Open Eulerian trails and Hamiltonian paths and cycles

Lecture 33

(Brualdi Ch. 11.2, 11.3)

Mikhail Ivanov

Friday, November 20th

475 Exam II, Covers Ch 6, 7, 8(.1-.3, ex. 1-30), Monday, November 23

closed Eulerian trail in G

G is connected

$\forall v_i \in V,
\deg(v_i) = \text{even}$
Theorem: Let G be a connected graph. Then G has an open Eulerian trail if and only if there are exactly two vertices u and v of odd degree. Every open Eulerian trail in G joins u and v.

Proof:

\Rightarrow

- $\deg(a) = \text{odd}$
- $\deg(b) = \text{odd}$
- $\deg(v) = \text{even}$

$G_1 = (V \cup \{n\}, E \cup \{(u, n), (v, n)\})$

G_1 is connected, all vertices in G_1 have even degree.

$\Rightarrow G_1$ has closed Eulerian trail.

Question:

- $\deg(u) = \text{odd}$
- $\deg(v) = \text{odd}$

$G_2 = (V \cup \{n\}, E \cup \{(u, n), (v, n)\})$

G_2 is connected, all vertices in G_2 have even degree.

\Rightarrow G_2 has closed Eulerian trail.
and now they build one more bridge:

Exercise
Example:

Theorem: Let G be a connected graph and suppose that the number of vertices of G with odd degree is $m > 0$. Then the edges of G can be partitioned into $\frac{m}{2}$ open trails. It is impossible to partition the edges of G into fewer than $\frac{m}{2}$ open trails.

Theorem: Let G be a connected general graph having K edges. Then there is a closed walk in G of length $2K$ in which the number of times an edge is used equals twice its multiplicity.