (a) It is too cold in the winter in Wisconsin to have mosquitos.
 - (b) There are very few mosquitos in June, July, and August in Wisconsin.
 - (c) The mosquito is not really the state bird of Wisconsin.

2. (10 pts) Enter the correct letter a,b,c,d,e in each blank:

1	\equiv	$A \setminus B = A$	
			(a) $A = B$
2	≡	$(A \setminus B) = (B \setminus A)$	(b) $A \subseteq B$
3	=	$A \cap \overline{B} = A \setminus B$	(c) $A \cap B = \emptyset$
0	_		(d) $B \subseteq A$
4	≡	$A \cap B = B$	(e) none of above
5	\equiv	$B \cup A = B$	

2

Exam 1	A. Miller	Spring 2008	$Math \ 240$	3
--------	-----------	-------------	--------------	---

3. (12 pts)

The domain U for the variables and the relation C consists of the students in our class. The relation C(x, y) says that x has copied the homework of y who is different from x.

For each logical formula choose a the best match in English and put the letter A B C D E F in the blank provided.

1. _____
$$\equiv \exists x \exists y \ C(x, y)$$

2. _____ $\equiv \forall x \exists y \ C(x, y)$
3. _____ $\equiv \forall y \exists x \ C(x, y)$
4. _____ $\equiv \exists x \forall y \ (C(x, y) \lor x = y)$
5. _____ $\equiv \forall x \forall y \ (C(x, y) \lor x = y)$
6. _____ $\equiv \exists y \forall x \ (x \neq y \rightarrow C(x, y))$

(A) Everybody in class has cheated off somebody.

- (B) Somebody cheats off everybody else.
- (C) There is a genius that everybody else cheats off of.
- (D) There is at least one cheater.
- (E) Everybody does all there homework together.
- (F) Everybody's homework is copied by somebody.

4

4. (10 pts) The set $A = \{a, b\}$ has two elements.

(a) List the set $\mathcal{P}(A)$ here:

(b) How many elements does the set $\mathcal{P}(\mathcal{P}(A))$ have? Enter the number here: _____.

	Exam 1	A. Miller	Spring 2008	$Math \ 240$	5
--	--------	-----------	-------------	--------------	---

5. (12 pts) Determine which of the following sets are countable and which are uncountable. Circle the word countable or uncountable.

1.	The negative integers.	countable	uncountable
2.	The real line, \mathbb{R} .	countable	uncountable
3.	The plane, \mathbb{R}^2 .	countable	uncountable
4.	Set of integers which are perfect squares.	countable	uncountable
5.	Power set of the natural numbers, $\mathcal{P}(\mathbb{N})$.	countable	uncountable

For each of the sets that is countable exhibit a map from the natural numbers $\mathbb N$ onto the set.

A. Miller

6. (10 pts) Show that

$$(p \to q) \lor (p \to r)$$

is logically equivalent to

$$p \to (q \lor r).$$

Exam 1	A. Miller	Spring 2008	$Math \ 240$	7
--------	-----------	-------------	--------------	---

7. (12 pts) Suppose that the domain U of the predicate R(x, y) consists of the just two distinct objects $U = \{a, b\}$. Write out a propositional sentence which is equivalent to the predicate sentence:

$$\forall x \exists y \ R(x,y).$$

Hint: Your answer can use disjunctions and conjunctions, but no quantifiers.

Exam 1	A. Miller	Spring 2008	$Math \ 240$	
--------	-----------	-------------	--------------	--

8

8. (15 pts) Use a proof by contradiction to show that there is no rational number r such that $r^3 + 3r + 5 = 0$.

Hint: assume r = a/b is in lowest terms. Obtain an equation involving integers by multiplying by b^3 . Show that the three cases each lead to a contradiction:

(1) a odd and b odd.

(2) a even and b odd.

(3) a odd and b even.

Exam 1	A. Miller	Spring 2008	$Math \ 240$	9
--------	-----------	-------------	--------------	---

9. (10 pts) What is the difference between a constructive and nonconstructive existence proof? Give an example of each.

Answers

1. 1b 2c 3b The statement "Today is Wednesday" is the same as the statement "Yesterday was Tuesday".

2. 1
c 2a 3e 4d 5b

- 3. 1D 2A 3F 4B 5E 6C
- 4. (a) $\{\emptyset, \{a\}, \{b\}, \{a, b\}\}$ (b) 16
- 5.

(1) the set of negative integers is countable. The mapping defined by $n \mapsto -(n+1)$ takes \mathbb{N} onto the negative integers.

(4) The set of integers which are perfect squares is countable. The mapping defined by $n \mapsto n^2$ takes \mathbb{N} onto it.

The other sets are uncountable.

6. They have the same truth table. All lines are true except p true, q false, r false.

7.
$$(R(a,a) \lor R(a,b)) \land (R(b,a) \lor R(b,b))$$

8. First we prove a

Lemma The product of two integers is odd iff both are odd. Similarly, the sum of two integers is even iff both are even or both odd.

proof: If a and b are odd then there are integers n and m such that a = 2n + 1 and b = 2m + 1. But then

$$ab = (2n + 1)(2m + 1) = 4nm + 2n + 2m + 1 = 2(2nm + n + m) + 1$$

and hence it is odd. Conversely if either a or b is even, say a is even, then there exists an integer n such that a = 2n and so ab = 2nb and so ab is even.

The sums are proved similarly.

QED

It follows immediately that the product of three odd integers is odd.

Now suppose that $r^3 + 3r + 5 = 0$ and for contradiction, that r is rational. Then let r = a/b where a and b are integers and not both of them are even. Then

$$\left(\frac{a}{b}\right)^3 + 3\left(\frac{a}{b}\right) + 5 = 0$$
 so $a^3 + 3ab^2 + 5b^3 = 0$

Case (1) a odd and b odd. In this case since the product of odd numbers is odd each of a^3 , $3ab^2$, $5b^3$ is odd. Then since the sum of 3 odd numbers is odd, they cannot total 0 which is even.

Case (2) a even and b odd. In this case a^3 and $3ab^2$ are even and $5b^3$ is odd. Hence the total is odd and cannot be 0.

Case (3) a odd and b even. In this case a^3 is odd and both $3ab^2$ and $5b^3$ are even. Hence, again the total is odd and so cannot add up to 0.

QED

9. A proof of a statement of the form $\exists x \ P(x)$ is constructive if it actually produces an x satisfying the statement P(x). A nonconstructive proof doesn't produce a particular x. An example, of a nonconstructive proof is the proof given in the book on page 91 of the existence of two irrational numbers x and y such that x^y is rational. An example of a constructive proof is showing that 223 cannot be written as the sum of 36 fifth powers of nonnegative integers, exercise 39 on page 108.