No notes, no books, no calculators, no cell phones, no pagers, no electronic devices of any kind.

Name

Circle your Discussion Section:

DIS 301	$9: 55$	T	B305 VAN VLECK
DIS 302	$9: 55$	R	115 INGRAHAM
DIS 305	$1: 20 \mathrm{p}$	T	B105 VAN VLECK
DIS 306	$1: 20 \mathrm{p}$	R	B333 VAN VLECK

Problem	Points	Score
1	12	
2	12	
3	12	
4	12	
5	12	
6	12	
7	12	
8	12	
9	4	
Total	100	

Solutions will be posted shortly after the exam:
www.math.wisc.edu/~miller/m240

Exam 2
A. Miller

1. (12 pts) Give the best Big-Oh estimate for each of these functions. Enter one of the letters in the blank provided. (Answers may be reused.)
2. $\quad(2 \log (n)+1)(3 n+1)$
3. $\quad 2 n \log (n)+n^{2}$
4. \qquad

$$
n \log \left(n^{2}+n+1\right)+3 n^{2} \log (n)+2 n^{2}
$$

4. \qquad

$$
3 \log (n)+5 n+7
$$

(A) $\mathcal{O}(n)$
(B) $\mathcal{O}(n \log (n))$
(C) $\mathcal{O}\left(n \log ^{2}(n)\right)$
(D) $\mathcal{O}\left(n^{2}\right)$
(E) $\mathcal{O}\left(n^{2} \log (n)\right)$.
(F) none of these

2. (12 pts)

(a) Determine which amounts of postage can be formed using just 3-cent and 10 -cent stamps. (b) Prove your answer is correct using either simple induction or strong induction. Be sure to explicitly state your inductive hypothesis in the inductive step.
3. (12 pts) A parking lot has 30 spaces numbered $1,2, \ldots, 30$ which are assigned by the hashing function

$$
h(k)=(k \bmod 30)+1
$$

where k is the integer corresponding to the first 3 digits on the car's licence plate. Enter the correct parking space number $1,2, \ldots, 30$ in each blank:
(a) Car with license plate starting 123 would park in space \qquad .
(b) Car with license plate starting 234 would park in space \qquad .
(c) Car with license plate starting 432 would park in space \qquad .

Exam 2 A. Miller Spring 2008 Math 2404
4. (12 pts) Show that for positive integers a and b that

$$
a b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)
$$

Hint: Use the prime factorization of a and b and the formulas for $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)$ in terms of these factorizations.
5. (12 pts) Perform the indicated base conversions:
(a) $(\square)_{8}=(1010111)_{2}$
(b) $(\square)_{8}=(\mathrm{E} 2 \mathrm{~F})_{16}$
(c) $(\square)_{2}=(53)_{10}$
(d) $(\square)_{10}=(37)_{8}$

Exam 2 A. Miller \quad Spring $2008 \quad$ Math $240 \quad 6$
6. (12 pts) Using the Euclidean algorithm to express the greatest common divisor d of $n=123$ and $m=1280$ as a linear combination of n and m :

$$
d=\alpha(123)+\beta(1280) \text { where } \alpha=\ldots \text { and } \beta=
$$

$\begin{array}{lllll}\text { Exam } 2 & \text { A. Miller } & \text { Spring } 2008 & \text { Math } 240 & 7\end{array}$
7. (12 pts) Find a matrix A such that

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right] A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] .
$$

Hint: Finding A requires that you solve systems of linear equations.

Exam 2 A. Miller Spring $2008 \quad$ Math $240 \quad 8$
8. (12 pts) Prove that for every positive integer n :

$$
1 \cdot 2+2 \cdot 3+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}
$$

Exam 2
A. Miller

Spring 2008
Math 240
9. (4 pts) True or False.
(a) Matrix multiplication satisfies the commutative law.
(b) Matrix multiplication satisfies the associative law.
(c) If A and B are 2×2 matrices and

$$
A B=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

then

$$
A=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \text { or } B=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

(d) For any n there is an $n \times n$ matrix I such that for every $n \times n$ matrix A

$$
A I=I A=A
$$

Exam 2 A. Miller Spring 2008 Math $240 \quad 10$

Answers

1. BDEA

2. (a) $3,6,9,10,12,13,15,16$, and all $n \geq 18$.
(b) Verify directly that it is true for $n=18,19,20$. Prove by strong induction that it is true for every $n>20$. Since if $n>20$ then $n-3 \geq 18$. Hence by inductive hypothesis $n-3=\alpha 3+\beta 10$ for some nonnegative integers α and β. But then $n=(\alpha+1) 3+\beta 10$.
3. (a) 4 (b) 25 (c) 13
4. see p.S-21 3.5-27.

For another proof: Let $d=\operatorname{gcd}(a, b)$ and $a=a^{\prime} d$ and $b=b^{\prime} d$ where a^{\prime} and b^{\prime} are relatively prime. Put $m=a^{\prime} d b^{\prime}$. Then clearly $a b=d m$ and m is a common multiple of a and b. So it is enough to see that m is the least common multiple. Suppose n is any common multiple of a and b and let $n=\alpha a=\beta b$. Then since $\alpha a^{\prime} d=\beta b^{\prime} d$ we have that $\alpha a^{\prime}=\beta b^{\prime}$. Since a^{\prime} and b^{\prime} are relatively prime we have that a^{\prime} divides β. So let $\beta=\gamma a^{\prime}$. But then $n=\beta b=\left(\gamma a^{\prime}\right)\left(d b^{\prime}\right)$ and so $m=a^{\prime} d b^{\prime}$ divides n.
5. (a) 127 (b) 7057 (c) 110101 (d) 31
6. $(32)(1280)+(-333)(123)=1$
7.

$$
A=\left[\begin{array}{cc}
3 & 2 \\
-1 & 0
\end{array}\right]
$$

8. see 4.1-15.
9. FTFT
