$Exam \ 3$	A. Miller	Spring 2008	$Math \ 240$	0
------------	-----------	-------------	--------------	---

No notes, no books, no calculators, no cell phones, no pagers, no electronic devices of any kind.

Name_____

Circle your Discussion Section:

DIS	301	9:55	Т	B305 VAN VLECK
DIS	302	9:55	R	115 INGRAHAM
DIS	305	1:20p	Т	B105 VAN VLECK
DIS	306	1:20p	R	B333 VAN VLECK

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

Solutions will be posted shortly after the exam: www.math.wisc.edu/ \sim miller/m240

1. (20 pts) Define f inductively as follows:

 $f(x,0) = x^2$ $f(x,n+1) = (f(x,n) + x)^2$

(a) Give a recursive algorithm for computing f.

(b) Give an iterative algorithm for computing f.

Exam 3	A. Miller	Spring 2008	$Math \ 240$	2
--------	-----------	-------------	--------------	---

2. (20 pts) Seventeen people on a basketball team show up to play.

(a) How many ways are there to choose a team of five players? (i.e., with no assigned positions).

(b) Three who showed up are Seniors and five are Freshman. How many ways are there to choose a team of five (as in part (a)) if at least one player must be a Senior but no player is a Freshman?

3. (20 pts)

(a) What is the coefficient of x^3 in the expansion of $(2x-1)^8$?

(b) A fair die is rolled 8 times. What is the probability that it comes up 6 exactly 3 times?

Exam 3 A. Mille	r Spring 2008	$Math \ 240$	4
-----------------	---------------	--------------	---

4. (20 pts) A snack food company is planning to introduce a new product, crunchyballsofsaltfatandsugar. The company commissions a marketing report for each new product which predicts its success. Of all new products produced by the company 30% have been a success. Furthermore 70% of their successful products were predicted beforehand to be a success while only 40% of the failed new products were predicted to be successful. What is the probability that their new snack food will be a success given that the marketing report has predicted it will be successful?

$Exam \ 3$	A. Miller	Spring 2008	$Math \ 240$	5
------------	-----------	-------------	--------------	---

5. (20 pts) The final exam in M240 consists of 20 True-False problems and 10 Multiple-Choice problems. Suppose that Max has a probability of 75% of getting a True-False question right and 60% of getting multiple choice problem correct. If T-F questions are 3 points each and M-C are 4 points each, what is the expected value of Max's score on the final?

Answers

1. (a) function f(x, n)if n = 0, output x^2 else ouput f(x, n - 1)

```
(b)

input (x, n)

z = x^2

For i = 1 to n:

z = (z + x)^2

next i

output z

2. (a) C(17, 5) (b) C(12, 5) - C(9, 5)

3. (a) (-8)C(8, 3) (b) C(8,3)(\frac{1}{6})^3(\frac{5}{6})^5

4. \frac{3}{7}

5. 69
```