1. Prove that well-ordering is not a pseudo-elementary class, i.e. show that there does not exist a first order theory T in a language L which includes the symbol \leq (but may be much bigger), such that the class of well-orderings coincides with the reducts of models of T to \leq.

2. Show that L structures A and B are elementarily equivalent iff they have isomorphic elementary extensions.

3. A structure A is finitely generated iff there exists a finite $F \subset A$ such that there is no proper substructure of A containing F. Let T be a first order theory in a countable language. Show that if T has an infinite model then some countable model of T is not finitely generated.

4. The language $L_{\kappa,\lambda}$ is defined as follows. The atomic formulas are the same as for first order logic. In addition to the usual formation rules for first order logic we have the following:

1. if Φ is a set of fewer than κ formulas then $\bigwedge \Phi$ and $\bigvee \Phi$ are formulas; and

2. if θ is a formula and $\exists x_0 \exists x_1 \ldots \exists x_\delta$ and $\forall x_0 \forall x_1 \ldots \forall x_\delta$ are δ sequences of quantifiers where $\delta < \lambda$, then $\exists x_0 \exists x_1 \ldots \exists x_\delta \theta$ and $\forall x_0 \forall x_1 \ldots \forall x_\delta \theta$ are formulas.

Thus $L_{\omega,\omega}$ is ordinary first order logic. $L_{\infty,\infty}$ is the union of $L_{\kappa,\lambda}$ for all κ and λ and $L_{\infty,\omega}$ is the union of $L_{\kappa,\omega}$ for all κ.

Suppose $F \subset L_{\infty,\infty}$ is a set of formulas closed under subformula. Suppose that A is an infinite L structure, $X \subset A$, and κ is cardinal such that

$$|X| + |F| + \aleph_0 \leq \kappa \leq |A|$$

$$\forall \theta(\bar{x}) \in F \quad \kappa^{|\bar{x}|} = \kappa$$

Show that there exists $B \preceq_F A$, $X \subset B$, and $|B| = \kappa$. $B \preceq_F A$ means elementary substructure with respect to all the formulas in F, i.e. for every formula $\theta \in F$ and sequence \bar{b} from B (may be of infinite length)

$$B \models \theta(\bar{b}) \iff A \models \theta(\bar{b})$$
5. The \(L \) structures \(\mathcal{A} \) and \(\mathcal{B} \) are \(L_{\infty,\omega} \) elementarily equivalent iff they satisfy the same sentences of \(L_{\infty,\omega} \). This is written \(\mathcal{A} \equiv_{\infty,\omega} \mathcal{B} \). Show that \(\mathcal{A} \equiv_{\infty,\omega} \mathcal{B} \) iff there exists a back and forth property between \(\mathcal{A} \) and \(\mathcal{B} \).

6. Let \(T_0 \) and \(T_1 \) be \(L \) theories such that for every finite \(F_0 \subset T_0 \) and \(F_1 \subset T_1 \) there are \(L \) structures \(\mathcal{A}_0 \models F_0 \) and \(\mathcal{A}_1 \models F_1 \) such that \(\mathcal{A}_0 \) is a substructure of \(\mathcal{A}_1 \). Show that there exists \(\mathcal{A}_0 \models T_0 \) and \(\mathcal{A}_1 \models T_1 \) such that \(\mathcal{A}_0 \) is a substructure of \(\mathcal{A}_1 \).

7. Prove that a first order theory \(T \) is axiomatizable by \(\exists \) sentences iff every superstructure of a model of \(T \) is a model of \(T \).

8. Show that \(\exists \forall \)-sentences are preserved by sandwiches, i.e. for any \(\theta \) a \(\exists \forall \)-sentence and models \(\mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{C} \) if \(\mathcal{A} \preceq \mathcal{C} \models \theta \) then \(\mathcal{B} \models \theta \).

9. Show that there exists no interpolant \(\rho \) in \(BA(\forall) \) for \(\vdash \exists x \forall y \ R(x, y) \rightarrow \forall y \exists x \ R(x, y) \)

10. Show that a theory \(T \) is \(\forall \exists \forall \)-axiomatizable iff for every sequence

\[
\mathcal{A}_0 \preceq \forall \mathcal{A}_1 \preceq \forall \mathcal{A}_2 \preceq \ldots
\]

if each \(\mathcal{A}_n \models T \), then \(\bigcup_{n \in \omega} \mathcal{A}_n \models T \).

11. Suppose \(\vdash \theta \rightarrow \psi \) where \(\theta \) is a \(\forall \exists \forall \)-sentence and \(\psi \) is a \(\exists \forall \)-sentence. Show that there exists an interpolant \(\rho \) which is in \(BA(\forall) \).

12. This is a counterexample to a Beth definability theorem for structures. Consider the stucture \((\omega, S, 0)\) where \(S \) is the successor function and 0 is the constant zero. Let \(R \) be a binary operation symbol. Show that < is implicitly definable in the structure \((\omega, S, 0)\), i.e. there exists a sentence \(\theta \) in the language of \(S, 0, R \) such that for every \(R \subseteq \omega^2 \)

\[
(\omega, S, 0, R) \models \theta \text{ iff } R = \{(x, y) \in \omega^2 \mid x < y\}
\]

But show that it is not explicitely definable, i.e. there does not exist \(\psi(x, y) \) a formula in the language of \(S, 0 \) such that for every \(x, y \in \omega \)

\[
[(\omega, S, 0) \models \psi(x, y)] \text{ iff } x < y
\]

13. Suppose \(T_0 \) is an \(L_0 \) theory and \(T_1 \) is an \(L_1 \) theory such that \(T_0 \cup T_1 \) is inconsistent. Prove the there exists a \(L_0 \cap L_1 \)-sentence \(\theta \) such that \(T_0 \vdash \theta \) and \(T_1 \vdash \neg \theta \).
14. Show that if T is a first order theory with arbitrarily large finite models, then T has a model of cardinality the continuum.

15. Give an example of a first order theory T with arbitrarily large finite models, but every infinite model of T has cardinality at least the continuum.

16. Suppose $f : I \mapsto J$, U is an ultrafilter on I, and

$$V = \{ X \subseteq J : f^{-1}(X) \in U \}$$

Show that V is an ultrafilter on J. This is the definition of the Rudin-Keisler ordering on ultrafilters and is written $V \leq_{\text{RK}} U$. Show that for any structure \mathcal{A} there is an elementary embedding of \mathcal{A}/V into \mathcal{A}/U.

17. An ultrafilter U on I is called (κ, ω)-regular iff there exists $I_\alpha \in U$ for $\alpha < \kappa$ such that for any infinite $X \subseteq \kappa$

$$\bigcap\{ I_\alpha : \alpha \in X \} = \emptyset$$

Show that U is (κ, ω)-regular iff there exists a regular ultrafilter V on $[\kappa]^{<\omega}$ such that $V \leq_{\text{RK}} U$. V regular means that for every $\alpha < \kappa$

$$\{ F \in [\kappa]^{<\omega} : \alpha \in F \} \in V$$

18. Let U be a (κ, ω)-regular ultrafilter on I (κ an infinite cardinal) and let \mathcal{A} be any infinite L-structure where $|L| = \kappa$. Show that \mathcal{A}/U is weakly saturated (i.e. realizes every consistent type).

19. Show that if $\mathcal{A} = (\omega_1, <)$ then \mathcal{A}/ω is not ω_ω-saturated for any ultrafilter U on ω.

20. Let T be the theory of $(P(X), \subseteq)$ where X is an infinite set, $P(X)$ is the power set of X, and \subseteq is the binary relation of inclusion restricted to $P(X)$. Show for any infinite cardinal κ, that any κ^+-saturated model of T has cardinality at least 2^κ.

21. Let κ be an infinite singular cardinal. Show that there is no linear order of cardinality κ which is κ-saturated.

22. Prove that if $\mathcal{A} \equiv \mathcal{B}$ and both are ω-saturated, then $\mathcal{A} \equiv_{\omega} \mathcal{B}$.

23. Prove that if T is an ω-categorical theory in a countable language, then all models of T are ω-saturated.

24. (Keisler-Morley) Let M be a countable model of ZFC and suppose $M \models \ulcorner \kappa \text{ is a regular cardinal} \urcorner$. Show that there exists an elementary extension
N of M and $c \in N - M$ such that $N \models "c < \kappa"$ but for every α, β if $N \models "\alpha < \beta < \kappa"$ and $\beta \in M$, then $\alpha \in M$, i.e. the first new ordinal is just below κ.

In next seven problems below, let T be a consistent complete theory in a countable language L.

25. Show that T has a model A such that for every $a, b \in A$; the type of a in A equals the type of b in A iff there exists a L-formula $\theta(x, y)$ such that $A \models \theta(a, b)$ and for all L-formula $\sigma(x)$:

$$T \vdash \theta(x, y) \rightarrow (\sigma(x) \iff \sigma(y))$$

26. (Ehrenfeucht) Give an example of a T with exactly four nonisomorphic countable models.

27. (Ehrenfeucht) Give an example of a T in a finite language with exactly three nonisomorphic countable models.

28. Suppose every model of T is ω-homogeneous. Show that if T is not ω-categorical, then T has infinitely many nonisomorphic countable models.

29. If T has two countable models such that neither can be elementarily embedded in the other, then show that T has at least five nonisomorphic countable models.

30. A model A is called minimal iff it has no proper elementary substructures. Suppose T has a prime model and show the following are equivalent:

1. The prime model of T is minimal.

2. Every atomic model of T is countable.

31. Prove that T has an ω-homogeneous model of cardinality ω_1 which has a countable type spectrum.

32. Let T be a complete consistent theory in a countable language L. Let $L_C = L \cup \{c_n : n \in \omega\}$ where c_n are new constant symbols. Show that there exists θ_s for $s \in 2^{< \omega}$ sentences in the language L_C such that

1. $T \cup \{\theta_s\}$ is consistent;

2. if $s \subseteq t$, then $\vdash \theta_t \rightarrow \theta_s$;
3. if $x \in 2^\omega$, then $T \cup \{\theta_{xn} : n \in \omega\}$ is a complete consistent Henkin theory, with canonical model A_x; and

4. if $x \neq y \in 2^\omega$, then the only complete types realized in both A_x and A_y are principal.

33. Prove Shelah’s omitting types theorem: If T is a complete consistent theory in a countable language L and Σ is a family of fewer than continuum many complete nonprincipal types over T, then T has a model omitting all the types in Σ.

34. Let (N, \in) be a countable transitive model of ZFC and let (N^*, \in^*) be any countable elementary superstructure of N with a nonstandard ω. For any structure A in N let A^* be the corresponding structure in N^*, i.e.

$$A^* = \{a \in N^* : N^* \models a \in A\}$$

for any relation symbol R

$$R^* = \{\bar{a} : N^* \models \bar{a} \in R^A\}$$

and similarly for operation symbols. Suppose $A, B \in N$ are structures in a countable language $L \in N$. Show that if $A \equiv B$ then the type spectrum of A^* is equal to the type spectrum B^* (Hint: use the fact that ω^* is nonstandard, and the fact that N^* thinks that A^*, B^* model all the same nonstandard sentences. It is also true that $A^* \equiv_{\omega^*} B^*$.) Suppose $A \in N$ is a structure in a countable language $L \in N$. Show that A^* is $\omega-$homogeneous. Use this exercise to give another proof of the main lemma in Vaught’s two cardinal theorem. Namely if T has a pair of models $A \preceq B$ such that $A \neq B$ but $U^A = U^B$, then T has a pair of countable models $A \preceq B$ such that $A \neq B$, $U^A = U^B$, A is $\omega-$homogeneous, and $A \simeq B$.

35. Prove the finite Ramsey theorem. For every $n, k, m \in \omega$ there exists arbitrarily large $l \in \omega$ such that $l \rightarrow (m)^k_n$, i.e. for every $f : [l]^k \rightarrow n$ there exists $H \in [l]^m$ such that $f | [H]^k$ is constant. (Hint: use compactness and the infinite version of Ramsey’s theorem.)

36. Prove that every infinite partially ordered set contains an infinite linear order or an infinite antichain. (X is an antichain iff any two elements of X are incomparable, i.e. for every $a \neq b \in X$ ($\neg a \leq b$). (Hint: Ramsey’s theorem)
37. Let A_i be an L structures for each $i \in I$, (X_i, \leq_i) a set of A_i indiscernibles, and U be an ultrafilter on I. Show that $\Pi X_i/U$ is a set of indiscernibles for $\Pi A_i/U$.

38. Let A_n be infinite structures in a countable language L and let U be a nonprincipal ultrafilter on ω. Show that $\Pi A_n/U$ contains a set of indiscernibles of cardinality the continuum. (Hint: Find $X_n \in [A_n]^\omega$ such that for every finite set of formulas Δ for all but finitely many $n \in \omega$ X_n is a set of Δ–indiscernibles in A_n.)

39. Do any of the problems 3.3.1–20 on p.153–155 of Chang and Keisler. I think the third sentence of 3.3.7 is false, can you give a counterexample?

40. Prove that $\kappa \nrightarrow \left(\omega\right)_2^\omega$. That is there exists $P_0 \cup P_1 \subset [\kappa]^\omega$ such that there does not exist $X \in [\kappa]^\omega$ with $[X]^\omega \subset P_0$ or $[X]^\omega \subset P_1$. Hint: first prove it for $\kappa = \omega$ then extend to arbitrary κ by consider a maximal family of subsets $A \subset [\kappa]^\omega$ which are almost disjoint, i.e. $X, Y \in A$ implies $X \cap Y$ is finite.

41. (Vaught) Prove the following extension of Vaught’s two cardinal theorem for cardinals far apart. Let T be a first order theory in a countable language which includes two unary predicate symbols U, V. We say that A is a $(\kappa, \lambda, \delta)$-model of T iff $|A| = \kappa$, $|V^A| = \lambda$, $|U^A| = \delta$. Prove that if for every $n \in \omega$ if T has a $(\leq_n, \omega_1, \omega)$-model, then for every $\kappa \geq \omega_1$ T has a $(\kappa, \omega_1, \omega)$-model. Hint: Assume wlog that T has built in Skolem functions and $T \vdash U(x) \rightarrow V(x)$. Consider the theory T^* which contains T and also for every L-formula $\theta(\bar{x})$:

$$\forall \bar{x}[V(x_1) \land \ldots \land V(x_n)] \rightarrow [\theta(\bar{x}, \bar{a}) \iff \theta(\bar{x}, \bar{b})]$$

where $\bar{a}, \bar{b} \in I^{<\omega}$ have the same order type and $I = \{c_n : n \in \omega\}$.

42. (Vaught, Fuhrken) Show that the Hanf number of $L(Q)$ is κ where Qx means “there exists uncountably many x”.

Hint: Let L be any first order language. Let U, V be new unary predicate symbols and F a new 3-ary relation symbol.

The idea is that $A \models \neg Qx\theta(x)$ iff $\{x : A \models \theta(x)\}$ is countable iff there exists a 1-1 function from $\{x : A \models \theta(x)\}$ to a fixed countable unary predicate U. Similarly $A \models Qx\theta(x)$ iff $\{x : A \models \theta(x)\}$ is uncountable iff there exists a 1-1 function from a fixed uncountable unary predicate V to $\{x : A \models \theta(x)\}$.

For any θ^* a $L(Q)$-formula in prenex normal form define a first order $L \cup \{U, V, F\}$-formula θ^* as follows:
1. If θ is quantifier free then $\theta^* = \theta$;

2. $(\exists x \theta)^* = \exists x(\theta^*)$;

3. $(\forall x \theta)^* = \forall x(\theta^*)$;

4. $(Qx \theta)^* = \exists u \forall v [V(v) \rightarrow (\exists x F(u, v, x) \land \theta^*)]$;

5. $(\neg Qx \theta)^* = \exists u \forall x (\theta^* \rightarrow \exists v [F(u, x, v) \land U(v)]]$

In last two items u, v are variables not occuring in θ^*.

Let ψ be the first order sentence which says that F is the graph of a parameterized family of 1-1 functions, i.e. for each u the set $\{(v, x) : F(u, v, x)\}$ is the graph of a partial 1-1 function.

Show that a $L(Q)$-sentence θ has a model of cardinality κ iff $\theta^* \land \psi$ has a $(\kappa, \omega_1, \omega)$-model.

43. Use Ehrenfeucht games to show that for every sentence θ in the language of one binary relation $<$ there exists $n \in \omega$ such that $(\omega^n, <) \models \theta$ iff $(\omega^\omega, <) \models \theta$.

(This is ordinal exponentiation.)

44. Use Ehrenfeucht games to prove that

$$(\omega, <) \equiv (\omega + Z, <)$$

45. Any of the exercises 2.5.1-2.5.7.

46. (Lachlan) Let T be a complete consistent theory in a countable language L. Show that for any L-formula $\theta(x)$ if rank($\theta(x)$) $\geq \omega_1$ then rank($\theta(x)$) $= \infty$. Hint: Look at a model of ZFC* with a standard ω but which thinks rank($\theta(x)$) $\geq \alpha$ for a nonstandard $\alpha < \omega_1$.

47. Let $\mathcal{A} = (A, E)$ be an equivalence relation. Show that Th(\mathcal{A}) is ω-stable. Compute rank($x = x$).

48. Let IND be the theory of infinitely many independent unary predicates, (example 3.4.2 p.157 Chang and Keisler). Show that IND is superstable but not ω-stable.

49. Let T be the theory of infinitely many equivalence relations E_n for $n \in \omega$ such that each E_n equivalence class is the union of infinitely many E_{n+1} equivalence classes. Prove that T is stable but not superstable.