Theorem:

1. A connected graph of order \(n \) has at least \(n - 1 \) edges.
2. Removing any edge from a connected graph of order \(n \) with exactly \(n - 1 \) edges leaves a disconnected graph (each edge is the bridge).

Definition: A tree is a connected graph that becomes disconnected upon the removal of any edge.

Theorem: A connected graph is a tree if and only if \(|E| = |V| - 1 \).
Lemma: Let G be a connected graph and let $\alpha = \{x, y\}$ be an edge of G. Then α is a bridge if and only if there does not exist a cycle of G containing α.

Proof:

Suppose α is a bridge. Then there is no cycle containing α.

Suppose not. G has a cycle containing α.

Theorem: Let G be a connected graph of order n. Then G is a tree if and only if G does not have any cycles.

Theorem: A graph G is a tree if and only if every pair of distinct vertices x and y is joined by a unique path.
Definition: Let G be a graph. A *pendent vertex* (or *leaf*) of G is a vertex whose degree is equal to 1.

Theorem: Let G be a tree of order $n \geq 2$. Then G has at least two pendent vertices.

Proof 1:
\[d_1 + d_2 + \ldots + d_n = 2|E| = 2(n-1) \]

1 leaf \(\Rightarrow \) \(d_1, d_2, \ldots, d_{n-1} \geq 2 \)
\[d_n = 1 \]
\[\Rightarrow \forall d_i \geq 2n - 1 \text{. Contradiction} \]

Proof 2:
1. V_1, V_2, V_5, V_k pendent
2. V_m pendent
3. n pendent vertices
4. A tree with 2 pendent vertices?
Theorem: Every connected graph has a spanning tree.

Example: How many trees with 5 vertices?

2

Remark: G

Spanning tree:

Theorem: Every connected graph has a spanning tree.

Example:
Theorem: Let T be a spanning tree of a connected graph G. Let $\alpha = \{a, b\}$ be an edge of G that is not an edge of T. Then there is an edge β of T such that the graph T' obtained from T by inserting α and deleting β is also a spanning tree of G.

Proof.

Let $T = T \cup \{a, b\}$.

If $\alpha \in T$, then choose $\beta \in T \setminus \alpha$, $\beta \neq \alpha$.

Then $T' = T \cup \{a, b\} \setminus \{\beta\}$ is a tree.
Theorem: Let T_1 and T_2 be spanning trees of a connected graph G. Let β be an edge of T_1. Then there is an edge α of T_2 such that the graph obtained from T_1 by inserting α and deleting β is a spanning tree of G.
Rooted tree