EMBEDDING DISTRIBUTIVE LATTICES IN THE Σ^0_2 ENUMERATION DEGREES

HRISTO GANCHEV AND MARIYA SOSKOVA

1. Introduction

The local structure of the enumeration degrees \mathcal{G}_e is the partially ordered set of the enumeration degrees below the first jump $0_e'$ of the least enumeration degree 0_e. Cooper [3] shows that \mathcal{G}_e consists exactly of the Σ^0_2 enumeration degrees, degrees which contain Σ^0_2 sets, or equivalently consist entirely of Σ^0_2 sets. In investigating structural complexity of \mathcal{G}_e, the natural question of what other structures are embeddable in \mathcal{G}_e arises. For example, if we view \mathcal{G}_e as a countable partial ordering, we might ask what other partial orderings are embedded in \mathcal{G}_e. The complete answer to this question is provided by Bianchini [2], who proves that every countable partial ordering can be embedded densely in \mathcal{G}_e, i.e. in any nonempty interval of Σ^0_2 enumeration degrees; see also Sorbi [11] for a published proof of Bianchini’s result.

As \mathcal{G}_e is an interval of enumeration degrees, \mathcal{G}_e is a countable upper semi-lattice with least and greatest elements. In this article we investigate the further question of characterizing special types of partially ordered structures, lattices, that are embeddable in \mathcal{G}_e.

We start by outlining preliminary results on this topic. McEvoy and Cooper [8] prove that the standard embedding ι of the Turing degrees in the enumeration degrees preserves greatest lower bounds for low c.e. degrees, i.e., if $a, b, c \in \mathcal{R}$ and $a' = b' = c' = 0'$, then
\[a \land b = c \implies \iota(a) \land \iota(b) = \iota(c). \]

This allows us to transfer known embeddability results for the low c.e. Turing degrees into the substructure of the low Π^0_1 enumeration degrees. An unpublished result by Lachlan and independently by Lerman is that every countable distributive lattice can be embedded in the low c.e. degrees preserving least element (See Soare [9] for a proof of this result.) This is also the best result that can be obtained in this way, as Lachlan’s Nondiamond Theorem [6], yields the four element lattice \{0, a, b, 1\} for which $a \not\leq b$ and $b \not\leq a$ (the diamond lattice) is not embeddable in the c.e. degrees preserving least and greatest element.

This limitation of the c.e. Turing degrees however does not apply to the local enumeration degrees. Indeed, Ahmad [1] shows that the diamond lattice is embeddable in the Σ^0_2 enumeration degrees preserving least and greatest element,
providing the first evidence for the fact that the local structures of the Turing degrees and the enumeration degrees are not elementary equivalent. Furthermore, her proof embeds the intermediate degrees of the diamond in the low Σ^0_2 enumeration degrees. Lempp and Sorbi [7] extend this result and show that every finite lattice is embeddable in the low Σ^0_2 enumeration degrees. In this article we extend the characterization of partially ordered structures embeddable in \mathcal{G}_e to include countable distributive lattices. Our two main results are as follows.

Theorem 1. Every countable distributive lattice is embeddable in $[0_e, 0_e']$ preserving both least and greatest elements. Moreover the range of the embedding contains only low quasiminimal enumeration degrees, except for the image of the least and greatest elements.

Theorem 2. Every countable distributive lattice is embeddable preserving least element in every nontrivial interval $[a, b] \subseteq \mathcal{G}_e$, for which a, b are Δ^0_2 enumeration degrees and a is low. Moreover the range of the embedding contains only enumeration degrees quasiminimal and low over a, except for the image of the least and greatest elements.

A relativization of the proofs of Theorem 1 and Theorem 2 provides us with further insight to the global structure of the enumeration degrees. Theorem 2 can be as usual only relativized above any total enumeration degree. Theorem 1 however provides an interesting example of a structural property of the interval $[0_e, 0_e']$ which can be relativized to every interval $[u, u']$, where u is an arbitrary enumeration degree.

As a further corollary of the proof of Theorem 1 we shall obtain that if v is downwards properly Σ^0_2, i.e. a Σ^0_2 degree, which does not bound any nontrivial Δ^0_2 degrees, then every countable distributive lattice is embeddable in $[v, 0_e']$ in such a way, that the range of the embedding consists only of degrees low over v degrees except for the image of the greatest element. Harris [4] has recently announced the result, that in every jump class of the high/low hierarchy of the Σ^0_2 enumeration degrees there is a downwards properly Σ^0_2 degree. Combing this with our result we get that every countable distributive lattice is embeddable in L_n and H_n for $n \geq 1$, and I.

We shall prove both theorems using the notion of Kalimullin pairs (K-pairs).

Definition 1 (Kalimullin [5]). A pair of sets $\{A, B\}$ is a K-pair over U, if there is a set $W \leq_c U$, such that $A \times B \subseteq W$ and $A \times B \subseteq W$. If $A, B \leq_c U$, we call the K-pair nontrivial. If U is a c.e. set, then we refer to $\{A, B\}$ just as a K-pair.

The enumeration degrees generated by K-pairs exhibit some very interesting properties [5]. If $a = d_e(A)$, $b = d_e(B)$ and $u = d_e(U)$, then $\{A, B\}$ is a K-pair over U if and only if

$$\forall x \in D_e [x \vee u = (x \vee u \vee a) \wedge (x \vee u \vee b)].$$

(1.1)

Additionally if $\{A, B\}$ is a nontrivial K-pair over U then the degrees $A \oplus U$ and $B \oplus U$ are quasi-minimal over U. If furthermore A, B are e-reducible to the enumeration jump of U, then both $A \oplus U$ and $B \oplus U$ are low over U.

From now on we shall use the term K-pairs both for sets, as in Definition 1, and for degrees that satisfy (1.1).
Equality (1.1) makes \(\mathcal{K} \)-pairs a powerful tool for embedding distributive lattices in intervals of enumeration degree. In order to illustrate this, consider a finite \(\mathcal{K} \)-system \(\{a_i \mid 0 \leq i \leq n - 1\} \), i.e. for each \(i \neq j \), \(\{a_i, a_j\} \) is a nontrivial \(\mathcal{K} \)-pair. Using induction on \(|X| + |Y| \) we shall prove that, whenever \(X \) and \(Y \) are disjoint nonempty subsets of \(\{0, 1, \ldots, n - 1\} \), the pair

\[
\left\{ \bigvee_{i \in X} a_i, \bigvee_{i \in Y} a_i \right\}
\]

is a \(\mathcal{K} \)-pair.

For \(|X| + |Y| = 2 \) the statement follows from the definition of a \(\mathcal{K} \)-system. Suppose that \(|X| + |Y| > 2 \) and let \(|X| \geq 2 \). Fix an arbitrary \(x \in G_e \) and let

\[
y \leq x \vee \bigvee_{i \in X} a_i, \quad x \vee \bigvee_{i \in Y} a_i.
\]

Fix \(i_0 \in X \) and let \(X_0 = X - \{i_0\} \). From (1.3) we obtain

\[
y \leq (x \vee a_{i_0}) \vee \bigvee_{i \in X_0} a_i, \quad (x \vee a_{i_0}) \vee \bigvee_{i \in Y} a_i.
\]

As \(|X_0| + |Y| < |X| + |Y| \) and \(X_0 \neq \emptyset \), we have that \(\{\bigvee_{i \in X_0} a_i, \bigvee_{i \in Y} a_i\} \) is a \(\mathcal{K} \)-pair and hence \(y \leq x \vee a_{i_0} \). But \(1 + |Y| < |X| + |Y| \) and again by the induction hypothesis \(\{a_{i_0}, \bigvee_{i \in Y} a_i\} \) is a \(\mathcal{K} \)-pair. From here \(y \leq x \) and so (1.2) is satisfied.

Note that (1.1) implies, that if \(u \leq \varepsilon \) and \(\{a, b\} \) is a \(\mathcal{K} \)-pair over \(u \), then \(\{a, b\} \) is a \(\mathcal{K} \)-pair over \(v \). Thus (1.2) implies, that if \(v \) bounds a \(\mathcal{K} \)-system of \(n \) degrees omitting \(u \), then the lattice \((2^n, \cap, \cup)\) is embeddable in the interval \([u, v]\). By Birkhoff’s Theorem every finite distributive lattice is embeddable in \((2^n, \cap, \cup)\) for an appropriate \(n \) and so we may conclude that every finite distributive lattice is embeddable in \([u, v]\), given that \(v \) bounds a sufficiently large \(\mathcal{K} \)-system avoiding \(u \). Our strategy to prove Theorem 1 and Theorem 2 is to generalize (1.2) for special countable \(\mathcal{K} \)-systems and to prove that such \(\mathcal{K} \)-systems exist.

2. Preliminaries

Throughout this paper we shall use standard notation. We refer the reader to Cooper [8] and Sorbi [10] for an extensive survey of results on both the global and local theory of the enumeration degrees. We outline the basic notions and facts used in the article.

By \(W_0, W_1, \ldots \) we denote the c.e. sets with their Gödel index. For every natural number \(i \) and every set of natural numbers \(A \), we denote by \(W_i(A) \) the set

\[
W_i(A) = \{x \mid \exists u \langle x, u \rangle \in W_i \land D_u \subseteq A\},
\]

where \(D_u \) is the finite set with canonical index \(u \). Thus every c.e. set can be viewed as an operator on sets, an enumeration operator. Its elements will be called axioms.

The relation enumeration reducibility is defined by \(B \leq \varepsilon A \) if and only if \(B = W_i(A) \) for some natural \(i \). This relation defines a preorder on the sets of natural numbers and induces an equivalence relation \(\equiv \varepsilon \). The equivalence class of a set \(A \), denoted by \(d_e(A) \), is the enumeration degree of the set \(A \). The enumeration degrees are ordered in the natural way by \(d_e(B) \leq d_e(A) \) if and only if \(B \leq \varepsilon A \).

The least upper bound of the enumeration degrees \(d_e(A) \) and \(d_e(B) \) is the degree of the join \(A \sqcup B = \{2a \mid a \in A\} \cup \{2b + 1 \mid b \in B\} \) of \(A \) and \(B \). The uniform join of the indexed system of sets \(\{A_i \mid i \in I\}, I \subseteq \mathbb{N} \), is given by \(\biguplus_{i \in I} A_i = \{(x, k) \mid k \in I \land x \in A_k\} \). The uniform join is the least uniform upper bound for the system
Theorem 3 (Kalimullin [5]). Let A, B and U be sets of natural numbers.

(1) If $\{A, B\}$ is a K-pair over U, then
\[\forall x \in D_e \{x \lor d_e(U) = (x \lor d_e(U) \lor d_e(A)) \land (x \lor d_e(U) \lor d_e(B))\}. \]

(2) If $\{A, B\}$ is not a K-pair over U, then there is a set $X \leq_e U' \oplus (A \oplus \overline{A}) \oplus (B \oplus \overline{B})$, for which
\[d_e(X) \oplus d_e(U) \neq (d_e(X) \lor d_e(U) \lor d_e(A)) \land (d_e(X) \lor d_e(U) \lor d_e(B)). \]

From claim (1) of the theorem it follows, that if a and b are the degrees of a K-pair of Σ_0^3 sets then
\[\forall x \in G_e \{x = (x \lor a) \land (x \lor b)\}. \]

It is still an open question whether two Σ_0^3 degrees satisfying (2.2) have representatives forming a K-pair. However claim (2) settles the questions for Δ_0^3 degrees. Namely, two Δ_0^3 degrees a and b satisfy (2.2) if and only if $\{A, B\}$ is a K-pair for some $A \in a$ and $B \in b$.

As we have mentioned in the introduction if $\{A, B\}$ is a K-pair over U, then $A \oplus U$ and $B \oplus U$ are quasi-minimal over U and if furthermore $A, B \leq_e U'$, then A and B are low over U. This statement follows from Theorem 3 and following lemma.

Lemma 1 (Kalimullin [5]). Let A, B and M be sets, such that $A \times B \subseteq M$, $\overline{A} \times \overline{B} \subseteq \overline{M}$ and $A \not\leq_e M$. Then
\[B \leq_e A \oplus M & \& \overline{B} \leq_e A \oplus \overline{M}. \]

The following properties of K-pairs are only listed in [5]. As we will be using them in this article, for completeness, we restate them and provide a formal proof.

Lemma 2 (Kalimullin [5]). If $\{A, B\}$ is a nontrivial K-pair over U, then $A \oplus U$ and $B \oplus U$ are quasi-minimal over U. If furthermore $A, B \leq_e U'$ then $A \oplus U$ and $B \oplus U$ are low over U, i.e. $(A \oplus U)' \equiv_e (B \oplus U)' \equiv_e U'$.

Proof. Towards a contradiction assume that $\{A, B\}$ is a nontrivial K-pair over U and $A \oplus U$ is not quasi-minimal over U. Fix a total C such that $U \leq_e C \leq_e A \oplus U$. According to claim (1) of Theorem 3 for all $x \geq d_e(U)$ we have
\[x = (x \lor d_e(A \oplus U)) \land (x \lor d_e(B \oplus U)). \]
From $C \leq_e A \oplus U$ we obtain
\[(2.3) \quad x = (x \lor d_e(C)) \land (x \lor d_e(B)).\]
for every $x \geq d_e(U)$. Now claim (2) of Theorem 3 implies that \{C, B\} is a K-pair over U. Let $W \leq_e U$ be such that $C \times B \subseteq W$ and $\overline{C} \times \overline{B} \subseteq \overline{W}$. Applying Lemma 1 we obtain $B \leq_e \overline{C} \oplus W \leq_e C$. But then (2.3) is possible only if $B \equiv_e U$, which contradicts the assumption that \{A, B\} is a nontrivial of the K-pair.

Now suppose that $A, B \leq_e U'$. Since $A \equiv_e L_A$ and $B \equiv_e L_B$, applying consecutively (1) and (2) from Theorem 3 we obtain that \{L_A, L_B\} is a K-pair over U. Let $W \leq_e U$, be such that $L_A \times L_B \subseteq W$ and $\overline{L}_A \times \overline{L}_B \subseteq \overline{W}$. Since $L_A, L_B \leq_e U$ Lemma 1 yields $\overline{L}_A \leq_e L_B \oplus W$ and $\overline{L}_B \leq_e L_A \oplus W$. But L_A, L_B and W are enumeration reducible to U' and hence $\overline{L}_A, \overline{L}_B \leq_e U'$.

Finally we shall need some lattice-theoretic results about embeddability of distributive lattices. Birkhoff proves that every finite distributive lattice can be embedded in the boolean algebra $(2^n, \lor, \land)$ preserving least and greatest elements. From here using a compactness argument one can prove that every countable distributive lattice is embeddable in the boolean algebra preserving least and greatest elements. The countable atomless boolean algebra is unique up to isomorphism. Take as an instance of it the algebra of finite unions of left semi-closed intervals of rational numbers. Since (\mathbb{Q}, \leq) is a computable linear ordering, we thus obtain that the countable atomless boolean algebra is embeddable in the boolean algebra \mathcal{R} of computable sets. Thus in order to prove that every countable distributive lattice is embeddable in an interval of enumeration degrees $[u, v]$, it is enough to prove that \mathcal{R} is embeddable in it.

3. Uniform K-systems

As we have seen in the introduction we need finite K-systems in order to be able to embed finite distributive lattices in \mathcal{G}_e. For arbitrary countable distributive lattice we shall need the notion of uniform K-systems.

Definition 2. We say that the system of sets $\{A_i\}_{i<\omega}$ is a uniform K-system, if and only if for every natural i, $A_i \not\leq \emptyset$ and there is a computable function r, such that whenever $i \neq j$ $A_i \times A_j \subseteq W_r(i, j)$ and $\overline{A}_i \times \overline{A}_j \subseteq \overline{W}_r(i, j)$.

For uniform K-systems we are able to prove an analogue of (1.2), namely

Proposition 1. Let $\{A_i\}_{i<\omega}$ be a uniform K-system and let R_1 and R_2 be disjoint computable sets. Then $\bigoplus_{i \in R_1} A_i \times \bigoplus_{i \in R_2} A_i$ is a K-pair.

Proof. Let $\{A_i\}_{i<\omega}$ be a uniform K-system and let R_1 and R_2 be disjoint computable sets. Consider the set
\[(3.1) \quad W = \{(⟨x, k⟩, ⟨y, j⟩) \mid k \in R_1, j \in R_2, ⟨x, y⟩ \in W_r(k, j)\}.

It is clear, that W is c.e. First we shall prove, that $\bigoplus_{i \in R_1} A_i \times \bigoplus_{i \in R_2} A_i \subseteq W$. Fix $⟨x, k⟩ \in \bigoplus_{i \in R_1} A_i$ and $⟨y, j⟩ \in \bigoplus_{i \in R_1} A_i$. We have $x \in A_k$, $y \in A_j$, $k \in R_1$ and $j \in R_2$. From $R_1 \cap R_2 = \emptyset$ we conclude $k \neq j$ and hence by the uniformity condition we obtain $⟨x, y⟩ \in W_r(k, j)$. Therefore $⟨⟨x, k⟩, ⟨y, j⟩⟩ \in W$.

In order to prove $\bigoplus_{i \in R_1} A_i \times \bigoplus_{i \in R_2} A_i \subseteq \overline{W}$ fix $⟨x, k⟩ \notin \bigoplus_{i \in R_1} A_i$ and $⟨y, j⟩ \notin \bigoplus_{i \in R_1} A_i$. We shall consider two cases. First suppose that either $k \notin R_1$ or $j \notin R_2$. The
Then according to (3.1) \(\langle (x, k), (y, j) \rangle \notin W \). Now suppose, that \(k \in R_1 \) and \(j \in R_2 \). Then it should be the case \(x \notin A_k \) and \(y \notin A_j \). But \(R_1 \) and \(R_2 \) are disjoint and hence by the uniformity of the \(K \)-system we obtain \(\langle x, y \rangle \notin W_{r(k,j)} \). Thus in this case we also have \(\langle (x, k), (y, j) \rangle \notin W \).

\[\square \]

Lemma 3. Let \(\{A_i\}_{i<\omega} \) be a uniform \(K \)-system and let \(U \) be such that for all \(i \), \(A_i \not\leq_c U \). Then every countable distributive lattice is embeddable in the interval of enumeration degrees \([d_e(U), d_e(U \oplus \bigoplus_{i<\omega} A_i)] \) preserving least and greatest elements. Moreover the range of the embedding, except for the image of the least and greatest elements, contains only degrees quasi-minimal over \(d_e(U) \). If furthermore \(\bigoplus_{i<\omega} A_i \leq_c U \) then all the images except for the image of the greatest element are low over \(d_e(U) \).

Proof. Since every distributive lattice is embeddable preserving least and greatest elements in the lattice \(\mathcal{R} \) of the computable sets, it is enough to prove the lemma for \(\mathcal{R} \). Consider the mapping \(\varphi : \mathcal{R} \rightarrow [d_e(U), d_e(U \oplus \bigoplus_{i<\omega} A_i)] \), acting by the rule

\[\varphi(R) = d_e \left(U \oplus \bigoplus_{k \in R} A_k \right). \]

It is clear that \(\varphi(\emptyset) = d_e(U) \) and \(\varphi(\mathbb{N}) = d_e(U \oplus \bigoplus_{i<\omega} A_i) \). From (2.1) we immediately obtain that \(\varphi \) preserves least upper-bounds. Thus to show that \(\varphi \) is an embedding it remains to show, that \(\varphi \) preserves greatest lower-bounds. Fix two computable sets \(R_1 \) and \(R_2 \), and let \(\bar{R}_1 = R_1 - (R_1 \cap R_2) \) and \(\bar{R}_2 = R_2 - (R_1 \cap R_2) \). From (2.1) we obtain

\[
U \oplus \bigoplus_{k \in R_1} A_k = \left(U \oplus \bigoplus_{k \in R_1 \cap R_2} A_k \right) \oplus \bigoplus_{k \in R_1} A_k
\]

\[
U \oplus \bigoplus_{k \in R_2} A_k = \left(U \oplus \bigoplus_{k \in R_1 \cap R_2} A_k \right) \oplus \bigoplus_{k \in R_2} A_k.
\]

\(\bar{R}_1 \) and \(\bar{R}_2 \) are disjoint, so that Proposition 1 yields that \(\{ \bigoplus_{k \in \bar{R}_1} A_k, \bigoplus_{k \in \bar{R}_2} A_k \} \) is a \(K \)-pair. Now from Theorem 3 we obtain

\[
\varphi(R_1) \wedge \varphi(R_2) = d_e \left(\left(U \oplus \bigoplus_{k \in R_1 \cap R_2} A_k \right) \left(U \oplus \bigoplus_{k \in R_1 \cap R_2} A_k \right) \right) = d_e \left(U \oplus \bigoplus_{k \in \bar{R}_1} A_k \right).
\]

It remains to prove that \(\varphi(R) \) is quasi-minimal and low over \(d_e(U) \) whenever \(R \) is nontrivial. Fix a nontrivial computable \(R \) and consider \(\bar{R} \). We have that \(R \) and \(\bar{R} \) are disjoint computable sets, and hence by Proposition 1 \(\{ \bigoplus_{k \in R} A_k, \bigoplus_{k \in \bar{R}} A_k \} \) is a nontrivial \(K \)-pair. But \(\bigoplus_{k \in R} A_k, \bigoplus_{k \in \bar{R}} A_k \not\leq_c U \) and hence \(\{ \bigoplus_{k \in R} A_k, \bigoplus_{k \in \bar{R}} A_k \} \) is a nontrivial \(K \)-pair over \(U \). Applying Lemma 1 we obtain that both \(\varphi(\bar{R}) \) and \(\varphi(\bar{R}) \) are quasiminimal and low over \(d_e(U) \).

\[\square \]
4. Existence of uniform K-systems

In this section we prove the two main theorems announced in the introduction. By Lemma 3 both proofs will follow from the existence of certain uniform K-systems. We start by proving that there is a uniform K-system, whose uniform join is equivalent to \emptyset', and thus concluding the proof of Theorem 1.

Theorem 4. There is a uniform K-system $\{A_i\}_{i<\omega}$, such that $\bigoplus_{i<\omega} A_i \equiv_e \emptyset'$.

Proof. We assume that an effective coding of all finite strings of 0 and 1 is fixed. As usual we shall identify a string with its code. We denote by T_{σ} the initial segment of K_{σ}. As usual we shall identify a string with its code. We denote by T_{σ} the initial segment of K_{σ}. Furthermore we denote by δ_x the collection of all finite binary strings which are strictly to the right of the path $\{0\}$. We assume that an effective coding of all finite strings of 0 and 1 is fixed. Proof.

In this section we prove the two main theorems announced in the introduction.

Consider the following sets
\[
R = \{ \sigma \in T \mid \exists n [\delta(n) \prec L \sigma] \},
\]
\[
S = \{ \sigma \in T \mid \exists n [\delta(n) \prec L \sigma \lor \delta(n) = \sigma] \},
\]
\[
A = \{ \delta(n) \mid \delta(n) \in \{0, 1\} \} \cup \{0\},
\]
\[
W = \{ (\sigma_0, \sigma_1) \mid \sigma_0, \sigma_1 \in 0 \lor \sigma_1 \in 0 \lor (\sigma_1 \in S \lor \sigma_1 \in \{0, 1\} \}.
\]

To provide some visual intuition about the above defined sets we observe the following. The sequence $\{\delta(n)\}_{n<\omega}$ defines an infinite path δ in the tree T. The set R is the collection of all finite binary strings which are strictly to the right of the path δ. The set S is the set of strings to the right of or on the path δ. The set A is specially chosen representative of $0_e'$.

We prove that $R \subseteq_e 0, S \subseteq_e 0, \text{Graph}(\delta) \subseteq_e A, W \subseteq_e 0$ and $A \equiv_e \emptyset'$.

- $R \subseteq_e 0$ follows from
 \[
 \sigma \in R \iff \exists \tau \subseteq \sigma[\tau \prec 1 \subseteq \sigma \lor \tau \in W_{(\tau \cup \sigma)}(0)] \lor \forall \rho \subseteq \tau[\rho \prec 0 \subseteq \tau \Rightarrow \rho \in W_{(\rho \cup \sigma)}(0)].
 \]
- $S \subseteq_e 0$ follows from
 \[
 \sigma \in S \iff \sigma \in R \lor \forall \rho \subseteq \sigma[\rho \prec 0 \subseteq \sigma \Rightarrow \rho \in W_{(\rho \cup \sigma)}(0)].
 \]
- $\text{Graph}(\delta) \subseteq_e A$ follows from
 \[
 \delta(n) \in A \Rightarrow \delta(n + 1) = \delta(n) * 1,
 \]
 \[
 \delta(n) \in W_{(n \cup 0)}(0) \Rightarrow \delta(n + 1) = \delta(n) * 0.
 \]
- $W \subseteq_e 0$ follows directly from $R, S \subseteq_e 0$.
- Finally, to see that $A \equiv_e \emptyset'$ we need only to prove that $\emptyset' \subseteq_e A$ (the converse is obvious). For, fix a computable function g, such that $x \in L_0 \Rightarrow W_{g(x)}(0) = \omega$ and $x \notin L_0 \Rightarrow W_{g(x)}(0) = 0$. Then
 \[
 x \notin L_0 \iff \delta((g(x), 0)) \notin W_{g(x)}(0) \iff \delta((g(x), 0)) \in A.
 \]
 From here $\bar{L}_0 \subseteq_e \text{Graph}(\delta) \oplus A \subseteq_e A$ and so $\emptyset' \equiv_e A$.

Next we shall see that
\begin{equation}
(A \times A) \setminus \{(\sigma, \sigma) \mid \sigma \in A\} \subseteq W \text{ and } \overline{A} \times \overline{A} \subseteq W.
\end{equation}

First let \(\sigma_0, \sigma_1 \in A\) and \(\sigma_0 \neq \sigma_1\). If either \(\sigma_0 \in R\) or \(\sigma_1 \in R\), then \(\langle \sigma_0, \sigma_1 \rangle \in W\). Now suppose that \(\sigma_0, \sigma_1 \notin R\). Then \(\sigma_0 = \delta(n)\) and \(\sigma_1 = \delta(m)\) for some \(n\) and \(m\), such that \(\delta(n + 1) = \delta(n) \cdot 1 + 1\) and \(\delta(m + 1) = \delta(m) \cdot 1\). Without loss of generality let \(n < m\). Then \(\sigma_0 \cdot 1 = \delta(n + 1) \subseteq \delta(m) = \sigma_1\). But \(\sigma_0 = \delta(n)\) implies \(\sigma_0 \in S\), so that \(\langle \sigma_0, \sigma_1 \rangle \in W\).

Now let \(\sigma_0, \sigma_1 \notin A\). Then \(\sigma_0, \sigma_1 \notin R\). Towards a contradiction assume that \(\langle \sigma_0, \sigma_1 \rangle \in W\). Without loss of generality we may assume \(\sigma_0 \in S\) and \(\sigma_0 \cdot 1 \subseteq \sigma_1\). Since \(\sigma_0 \notin R\), \(\sigma_0 = \delta(n)\) for some \(n\). But \(\sigma_0 \notin A\) and therefore \(\delta(n + 1) = \sigma_0 \cdot 0 <_L \sigma_0 \cdot 1 \subseteq \sigma_1\). Thus \(\sigma_1 \in R\). A contradiction.

We are ready to define the uniform \(\mathcal{K}\)-system. For arbitrary \(i\) and \(j\) set \(A_i = \{\sigma \in A \mid \langle |\sigma|_1 \rangle = i\} \text{ and } W_{ij} = \{\langle \sigma_0, \sigma_1 \rangle \in W \mid \langle |\sigma_0|_1 \rangle = i \text{ and } \langle |\sigma_1|_1 \rangle = j\}\). It is clear that there is a computable function \(r\), such that \(W_{ij} = W_{r(i,j)}\). Furthermore \(A_i \leq_e A\) uniformly in \(i\) and \(\bigcup_{i < \omega} A_i = A\), so that \(\bigoplus_{i < \omega} A_i \equiv_e A\). Note that
\[\delta(e(i), i) \in A_i \iff \delta(e(i), i) \in A \iff \delta((e, i)) \notin W_e(0),\]
and hence \(A_i \neq W_e(0)\) for arbitrary \(i\) and \(e\).

Thus it remains to prove that \(A_i \times A_j \subseteq W_{ij}\) and \(\overline{A_i} \times \overline{A_j} \subseteq W_{ij}\) for \(i \neq j\). Let \(\sigma_0 \in A_i\) and \(\sigma_1 \in A_j\). From the definition of \(A_i\), \(A_j\) and from \(i \neq j\) we obtain \(\sigma_0, \sigma_1 \in A_i\). \(\langle |\sigma_0|_1 \rangle = i\) and \(\langle |\sigma_1|_1 \rangle = j\) and \(\sigma_0 \neq \sigma_1\). Therefore from (4.1) we obtain \(\langle \sigma_0, \sigma_1 \rangle \in W_{ij}\).

Now let \(\sigma_0 \notin A_i\) and \(\sigma_1 \notin A_j\). If either \(\langle |\sigma_0|_1 \rangle \neq i\) or \(\langle |\sigma_1|_1 \rangle \neq j\), then \(\langle \sigma_0, \sigma_1 \rangle \notin W_{ij}\). On the other hand if \(\langle |\sigma_0|_1 \rangle = i\) and \(\langle |\sigma_1|_1 \rangle = j\), then \(\sigma_0, \sigma_1 \notin A\) and hence using (4.1) we obtain \(\langle \sigma_0, \sigma_1 \rangle \notin W_{ij}\).

The uniform \(\mathcal{K}\)-system \(\{A_i\}_{i < \omega}\) constructed in Theorem 4 consists of low \(\Sigma^0_2\), hence \(\Delta^0_2\), and non c.e. sets. Thus if \(U\) is a downwards properly \(\Sigma^0_2\) set, i.e. for every \(X \leq_e U\), \(X\) is either c.e. or is not \(\Delta^0_2\), then \(A_i \not\leq_e U\) for all \(i\). Therefore Lemma 3 and Theorem 4 imply the following theorem, of which Theorem 1 is a particular case.

Theorem 5. Let \(U\) be downwards properly \(\Sigma^0_2\). Then every countable distributive lattice is embeddable in the interval \([d_e(U), 0^*_e]\), preserving least and greatest element. Moreover the range of the embedding contains only degrees quasi-minimal and low over \(d_e(U)\), except for the images of the least and greatest elements.

Lemma 3 and Theorem 4 can be relativized over arbitrary set \(V\). We need first to relativize the notion of uniform \(\mathcal{K}\)-system.

Definition 3. We say that the system of sets \(\{A_i\}_{i < \omega}\) is a uniform \(\mathcal{K}\)-system over \(V\), if and only if for every natural number \(i\), \(A_i \not\leq_e V\) and there is a function \(r\), such that \(\text{Graph}(r) \leq_e V\) and whenever \(i \neq j\)
\[A_i \times A_j \subseteq W_{r(i,j)}(V) \text{ and } \overline{A_i} \times \overline{A_j} \subseteq W_{r(i,j)}(V).
\]

Now using the same reasoning as in the proofs of Theorem 4 and Lemma 3 we can prove, that for every set \(V\), there is a uniform \(\mathcal{K}\)-system \(\{A_i\}_{i < \omega}\) over \(V\), such that \(\bigoplus_{i < \omega} A_i \equiv_e V'\). From here we obtain the embeddability of every countable distributive lattice in \([d_e(V), d_e(V')]\). Furthermore, using again the properties of \(\mathcal{K}\)-pairs, we obtain that the range of all elements, except for 0 and 1, consists of
low and quasi-minimal over $d_e(V)$ degrees. In other words we have the following theorem.

Theorem 6. Every countable distributive lattice is embeddable preserving least and greatest elements in arbitrary interval $[v, v']$.

The rest of this article is devoted to the proof of Theorem 2. Our goal is to show that every nontrivial $Δ^0_2$ set bounds a uniform K-system. Before we can do this, we shall need to introduce some more notation.

We will be working with $Δ^0_2$ approximations to sets. Recall that a $Δ^0_2$ approximation to a set A is a uniform sequence of finite sets $\{A^{(s)}\}_{s<ω}$ such that for every n we have that $\lim_n A^{(s)}(n)$ exists and is equal to $A(n)$. We shall use and respect the convention that for every s, $A^{(s)} \subseteq N \vdash s$. Furthermore we shall say that a $Δ^0_2$ approximation has index e if e is an index of the computable function $ρ : N \rightarrow N$ defined by $ρ(s) = u_s$, where u_s is the canonical index of the finite set $A^{(s)}$.

Definition 4. Let A be a set of natural numbers and i be a natural number:

1. $A[i] = \{(i, x) \mid ⟨i, x⟩ ∈ A\}$;
2. For $R ∈ \{≤, <, ≥, >\}$ we set $A[Ri] = \{(j, x) \mid ⟨j, x⟩ ∈ A \land (jRi)\}$;
3. $A[i] = \{x \mid ⟨i, x⟩ ∈ A\}$.

We start with a dynamic property of set A and B, a property of the approximations to sets A and B, which ensures that the enumeration degrees of A and B form a K-pairs. This property originates from Kalimullin [5].

Lemma 4. Let A_0 and A_1 be $Δ^0_2$ sets with respective $Δ^0_2$ approximations $\{A_0^{(s)}\}_{s<ω}$ and $\{A_1^{(s)}\}_{s<ω}$ such that for every $i ∈ \{0, 1\}$, every s and every x:

$$x ∈ (A_1^{(s)} \setminus A_1^{(s+1)}) \cap ω^{[k]} \Rightarrow ω^{[k]} \upharpoonright s ⊆ A_{1−i}.$$

Then $d_e(A_0)$ and $d_e(A_1)$ form a K-pair. An index of a c.e. set W such that $A_0 × A_1 ⊆ W$ and $\overline{A_0} × \overline{A_1} ⊆ \overline{W}$ is uniformly computable from the indices of the approximations to A_0 and A_1.

Proof. Let $W = \bigcup_{s<ω} A_0^{(s)} × A_1^{(s)}$. The set W is c.e. and its index is obviously computable from the indices of the approximations to A_0 and A_1.

It follows from the properties of a $Δ^0_2$ approximation that $A_0 × A_1 ⊆ W$. Fix $(a_0, a_1) ∈ \overline{A_0} × \overline{A_1}$. We will prove that for all stages s we have $(a_0, a_1) /∈ A_0^{(s)} × A_1^{(s)}$ and hence $\overline{A_0} × \overline{A_1} ⊆ \overline{W}$. Assume towards a contradiction that there is a stage s such that $(a_0, a_1) ∈ A_0^{(s)} × A_1^{(s)}$. Then $a_0 < s$ and can be represented as $a_0 = ⟨k_0, y_0⟩$ for some natural numbers k_0, y_0. Similarly $a_1 < s$ and can be represented as $a_1 = ⟨k_1, y_1⟩$ for some natural numbers k_1, y_1. Let $i ∈ \{0, 1\}$ be such that $k_i = \min\{k_0, k_1\}$. As $a_i /∈ A_i$, there will be a least stage $s' > s$ such that $a_i ∈ A_i^{(s'−1)} \setminus A_i^{(s')}$. By the property of the approximations $ω^{[k_i]} \upharpoonright s ⊆ A_{1−i}$. By our choice of i it follows that $a_{1−i} ∈ A_{1−i}$, contradicting the assumption that $⟨a_0, a_1⟩ ∈ \overline{A_0} × \overline{A_1}$.

Theorem 7. Let A be a $Δ^0_2$ set and let B be a low $Δ^0_2$ set such that $A ⊈ e B$. There is a uniform K-system $\{A_i\}_{i<ω}$ which is uniformly enumeration reducible to A and for every i, $A_i ⊈ e B$.
Proof. Fix a Δ^0_2 set A and a low Δ^0_2 set B such that $A \not\leq_T B$. Let $\{A_i^{(s)}\}_{s<\omega}$ be a Δ^0_2 approximation to A and let $\{B^{(s)}\}_{s<\omega}$ be a low Δ^0_2 approximation to B. Recall that a low Δ^0_2 approximation has the additional property that for every enumeration operator W with standard Σ^0_2 approximation $\{W^{(s)}\}_{s<\omega}$, the approximation $\{W^{(s)}(B^{(s)})\}_{s<\omega}$ to the set $W(B)$ is also Δ^0_2.

We shall construct a monotone uniform sequence of computable sets $\{V^{(s)}\}_{s<\omega}$ and let $V = \bigcup_{s<\omega} V^{(s)}$. The constructed set V is c.e. hence an enumeration operator. We set $A_i = V(A)[i]$. This definition automatically ensures that the system $\{A_i | i \in \omega\}$ is uniformly enumeration reducible to A. A Σ^0_2 approximation to the set A_i can be obtained by setting for every stage s, $A_i^{(s)} = V^{(s)}(A^{(s)})$. We will ensure that the following three requirements are satisfied:

- For every natural number i:
 $$D_i : \{A_i^{(s)}\}_{s<\omega} \text{ is a } \Delta^0_2 \text{ approximation.}$$

- For every pair of distinct natural numbers $i \neq j$:
 $$K_{(i,j)} : \forall s, x(x \in (A_i^{(s)} \setminus A_i^{(s+1)}) \cap \omega^{[k]} \Rightarrow \omega^{[k]} \upharpoonright s \subseteq A_j).$$

- For every pair of natural numbers i and e:
 $$N_{(i,e)} : W_e(B) \neq A_i.$$

Where W_e is the e-th enumeration operator in some standard listing of all c.e. set.

The first two groups of requirements ensure that for every $i \neq j$ the pair (A_i, A_j) is a K-pair. This together with Lemma 4 ensures that the system $\{A_i\}_{i<\omega}$ is a uniform K-system. Indeed for every i an index of the approximation $\{A_i^{(s)}\}_{s<\omega}$ is uniformly computable from the index of $\{A^{(s)}\}_{s<\omega}$ and the index which will be produced by the construction of the c.e. set V. From this by Lemma 4 we can obtain uniformly in i and j an index of a c.e. set $W_{i,j}$ such that $A_i \times A_j \subseteq W_{i,j}$ and $\overline{A_i} \times \overline{A_j} \subseteq \overline{W_{i,j}}$. Finally the third group of requirements ensures that for every i, $A_i \not\leq_T B$.

Construction. The construction is in stages. At stage 0 we set $V^{(0)} = \emptyset$. At stage $s > 0$ we construct $V^{(s+1)}$ from its value constructed at the previous stage, by allowing certain requirements to enumerate new axioms in it.

Step 1. Satisfying the K-requirements.

If $V^{(s)}(A^{(s)}) \setminus V^{(s)}(A^{(s+1)}) = \emptyset$ then set $V^{(s+1)} = V^{(s)}$. Otherwise we represent every natural number z as $z = \langle i, (k, y) \rangle$ for some numbers i, k, y. Choose the number z such that $z \in V^{(s)}(A^{(s)}) \setminus V^{(s)}(A^{(s+1)})$ with least k, say $z_0 = \langle i_0, (k_0, y_0) \rangle$. Although we do not know yet what $A^{(s+1)}_{i_0}$ will be, as this depends on what new axioms we will enumerate in $V^{(s+1)}$, it is quite possible that ultimately we will have:

$$\langle k_0, y_0 \rangle \in (A^{(s)}_{i_0} \setminus A^{(s+1)}_{i_0}) \cap \omega^{[k_0]}.$$

To ensure that the requirements $K_{(i_0,j)}$ for every j are satisfied we need to enumerate $\omega^{[k_0]} \upharpoonright s$ in A_j for every $j \neq i$. So we set:

$$V^{(s+1)} = V^{(s)} \cup \{\langle (j, x), \emptyset \rangle | x \in \omega^{[k_0]} \upharpoonright s \& j \neq i_0\}.$$
Note that for every i we are adding finitely many axioms for elements in $\omega[i]$. Hence $V^{(s+1)}$ is a computable set. Furthermore for every i, we have $V^{(s+1)}(A^{(s+1)})[i] \subseteq \omega \upharpoonright s$.

Step 2. Satisfying the \mathcal{N}-requirements.

For every $k = \langle i, e \rangle$ define $l(k, s) = l(A_i^{(s)}, W_e^{(s)}(B^{(s)}))$, the length of agreement between A_i and $W_e(B)$, measured at stage s. Here W_e is approximated by its standard Σ_2^0 approximation. Choose the least $k \leq s$ such that $l(k, s) > \max\{l(k, t) \mid t < s\}$. In other words choose the least $k \leq s$ such that s is an expansionary stage for the requirement \mathcal{N}_e. We will call such stages s, k-expansionary. If there is no such number k, set $V^{(s+1)} = V^{(s+1)}$ and end this stage.

Otherwise for the least k such that s is k-expansionary, say $k = \langle i, e \rangle$, we try to code the set A in the set A_i. We define

$$V^{(s+1)} = V^{(s+1)} \cup \{\langle \langle i, \langle k, y \rangle \rangle, \{y\} \rangle \mid \langle k, y \rangle < s\}.$$

Note that again we are adding finitely many axioms to $V^{(s+1)}$. It follows that $V^{(s+1)}$ is computable and that for every i, $V^{(s+1)}(A_i^{(s+1)})[i] \subseteq \omega \upharpoonright s$.

This completes the construction.

We prove that the constructed set V satisfies all requirements in three steps.

Proposition 2. For all $i \in \omega$ the sequence $\{A_i^{(s)}\}_{s < \omega}$ is a Δ_2^0 approximation.

Proof. Fix i and a natural number x. We will prove that all axioms enumerated in V for $\langle i, x \rangle$ are enumerated at stages $s > x$ and are either valid at all but finitely many stages or invalid at all but finitely many stages. Fix an axiom $\langle \langle i, x \rangle, D \rangle$, enumerated in $V^{(s+1)}$ at stage s. If this axiom is enumerated under Step 1. of the construction then $x < s$ and $D = \emptyset$. As $V^{(s+1)} \subseteq V^{(t)}$ at all $t \geq s + 1$ it follows that $x \in A_i^{(t)}$ at all $t \geq s + 1$.

If the axiom is enumerated under Step 2. of the construction then $x = \langle k, y \rangle < s$, where k and y are natural numbers, and $D = \{y\}$. As $\{A_i^{(s)}\}_{s < \omega}$ is a Δ_2^0 approximation to A there is a stage s_y such that at all $t \geq s_y$ we have $A_i^{(t)}(y) = A(y)$ and hence if $A(y) = 1$, the axiom is valid at all stages $t \geq s_y$ and if $A(y) = 0$, the axiom is invalid at all stages $t \geq s_y$.

It follows that for all s, $A_i^{(s)}[x] \subseteq \omega \upharpoonright s$ and that for all x, $\lim_s A_i^{(s)}[x]$ exists (by definition it is of course equal to $A_i(x)$).

Proposition 3. For every $i \neq j$ the sets A_i and A_j form a \mathcal{K}-pair.

Proof. Assume towards a contradiction that for some i and j the requirement $\mathcal{K}_{(i,j)}$ is not satisfied, i.e. there is a stage s and numbers x and k such that:

$$x \in (A_i^{(s)} \setminus A_i^{(s+1)}) \cap \omega^{\geq k} \upharpoonright s \nsubseteq A_j.$$

Then $x = \langle k, y \rangle$ for some number y and:

$$\langle i, \langle k, y \rangle \rangle \in V^{(s)}(A_i^{(s)}) \setminus V^{(s+1)}(A_i^{(s+1)}).$$

As $V^{(s)}(A_i^{(s+1)}) \subseteq V^{(s+1)}(A_i^{(s+1)})$, it follows that:

$$\langle i, \langle k, y \rangle \rangle \in V^{(s)}(A_i^{(s)}) \setminus V^{(s)}(A_i^{(s+1)}).$$
At stage s under Step 1. of the construction we select $\langle i_0, \langle k_0, y_0 \rangle \rangle$ as the number with least second coordinate which belongs to the set $V^{(s)}(A^{(s)}) \setminus V^{(s)}(A^{(s+1)})$. Hence $k_0 \leq k$ and:

$$V^{(s+1)} \supseteq \hat{V}^{(s+1)} = V^{(s)} \cup \{ \langle (j, z), \emptyset \rangle \mid z \in \omega^{[\geq k_0]} \mid s & \& j \neq i_0 \}. $$

If $i_0 = i$ then $j \neq i_0$ and an axiom $\langle (j, z), \emptyset \rangle$ is enumerated in $V^{(s+1)}$ for every $z \in \omega^{[\geq k_0]} \mid s$. As $k_0 \leq k$ and hence $\omega^{[\geq k_0]} \mid s \subseteq \omega^{[\geq k]} \mid s$ it follows that $\omega^{[\geq k]} \mid s \subseteq A_j$ contradicting our assumption.

If $i_0 \neq i$ then, as $x \in \omega^{[\geq k_0]}$, the axiom $\langle (i, x), \emptyset \rangle$ is enumerated in $V^{(s+1)}$ and hence $x \in A_i^{(s+1)}$ which contradicts the assumption that $x \in A_i^{(s)} \setminus A_i^{(s+1)}$.

In both cases the assumption that $\mathcal{K}(i,j)$ is not satisfied leads to a contradiction and is therefore wrong. \hfill \square

Proposition 4. For every i, $A_i \nsubseteq B$.

Proof. First we note that by Proposition 2 and our choice of low approximation to B for every $k = \langle i, e \rangle$ we have that $W_e(B) = A_i$ if and only if there are infinitely many k-expansionary stages. Indeed we have Δ^0 approximations to $W_e(B)$ and A_i hence for every n there is a stage s_n such that at all $t > s_n$ we have $A_i^{(t)} \mid n = A_i \mid n$ and $W_e^{(t)}(B^{(t)}) \mid n = W_e(B) \mid n$. If $A_i = W_e(B)$ then for all n, $l(k, s_n) \geq n$, i.e. the length of agreement grows unboundedly with infinitely many expansionary stages. If $A_i \neq W_e(B)$ then there is a number n such that $A_i(n) \neq W_e(B)(n)$ and the length of agreement is bounded by n, $l(k, t) < n$ at all $t \geq s_n+1$.

Assume towards a contradiction that there is an \mathcal{N}-requirement which is not satisfied and let k be the least index such that \mathcal{N}_k is not satisfied.

It follows that for all $m = \langle i_m, e_m \rangle < k$ the requirement \mathcal{N}_m is satisfied and there is a stage s_0 such that all stages $t > s_0$ are not m-expansionary for any $m < k$. Hence during the course of the whole construction each requirement \mathcal{N}_m, where $m < k$, adds only finitely many axioms to V. By Proposition 2 each such axiom is valid or invalid at all but finitely many stages. Let $s_1 \geq s_0$ be a stage such that at all $t > s_1$ each axiom added by a requirement \mathcal{N}_m, where $m < k$, does not change its state (i.e. it is valid at all $t > s_1$ or invalid at all $t > s_1$).

We now turn to Step 1. of the construction. If at stage $t > s_1$ an element z has the property $z \in V^{(t)}(A^{(t)}) \setminus V^{(t)}(A^{(t+1)})$ then $\langle z, \emptyset \rangle \notin V^{(t)}$ and an axiom for z enumerated under Step 2. of the construction is valid at stage t and invalid at stage $t + 1$. By our choice of stage s_1 this axiom is enumerated by \mathcal{N}_l where $l \geq k$. It follows that z can be represented as $z = \langle j_l, (l, y_l) \rangle$, furthermore l can be represented as $l = \langle j_l, e_l \rangle$. Hence if at stage $t > s_1$ the number z with least second coordinate such that $z \in V^{(t)}(A^{(t)}) \setminus V^{(t)}(A^{(t+1)})$ has second coordinate k then it has first coordinate i. Otherwise z has second coordinate strictly larger than k. In both cases no more axioms of the form $\langle (i, (k, y)), \emptyset \rangle$ are enumerated in $V^{(t+1)}$ at stages $t > s_1$.

Let D be the finite set of all y, such that $\langle (i, (k, y)), \emptyset \rangle \in V$. We will prove that for every natural number y we have $y \in A$ if and only if $\langle k, y \rangle \in A_i$ for all $y \notin D$. Hence $A \subseteq_e A_i = W_e(B)$, contradicting the fact that $A \nsubseteq_e B$.

Fix $y \notin D$. The only axiom for $\langle i, (k, y) \rangle$ in V (if any) is $\langle (i, (k, y)), \{y\} \rangle$. Hence if $y \notin A$ then $\langle k, y \rangle \notin A_i$. If $y \in A$ then let $s > s_1$ be a stage such that $y < s$ and s is k-expansionary. The assumption that $A_i = W_e(B)$ yields that there are
infinitely many k-expansionary stages. Step 2 of the construction enumerates the axiom $\langle \langle i, \langle k, y \rangle \rangle, \{y\} \rangle$ in V^{s+1} hence $y \in A_i$.

Theorem 2 is now a direct application of Lemma 3 and Theorem 7.

REFERENCES

SOFIA UNIVERSITY, FACULTY OF MATHEMATICS AND INFORMATICS, 5 JAMES BOURCHIER BLVD.
1164 SOFIA, BULGARIA
E-mail address, H. Ganchev: ganchev@fmi.uni-sofia.bg
E-mail address, M. Soskova: msoskova@fmi.uni-sofia.bg