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Abstract. We show that strong measure zero sets (in a σ-totally bounded

metric space) can be characterized by the nonexistence of a winning strategy in
a certain infinite game. We use this characterization to give a proof of the well

known fact, originally conjectured by K. Prikry, that every dense Gδ subset

of the real line contains a translate of every strong measure zero set. We also
derive a related result which answers a question of J. Fickett.

1. Introduction.

A metric space X is said to have strong measure zero if, for every sequence (εn :
n ∈ N) of positive numbers, there is a partition X =

⋃
n∈NXn with diam(Xn) ≤ εn

for each n. This notion was introduced by Borel [2], who conjectured that every
strong measure zero set of real numbers is countable. In fact, by a celebrated result
of Laver [5], as extended by Carlson [3], it is consistent with ZFC that every metric
space of strong measure zero is countable. On the other hand, as noted by Sierpiński
[8], the existence of an uncountable strong measure zero set of real numbers is a
consequence of the continuum hypothesis.

In an unpublished manuscript (“Solutions of some games”, dated February,
1970), Mycielski and Solovay introduced a natural “gamification” of strong measure
zero. In section 2 we define the Mycielski-Solovay game G(X), as well as a tech-

nical variant Ĝ(X,F), and study conditions under which one player or the other
has a winning strategy. We show that, among σ-totally bounded metric spaces,
the strong measure zero spaces are characterized by the nonexistence of a winning
strategy for White in these games.

Karel Prikry observed that a set X of real numbers has strong measure zero if
every dense open subset of the real line contains a translate of X; and he conjec-
tured that, conversely, every dense open subset and even every dense Gδ subset of
the real line contains a translate of every strong measure zero set. In sections 3
and 4 we use our game-theoretic characterization of strong measure zero to give a
proof of Prikry’s conjecture. In fact, a concise, elegant, game-free proof of Prikry’s
conjecture is already available in Miller’s survey [6]. Our proof is not shorter or
simpler than Miller’s, and from one point of view it may be regarded as merely an
obfuscated presentation of Miller’s argument. However, we think the motivating
intuition from game theory may be of some independent interest. Also, our main
result (Theorem 3) can be viewed as a generalization of Prikry’s conjecture.

James Fickett asked us to characterize the sets X of real numbers such that
every dense open set, or every dense Gδ set, contains a homothetic copy of X. The
answer to Fickett’s question for dense Gδ sets is that X has strong measure zero;
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this is proved in section 4. For dense open sets the answer is that X is the union
of a bounded set and a strong measure zero set; this is proved in section 5.

Most of the results in this paper, except for Theorem 3 (about Cartesian prod-
ucts), were announced in an abstract [4].

2. Strong measure zero games

Given a metric space X, we define an infinitely long game G(X) between two
players, White and Black. At move n, first White chooses a real number εn > 0,
and then Black chooses a set Bn ⊆ X with diam(Bn) ≤ εn. Black wins a play
(ε1, B1, ε2, B2, . . . ) of this game if

⋃
n∈NBn = X, otherwise White wins. We say

that the game G(X) is a win for White (Black) if White (Black) has a winning
strategy.

Theorem 1. For any metric space X, the game G(X) is a win for Black if and
only if X is countable.

Proof. First, suppose X is countable, say X = {xn : n ∈ N}. Then Black has an
obvious winning strategy: at move n, choose Bn = {xn}.

Now suppose σ is a winning strategy for Black. For each point x ∈ X, choose
a finite sequence s(x) = (rx1 , . . . , r

x
n(x)) of positive rational numbers such that x ∈

σ(rx1 , . . . , r
x
n(x), r) for every rational number r > 0. (Such a sequence must exist, for

otherwise White could defeat Black’s strategy σ by choosing an infinite sequence
of rational numbers so that Black never covers x.) It is easy to see that the map
x 7→ s(x) is injective, and so X is countable. �

Let X be a σ-totally bounded metric space, and let F = (Fn : n ∈ N) be a

sequence of totally bounded subsets of X, such that
⋃
n∈N

Fn = X and Fn ⊆ Fn+1 for

each n. In this setting, besides the game G(X), we define another game Ĝ(X,F)
which is more difficult for Black. Namely, at move n, first White chooses εn > 0, and
then Black chooses Bn ⊆ Fn with diam(Bn) ≤ εn; Black wins if lim supnBn = X,
otherwise White wins.

Lemma 1. Given a totally bounded metric space F and a number δ > 0, we can
find a nonempty finite collection B of subsets of F , each of diameter at most δ,
such that every subset of F of diameter at most 1

3δ is contained in some member
of B.

Proof. Since F is totally bounded, for some m ∈ N we can write F = U1 ∪ · · · ∪Um
with diam(Uj) ≤ 1

3δ for each j ∈ [m]. Let B = {W1, . . . ,Wm}, where Wj = {x ∈
F : d(x, u) ≤ 1

3δ for some u ∈ Uj}. �

Theorem 2. If X is a σ-totally bounded metric space, and if F = (Fn : n ∈ N) is

a sequence of totally bounded subsets of X such that
⋃
n∈N

Fn = X and Fn ⊆ Fn+1

for each n, then the following statements are equivalent:

(1) X does not have strong measure zero;
(2) G(X) is a win for White;

(3) Ĝ(X,F) is a win for White.
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Proof. The implications (1) ⇒ (2) ⇒ (3) are clear; we will prove ¬(1) ⇒ ¬(3).

Assume that X has strong measure zero; we will show that Ĝ(X,F) is not a win

for White. Let σ be any strategy for White in Ĝ(X,F).
Using Lemma 1, we can recursively define δn,Bn (n ∈ N) so that:

(i) δn = min{σ(B1, B2, . . . , Bn−1) : B1 ∈ B1, B2 ∈ B2, . . . , Bn−1 ∈ Bn−1};
(ii) Bn is a nonempty finite collection of subsets of Fn of diameter at most δn;

(iii) every subset of Fn of diameter at most 1
3δn is contained in some member

of Bn.

Partition N into disjoint sets Mn (n ∈ N) so that min(Mn) ≥ n. Let αk = 1
3δk.

Since each Fn has strong measure zero, we can choose sets Ak (k ∈ N), with
diam(Ak) ≤ αk, so that for each n ∈ N we have Fn =

⋃
k∈Mn

Ak.

If k ∈ N, then k ∈Mn for some n ∈ N, and so Ak ⊆ Fn ⊆ Fk; since diam(Ak) ≤
αk = 1

3δk, we can choose Bk ∈ Bk so that Ak ⊆ Bk. Finally, for each n ∈ N let
εn = σ(B1, B2, . . . , Bn−1). Since Bn ⊆ Fn and diam(Bn) ≤ δn ≤ εn, the infinite

sequence (ε1, B1, ε2, B2, . . . , εn, Bn, . . . ) is a σ-play of the game Ĝ(X,F).
We claim that lim supnBn = X. To see this, consider any point x ∈ X. Then

x ∈ Fn =
⋃

k∈Mn

Ak for all sufficiently large n; therefore, for each sufficiently large n,

we have x ∈ Ak ⊆ Bk for some k ∈ Mn. Since the sets Mn (n ∈ N) are disjoint, it
follows that the set {k : x ∈ Bk} is infinite, whence x ∈ lim supnBn.

Thus Black wins the σ-play (ε1, B1, ε2, B2, . . . , εn, Bn, . . . ) of Ĝ(X,F). As White’s

strategy σ was arbitrary, it follows that the game Ĝ(X,F) is not a win for White.
�

3. A theorem on Cartesian products

For metric spaces X and Y , a set A ⊆ X × Y is vertically dense if, for each
x ∈ X, the set {y ∈ Y : (x, y) ∈ A} is dense in Y .

Lemma 2. Let X,Y be metric spaces. Given a compact set K ⊆ X, a nonempty
open set W ⊆ Y , and a vertically dense open set A ⊆ X×Y , we can find a number
ε > 0 such that, for any set B ⊆ K with diam(B) ≤ ε, there is a nonempty open
set V ⊆W with B × V ⊆ A.

Proof. The collection

S = {S ⊆ X : S is open, and S × V ⊆ A for some nonempty open set V ⊆W}

is an open cover of X. By Lebesgue’s covering lemma, we can find a number ε > 0
such that, for any set B ⊆ K with diam(B) ≤ ε, we have B ⊆ S for some S ∈ S,
and so B × V ⊆ A for some nonempty open set V ⊆W . �

Theorem 3. If X is a σ-compact metric space, Y is a complete metric space with
no isolated points, Z ⊆ X is a strong measure zero set, A ⊆ X × Y is a vertically
dense Gδ set, U ⊆ Y is a nonempty open set, and D ⊆ Y is a dense Gδ set, then
there is a nonempty perfect set P ⊆ U ∩D such that Z × P ⊆ A.

Proof. Let A =
⋂
n∈N

An, where An is open and An ⊇ An+1 for each n; let D =⋂
n∈N

Dn, whereDn is open andDn ⊇ Dn+1 for each n; and letX =
⋃
n∈N

Kn, whereKn
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is compact and Kn ⊆ Kn+1 for each n. Let F = {Fn : n ∈ N} where Fn = Z ∩Kn;

thus Z =
⋃
n∈N

Fn, each Fn is totally bounded, and Fn ⊆ Fn+1 for each n.

By Theorem 2, White has no winning strategy in Ĝ(Z,F); i.e., if σ is any strategy

for White in Ĝ(Z,F), then there is a σ-play (ε1, B1, ε2, B2, . . . ) of Ĝ(Z,F) such
that lim supnBn = Z. To prove Theorem 3, it will suffice to find a strategy for

White in Ĝ(Z,F) which ensures that (lim supnBn) × P ⊆ A for some nonempty
perfect set P ⊆ U ∩D.

Let U∅ = U . At move n, suppose nonempty open sets Us ⊆ Y (s ∈ {0, 1}n−1)
have been defined. White chooses εn > 0 so that, for each set B ⊆ Fn with
diam(B) ≤ εn, and for each s ∈ {0, 1}n−1, there is a nonempty open set V ⊆ Us∩Dn

with B × V ⊆ An; this is possible by Lemma 2. After Black chooses Bn ⊆ Fn
with diam(Bn) ≤ εn, White chooses for each s ∈ {0, 1}n−1 a nonempty open set
Vs ⊆ Us ∩ Dn with Bn × Vs ⊆ An, and two nonempty open sets Us_0, Us_1 of
diameter at most 2−n, with Us_0 ∪ Us_1 ⊆ Vs and Us_0 ∩ Us_1 = ∅.

For each s ∈ {0, 1}N there is a unique point f(s) ∈ Y such that
⋂
n∈N Us(1),s(2),...,s(n) =

{f(s)}. The mapping f : {0, 1}N → Y so defined is continuous and injective, whence
the set P = {f(s) : s ∈ {0, 1}N} is perfect.

Now P ⊆ U and P ⊆ Dn for all n, so P ⊆ U ∩D. Finally, since Bn × P ⊆ An
for all n, it follows that (lim supnBn)× P ⊆ lim supnAn =

⋂
n∈N

An = A. �

4. Prikry’s conjecture

Theorem 4. For any set Z ⊆ R the following statements are equivalent:

(1) Z has strong measure zero;
(2) there is a number k ∈ N such that Z can be covered by k translates of every

dense open subset of R;
(3) for every dense Gδ set D ⊆ R, there are countable sets A,B ⊆ R such that

Z ⊆ AD +B;
(4) for any dense Gδ set D ⊆ R and any nonempty open set U ⊆ R, there is a

nonempty perfect set P ⊆ U ∩D such that Z + P ⊆ D.

Proof. Clearly (4) ⇒ (2) and (4) ⇒ (3). We will prove (1) ⇒ (4), (2) ⇒ (1), and
(3)⇒ (1).

(1)⇒ (4): Let a strong measure zero set Z ⊆ R, a dense Gδ set D ⊆ R, and a

nonempty open set U ⊆ R be given. Let X = Y = R, and let A = {(x, y) ∈ R×R :
x+ y ∈ D}. Since the hypotheses of Theorem 3 are satisfied, there is a nonempty
perfect set P ⊆ U ∩D such that Z × P ⊆ A, i.e., Z + P ⊆ D.

(2)⇒ (1): Suppose Z ⊆ R and k ∈ N are such that Z can be covered by k
translates of every dense open set; we have to show that Z has strong measure
zero. Let positive numbers εn (n ∈ N) be given. Partition N into disjoint infinite
sets M1, . . . ,Mk and define f : N → [k] so that n ∈ Mf(n). For each j ∈ [k],

choose open intervals In (n ∈Mj) with diam(In) = εn so that the set Dj =
⋃
n∈Mj

In

is dense in R. Since D = D1 ∩ · · · ∩ Dk is a dense open set, there are numbers
t1, . . . , tk ∈ R such that

Z ⊆ (t1 +D) ∪ · · · ∪ (tk +D) ⊆ (t1 +D1) ∪ · · · ∪ (tk +Dk) =
⋃
n∈N

(tf(n) + In).
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This shows that Z has strong measure zero.
(3)⇒ (1): Suppose Z ⊆ R is such that, for every dense Gδ set D ⊆ R, there are

countable sets A,B ⊆ R with Z ⊆ AD + B. Let positive numbers εn (n ∈ N) be
given. Partition N into disjoint infinite sets Mj (j ∈ N). For each j ∈ N, choose

open intervals In (n ∈ Mj) with diam(In) ≤ 1
j εn, so that the set Dj =

⋃
n∈Mj

In is

dense in R. Thus D =
⋂
j∈N

Dj is a dense Gδ set. Choose countable sets A,B ⊆ R

with Z ⊆ AD + B. Choose an injection j : A × B → N with j(a, b) ≥ |a|. Let

M =
⋃

(a,b)∈A×B

Mj(a,b). For each n ∈ M , there is a unique pair (an, bn) ∈ A × B

such that n ∈Mj(an,bn). Now we have

Z ⊆ AD +B =
⋃

(a,b)∈A×B

(aD + b)

⊆
⋃

(a,b)∈A×B

(aDj(a,b) + b)

=
⋃

(a,b)∈A×B

⋃
n∈Mj(a,b)

(aIn + b)

=
⋃
n∈M

(anIn + bn).

Since, for n ∈M , we have

diam(anIn + bn) = |an|diam(In) ≤ |an|εn
j(an, bn)

≤ εn,

this shows that Z has strong measure zero. �

Corollary 1 (Prikry’s Conjecture). For any set X ⊆ R, the following statements
are equivalent:

(1) X has strong measure zero;
(2) every dense open set contains a translate of X;
(3) every dense Gδ set contains a translate of X.

Proof. Theorem 4. �

This is called Prikry’s conjecture after Karel Prikry, who pointed out the impli-
cations (3)⇒ (2)⇒ (1) and conjectured that all three statements were equivalent.
That statements (2) and (3) hold for every countable set X had been proved earlier
by Scheeffer [7] and Bagemihl [1], respectively.

Sierpiński [9] asked whether there is an uncountable set X of real numbers which
has strong measure zero, is always of the first category, and is such that every
translate of X is contained in X except for a countable set of points. The next
corollary answers Sierpiński’s question in the negative.

Corollary 2. If X ⊆ R is a set of the first category, and if (X+ t)\X is countable
for each t ∈ R, then every strong measure zero subset of X is countable.

Proof. If Z is a strong measure zero subset of X, then by Corollary 1 we have
Z + t ⊆ R \ X for some t ∈ R, whence Z + t = (Z + t) \ X ⊆ (X + t) \ X and
|Z| = |Z + t| ≤ |(X + t) \X| ≤ ℵ0. �
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5. Fickett’s question

James Fickett asked us which sets X of real numbers have the property that
every dense open set, or every dense Gδ set, contains a homothetic copy of X.
For dense Gδ sets the answer is strong measure zero sets, as shown by Theorem 4.
Fickett’s question for dense open sets is answered by the following theorem.

Theorem 5. For every set X ⊆ R, the following statements are equivalent:

(1) for every dense open set D ⊆ R there exist a, b ∈ R, a > 0, with aX+b ⊆ D;
(2) X is the union of a bounded set and a strong measure zero set.

Proof. (2)⇒ (1): Let X = K ∪ Z, where K is bounded and Z has strong measure
zero, and let D be a dense open set. Choose a > 0 and an interval B so that
aK + B ⊆ D. Choose a countable set M so that B + M = R. Then G =⋂
m∈M (D+m) is a dense Gδ set. Since aZ is a strong measure zero set, by Corollary

1 we have aZ + t ⊆ G for some t ∈ R. Write t = b + m where b ∈ B,m ∈ M ;
then aZ + b + m ⊆ G ⊆ D + m, whence aZ + b ⊆ D. Since b ∈ B, we also have
aK + b ⊆ D, and so aX + b ⊆ D.
¬(2)⇒ ¬(1): Suppose X is not the union of a bounded set and a strong measure

zero set. It follows that, given k > 0, we can find sets X ′, X ′′ ⊆ X such that neither
X ′ nor X ′′ has strong measure zero, and d(X ′, X ′′) > k; hence we can find positive
numbers εn (n ∈ N) such that X is not covered by any sequence of intervals whose
diameters are k, ε1, ε2, . . . .

Let {rm : m ∈ N} be dense in R. For each m ∈ N we define Jm,Km, km and
εm,n (n ∈ N) satisfying the following conditions:

(i) Jm is a finite open interval containing rm, and diam(Jm) ≤ 1
pεp,m−p for

each p ∈ [m− 1];
(ii) Km is a finite interval containing J1 ∪ · · · ∪ Jm;
(iii) km = m · diam(Km);
(iv) εm,1, εm,2, . . . are positive numbers such that X is not covered by any se-

quence of intervals whose diameters are km, εm,1, εm,2, . . . .

Now D =
⋃
m∈N

Jm is a dense open set. Assume for a contradiction that a, b ∈ R, a >

0, and aX + b ⊆ D. Define Ŝ = 1
a (S − b) for S ⊆ R. Fix m ∈ N with 1

a ≤ m. Then

X ⊆ D̂ = Ĵ1 ∪ · · · ∪ Ĵm ∪ Ĵm+1 ∪ Ĵm+2 ∪ · · · ⊆ K̂m ∪ Ĵm+1 ∪ Ĵm+2 ∪ · · · .

Since diam(K̂m) ≤ m · diam(Km) = km, and diam(Ĵm+n) ≤ m · diam(Jm+n) ≤
m · 1

mεm,n = εm,n for each n ∈ N, this contradicts condition (iv). �
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