Local definability of K-pairs in the enumeration degrees

Mariya I. Soskova

Faculty of Mathematics and Informatics
Sofia University

joint work with H. Ganchev

1Research supported by BNSF Grant No. D002-258/18.12.08 and MC-ER Grant 239193 within the 7th European Community Framework Programme.
Preliminaries: The enumeration degrees

Definition

- $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}$.
- $d_e(A) = \{B \mid A \leq_e B \land B \leq_e A\}$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $0_e = d_e(\emptyset) = \{W \mid W \text{ is c.e.}\}$.
- $d_e(A) \lor d_e(B) = d_e(A \oplus B)$.
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.
- $\mathcal{D}_e = \langle D_e, \leq, \lor, \cdot, 0_e \rangle$ is an upper semi-lattice with jump operation and least element.
Preliminaries: The enumeration degrees

Definition

- \(A \leq_e B \) iff there is a c.e. set \(W \), such that
 \[A = W(B) = \{ x \mid \exists u (\langle x, u \rangle \in W \land D_u \subseteq B) \}. \]

- \(d_e(A) = \{ B \mid A \leq_e B \land B \leq_e A \} \)

- \(d_e(A) \leq d_e(B) \) iff \(A \leq_e B \).

- \(0_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e.} \} \).

- \(d_e(A) \lor d_e(B) = d_e(A \oplus B) \).

- \(d_e(A)' = d_e(A') \), where \(A' = L_A \oplus \overline{L_A} \) and \(L_A = \{ x \mid x \in W_x(A) \} \).

- \(D_e = \langle D_e, \leq, \lor', 0_e \rangle \) is an upper semi-lattice with jump operation and least element.
Preliminaries: The enumeration degrees

Definition

- $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}$.
- $d_e(A) = \{B \mid A \leq_e B \land B \leq_e A\}$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $0_e = d_e(\emptyset) = \{W \mid W \text{ is c.e.}\}$.
- $d_e(A) \lor d_e(B) = d_e(A \oplus B)$.
- $d_e(A') = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.
- $\mathcal{D}_e = \langle D_e, \leq, \lor', 0_e \rangle$ is an upper semi-lattice with jump operation and least element.
Preliminaries: The enumeration degrees

Definition

- \(A \leq_e B \) iff there is a c.e. set \(W \), such that \(A = W(B) = \{ x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B) \} \).
- \(d_e(A) = \{ B \mid A \leq_e B \land B \leq_e A \} \)
- \(d_e(A) \leq d_e(B) \) iff \(A \leq_e B \).
- \(0_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e.} \} \).
- \(d_e(A) \lor d_e(B) = d_e(A \oplus B) \).
- \(d_e(A)' = d_e(A') \), where \(A' = L_A \oplus \overline{L_A} \) and \(L_A = \{ x \mid x \in W_x(A) \} \).
- \(D_e = \langle D_e, \leq, \lor, ', 0_e \rangle \) is an upper semi-lattice with jump operation and least element.
Preliminaries: The enumeration degrees

Definition

- $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{ x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B) \}$.
- $d_e(A) = \{ B \mid A \leq_e B \land B \leq_e A \}$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $0_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e.} \}$.
- $d_e(A) \lor d_e(B) = d_e(A \oplus B)$.
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{ x \mid x \in W_x(A) \}$.
- $D_e = \langle D_e, \leq, \lor, ', 0_e \rangle$ is an upper semi-lattice with jump operation and least element.
Preliminaries: The enumeration degrees

Definition

- \(A \leq_e B \) iff there is a c.e. set \(W \), such that \(A = W(B) = \{ x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B) \} \).
- \(d_e(A) = \{ B \mid A \leq_e B \land B \leq_e A \} \)
- \(d_e(A) \leq d_e(B) \) iff \(A \leq_e B \).
- \(0_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e.} \} \)
- \(d_e(A) \lor d_e(B) = d_e(A \oplus B) \).
- \(d_e(A)' = d_e(A') \), where \(A' = L_A \oplus \overline{L_A} \) and \(L_A = \{ x \mid x \in W_x(A) \} \).
- \(D_e = \langle D_e, \leq, \lor, ', 0_e \rangle \) is an upper semi-lattice with jump operation and least element.
Preliminaries: The enumeration degrees

Definition

- $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{ x \mid \exists u (\langle x, u \rangle \in W \land D_u \subseteq B) \}$.
- $d_e(A) = \{ B \mid A \leq_e B \land B \leq_e A \}$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $0_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}$.
- $d_e(A) \lor d_e(B) = d_e(A \oplus B)$.
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{ x \mid x \in W_x(A) \}$.
- $D_e = \langle D_e, \leq, \lor', 0_e \rangle$ is an upper semi-lattice with jump operation and least element.
Preliminaries: The local structure

The jump operation gives rise to the local structure of the enumeration degrees $\mathcal{G}_e = \mathcal{D}_e(\leq 0'_e)$.

Σ^0_2 e-degrees

Δ^0_2 e-degrees

Π^0_1 e-degrees
Preliminaries: The local structure

The local structure \mathcal{G}_e can be partitioned into classes with respect to the jump hierarchy:

Definition

A degree $a \in \mathcal{G}_e$ is low if $a' = 0'_e$.

Or in terms of its relationship to the Turing degrees.

Proposition

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation:

The sub-structure of the total e-degrees is defined as $\mathcal{TOT} = \iota(\mathcal{D}_T)$.

- Every low e-degree is Δ^0_2.
- Every total e-degree in \mathcal{G}_e is Δ^0_2.
- There are properly Σ^0_2 degrees.
Preliminaries: The local structure

The local structure G_e can be partitioned into classes with respect to the jump hierarchy:

Definition

A degree $a \in G_e$ is low if $a' = 0'_e$.

Or in terms of its relation ship to the Turing degrees.

Proposition

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation:

The sub structure of the total e-degrees is defined as $\mathcal{T}OT = \iota(D_T)$.

- Every low e-degree is Δ^0_2.
- Every total e-degree in G_e is Δ^0_2.
- There are properly Σ^0_2 degrees.
Preliminaries: The local structure

The local structure \mathcal{G}_e can be partitioned into classes with respect to the jump hierarchy:

Definition

A degree $a \in \mathcal{G}_e$ is low if $a' = 0'_e$.

Or in terms of its relationship to the Turing degrees.

Proposition

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation:

The substructure of the total e-degrees is defined as $\mathcal{TOT} = \iota(D_T)$.

- Every low e-degree is Δ^0_2.
- Every total e-degree in \mathcal{G}_e is Δ^0_2.
- There are properly Σ^0_2 degrees.

Mariya I. Soskova (Faculty of Mathematics and Informatics Sofia University) joint work with H. Ganchev
Definition

Let A and B be a pair sets of natural numbers. The pair (A, B) is a \mathcal{K}-pair (e-ideal) if there exists a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.
Example

Let V be a c.e set. Then (V, A) is a \mathcal{K}-pair for any set of natural numbers A.

Let $W = V \times \mathbb{N}$. Then $V \times A \subseteq W$ and $\overline{V} \times \overline{A} \subseteq \overline{W}$.

We will only be interested in non-trivial \mathcal{K}-pairs.
\(\kappa \)-pairs: A more interesting example

Definition (Jockusch)

A set of natural numbers \(A \) is semi-recursive if there is a computable function \(s_A \) such that for every pair of natural numbers \((x, y)\):

1. \(s_A(x, y) \in \{x, y\} \).
2. If \(x \in A \) or \(y \in A \) then \(s_A(x, y) \in A \).

Example

Let \(A \) be a semi-recursive set. Then \((A, \overline{A})\) is a \(\kappa \)-pair.

Theorem (Jockusch)

For every noncomputable set \(B \) there is a semi-recursive set \(A \equiv_T B \) such that both \(A \) and \(\overline{A} \) are not c.e.
Definition (Jockusch)

A set of natural numbers A is semi-recursive if there is a computable function s_A such that for every pair of natural numbers (x, y):

1. $s_A(x, y) \in \{x, y\}$.
2. If $x \in A$ or $y \in A$ then $s_A(x, y) \in A$.

Example

Let A be a semi-recursive set. Then (A, \bar{A}) is a \mathcal{K}-pair.

Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set $A \equiv_T B$ such that both A and \bar{A} are not c.e.
Definition (Jockusch)

A set of natural numbers A is semi-recursive if there is a computable function s_{A} such that for every pair of natural numbers (x, y):

1. $s_{A}(x, y) \in \{x, y\}$.
2. If $x \in A$ or $y \in A$ then $s_{A}(x, y) \in A$.

Example

Let A be a semi-recursive set. Then (A, \overline{A}) is a K-pair.

Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.
An order theoretic characterization of \mathcal{K}-pairs

Theorem (Kalimullin)

(A, B) is a \mathcal{K}-pair if and only if the degrees $a = d_e(A)$ and $b = d_e(B)$ have the following property:

$$\mathcal{K}(a, b) \iff (\forall x)((a \lor x) \land (b \lor x) = x)$$

Question

Is the property “a and b form a \mathcal{K}-pair” first order definable in the local structure?
An order theoretic characterization of \mathcal{K}-pairs

Theorem (Kalimullin)

(A, B) is a \mathcal{K}-pair if and only if the degrees $a = d_e(A)$ and $b = d_e(B)$ have the following property:

$$\mathcal{K}(a, b) \iff (\forall x)((a \lor x) \land (b \lor x) = x)$$

Question

Is the property "a and b form a \mathcal{K}-pair" first order definable in the local structure?
The problem

Theorem (Kalimullin)

If \((A, B)\) *is not a \(\mathcal{K}\)-pair then there is a witness* \(C\) *computable from* \(A \oplus B \oplus K\) *such that:*

\[(d_e(A) \lor d_e(C)) \land (d_e(B) \lor d_e(C)) \neq d_e(C)\]

- If \(a\) and \(b\) are \(\Delta_2^0\) then \(C\) is also \(\Delta_2^0\) and \(\mathcal{K}(a, b)\) ensures “\(a\) and \(b\) are a true \(\mathcal{K}\)-pair”.
- Every \(\mathcal{K}\)-pair in \(\mathcal{G}_e\) consists of low (hence \(\Delta_2^0\)) e-degrees.
- If \(a\) and \(b\) are properly \(\Sigma_2^0\) then \(C\) is at best \(\Delta_3^0\). So it is possible that there is a fake \(\mathcal{K}\)-pair \(a\) and \(b\) such that

\[\mathcal{G}_e \models \mathcal{K}(a, b), \text{ but } \mathcal{D}_e \models \neg \mathcal{K}(a, b)\]
The problem

Theorem (Kalimullin)

If \((A, B)\) is not a \(\mathcal{K}\)-pair then there is a witness \(C\) computable from \(A \oplus B \oplus K\) such that:

\[
(d_e(A) \lor d_e(C)) \land (d_e(B) \lor d_e(C)) \neq d_e(C)
\]

- If \(a\) and \(b\) are \(\Delta^0_2\) then \(C\) is also \(\Delta^0_2\) and \(\mathcal{K}(a, b)\) ensures “\(a\) and \(b\) are a true \(\mathcal{K}\)-pair”.
- Every \(\mathcal{K}\)-pair in \(G_e\) consists of low (hence \(\Delta^0_2\)) e-degrees.
- If \(a\) and \(b\) are properly \(\Sigma^0_2\) then \(C\) is at best \(\Delta^0_3\). So it is possible that there is a fake \(\mathcal{K}\)-pair \(a\) and \(b\) such that

\[
G_e \models \mathcal{K}(a, b), \text{ but } D_e \models \neg \mathcal{K}(a, b)
\]
The problem

Theorem (Kalimullin)

If \((A, B)\) is not a \(K\)-pair then there is a witness \(C\) computable from \(A \oplus B \oplus K\) such that:

\[
(d_e(A) \lor d_e(C)) \land (d_e(B) \lor d_e(C)) \neq d_e(C)
\]

- If \(a\) and \(b\) are \(\Delta^0_2\) then \(C\) is also \(\Delta^0_2\) and \(K(a, b)\) ensures “\(a\) and \(b\) are a true \(K\)-pair”.
- Every \(K\)-pair in \(G_e\) consists of low (hence \(\Delta^0_2\)) e-degrees.
- If \(a\) and \(b\) are properly \(\Sigma^0_2\) then \(C\) is at best \(\Delta^0_3\). So it is possible that there is a fake \(K\)-pair \(a\) and \(b\) such that

\[
G_e \models K(a, b), \text{ but } D_e \models \neg K(a, b)
\]
The problem

Theorem (Kalimullin)

If \((A, B) \) is not a \(K \)-pair then there is a witness \(C \) computable from \(A \oplus B \oplus K \) such that:

\[
(d_e(A) \lor d_e(C)) \land (d_e(B) \lor d_e(C)) \neq d_e(C)
\]

- If \(a \) and \(b \) are \(\Delta^0_2 \) then \(C \) is also \(\Delta^0_2 \) and \(K(a, b) \) ensures “\(a \) and \(b \) are a true \(K \)-pair”.
- Every \(K \)-pair in \(G_e \) consists of low (hence \(\Delta^0_2 \)) e-degrees.
- If \(a \) and \(b \) are properly \(\Sigma^0_2 \) then \(C \) is at best \(\Delta^0_3 \). So it is possible that there is a fake \(K \)-pair \(a \) and \(b \) such that

\[
G_e \models K(a, b), \text{ but } D_e \models \neg K(a, b)
\]
Cupping properties

Definition

A Σ^0_2 enumeration degree a is called cuppable if there is an incomplete Σ^0_2 e-degree b, such that $a \lor b = 0_e'$. If furthermore b is low, then a will be called low-cuppable.

Proposition (The \mathcal{K}-cupping property)

Let a and b are Σ^0_2 degrees such that $G_e \models \mathcal{K}(a, b)$. If c is a Σ^0_2 degree, such that $c \lor b = 0_e'$ then $a \leq c$.

Proof:

$$c = (a \lor c) \land (b \lor c) = (a \lor c) \land 0_e' = a \lor c$$

$$a \leq c.$$

Note! If c is low then $a \leq c$ is low.
Cupping properties

Definition

A Σ^0_2 enumeration degree \mathbf{a} is called cuppable if there is an incomplete Σ^0_2 e-degree \mathbf{b}, such that $\mathbf{a} \lor \mathbf{b} = 0'_e$.
If furthermore \mathbf{b} is low, then \mathbf{a} will be called low-cuppable.

Proposition (The κ-cupping property)

Let \mathbf{a} and \mathbf{b} are Σ^0_2 degrees such that $G_e \models \kappa(\mathbf{a}, \mathbf{b})$.
If \mathbf{c} is a Σ^0_2 degree, such that $\mathbf{c} \lor \mathbf{b} = 0'_e$ then $\mathbf{a} \leq \mathbf{c}$.

Proof:

$$\mathbf{c} = (\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = (\mathbf{a} \lor \mathbf{c}) \land 0'_e = \mathbf{a} \lor \mathbf{c}$$

$$\mathbf{a} \leq \mathbf{c}.$$

Note! If \mathbf{c} is low then $\mathbf{a} \leq \mathbf{c}$ is low.
Cupping properties

Definition

A Σ^0_2 enumeration degree a is called *cuppable* if there is an incomplete Σ^0_2 e-degree b, such that $a \lor b = 0'_e$.

If furthermore b is low, then a will be called *low-cuppable*.

Proposition (The \mathcal{K}-cupping property)

Let a and b are Σ^0_2 degrees such that $G_e \models \mathcal{K}(a, b)$.

If c is a Σ^0_2 degree, such that $c \lor b = 0'_e$ then $a \leq c$.

Proof:

\[
 c = (a \lor c) \land (b \lor c) = (a \lor c) \land 0'_e = a \lor c
\]

$a \leq c$.

Note! If c is low then $a \leq c$ is low.

Mariya I. Soskova (Faculty of Mathematics and Informatics Sofia University)
Local definability of \mathcal{K}-pairs joint work with H. Ganchev
Cupping properties

Definition

A Σ^0_2 enumeration degree a is called *cuppable* if there is an incomplete Σ^0_2 e-degree b, such that $a \lor b = 0'_e$.
If furthermore b is low, then a will be called *low-cuppable*.

Proposition (The \mathcal{K}-cupping property)

Let a and b are Σ^0_2 degrees such that $G_e \models \mathcal{K}(a, b)$.
If c is a Σ^0_2 degree, such that $c \lor b = 0'_e$ then $a \leq c$.

Proof:

$$c = (a \lor c) \land (b \lor c) = (a \lor c) \land 0'_e = a \lor c$$

$a \leq c$.

Note! If c is low then $a \leq c$ is low.
Cupping properties

Definition

A Σ^0_2 enumeration degree a is called cuppable if there is an incomplete Σ^0_2 e-degree b, such that $a \lor b = 0'_e$.
If furthermore b is low, then a will be called low-cuppable.

Proposition (The \mathcal{K}-cupping property)

Let a and b are Σ^0_2 degrees such that $G_e \models \mathcal{K}(a, b)$.
If c is a Σ^0_2 degree, such that $c \lor b = 0'_e$ then $a \leq c$.

Proof:

$c = (a \lor c) \land (b \lor c) = (a \lor c) \land 0'_e = a \lor c$

$a \leq c$.

Note! If c is low then $a \leq c$ is low.
Cupping properties

Definition

A Σ^0_2 enumeration degree a is called \textit{cuppable} if there is an incomplete Σ^0_2 e-degree b, such that $a \lor b = 0'_e$.

If furthermore b is low, then a will be called \textit{low-cuppable}.

Proposition (The \mathcal{K}-cupping property)

\textit{Let a and b are Σ^0_2 degrees such that $\mathcal{G}_e \models \mathcal{K}(a, b)$.

If c is a Σ^0_2 degree, such that $c \lor b = 0'_e$ then $a \leq c$.}

Proof:

\[
c = (a \lor c) \land (b \lor c) = (a \lor c) \land 0'_e = a \lor c
\]

\[a \leq c.
\]

Note! If c is low then $a \leq c$ is low.
Cupping properties

Definition

A Σ_2^0 enumeration degree a is called *cuppable* if there is an incomplete Σ_2^0 e-degree b, such that $a \lor b = 0'_e$.
If furthermore b is low, then a will be called *low-cuppable*.

Proposition (The \mathcal{K}-cupping property)

Let a and b are Σ_2^0 degrees such that $G_e \models \mathcal{K}(a, b)$.
If c is a Σ_2^0 degree, such that $c \lor b = 0'_e$ then $a \leq c$.

Proof:

$$c = (a \lor c) \land (b \lor c) = (a \lor c) \land 0'_e = a \lor c$$

$$a \leq c.$$

Note! If c is low then $a \leq c$ is low.
Cupping properties

Theorem (S, Wu)

Every nonzero Δ^0_2 enumeration degree a is low-cuppable, i.e. there is a low b such that $a \lor b = 0'_e$.

Theorem (Cooper, Sorbi, Yi)

There are non-cuppable nonzero Σ^0_2 enumeration degrees.

Question

Are all cuppable degrees also low-cuppable?
Cupping $0_e'$-splittings

Theorem

If u and v are Σ_2^0 enumeration degrees such that $u \lor v = 0_e'$ then u is low-cuppable or v is low-cuppable.

Proof:
Uses a construction very similar to the construction of a non-splitting enumeration degree.
A non-splitting theorem

Theorem (S)

There is a degree \(a < 0'_e \) such that no pair of incomplete \(\Sigma_2^0 \) degrees \(u \) and \(v \) above \(a \) splits \(0'_e \).

We build a \(\Sigma_2^0 \) set \(A \) and an auxiliary \(\Pi_1^0 \) set \(E \) so that:

\[
\mathcal{N}_\Phi : \Phi(A) \neq E
\]

\[
\mathcal{P}_\Theta, u, v : \Theta(U \oplus V) = E \Rightarrow \exists \Gamma, \land(\Gamma(U \oplus A) = \overline{K} \lor \land(V \oplus A) = \overline{K})
\]

Corollary

There exists an incomplete \(\Sigma_2^0 \) e-degree \(a \), such that for every pair of \(\Sigma_2^0 \) enumeration degrees \(u \) and \(v \) with \(u \lor v = 0'_e \) either \(u \lor a = 0'_e \) or \(v \lor a = 0'_e \).
A non-splitting theorem

Theorem (S)

There is a degree $a < 0'_e$ such that no pair of incomplete Σ_2 degrees u and v above a splits $0'_e$.

We build a Σ_2^0 set A and an auxiliary Π_1^0 set E so that:

$\mathcal{N}_\Phi : \Phi(A) \neq E$

$\mathcal{P}_{\Theta, u, v} : \Theta(U \oplus V) = E \Rightarrow \exists \Gamma, \Lambda(\Gamma(U \oplus A) = K \lor \Lambda(V \oplus A) = K)$

Corollary

There exists an incomplete Σ_2^0 e-degree a, such that for every pair of Σ_2^0 enumeration degrees u and v with $u \lor v = 0'_e$ either $u \lor a = 0'_e$ or $v \lor a = 0'_e$.
Cupping $0'_e$-splittings

Theorem

If u and v are Σ^0_2 enumeration degrees such that $u \lor v = 0'_e$ then u is low-cuppable or v is low-cuppable.

Proof:

Fix U, V such that $U \oplus V \equiv_e \overline{K}$.

We construct an auxiliary Π^0_1 set E and find an e-operator Θ such that $\Theta(U \oplus V) = E$.

First we try to construct a 1-generic Δ^0_2 set A such that $A \oplus U \equiv_e \overline{K}$.

If this plan fails we have acquired sufficient information to construct a 1-generic Δ^0_2 set B such that $B \oplus V \equiv_e \overline{K}$.
Cupping $0'_e$-splittings

Theorem

If u and v are Σ^0_2 enumeration degrees such that $u \lor v = 0'_e$ then u is low-cuppable or v is low-cuppable.

Proof:

Fix U, V such that $U \oplus V \equiv_e K$. We construct an auxiliary Π^0_1 set E and find an e-operator Θ such that $\Theta(U \oplus V) = E$.

First we try to construct a 1-generic Δ^0_2 set A such that $A \oplus U \equiv_e \overline{K}$. If this plan fails we have acquired sufficient information to construct a 1-generic Δ^0_2 set B such that $B \oplus V \equiv_e \overline{K}$.
Cupping $0'_{e}$-splittings

Theorem

If u and v are Σ^0_2 enumeration degrees such that $u \lor v = 0'_{e}$ then u is low-cuppable or v is low-cuppable.

Proof:

Fix U, V such that $U \oplus V \equiv_e \overline{K}$.

We construct an auxiliary Π^0_1 set E and find an e-operator Θ such that $\Theta(U \oplus V) = E$.

First we try to construct a 1-generic Δ^0_2 set A such that $A \oplus U \equiv_e \overline{K}$.

If this plan fails we have acquired sufficient information to construct a 1-generic Δ^0_2 set B such that $B \oplus V \equiv_e \overline{K}$.
Theorem

If \(u \) and \(v \) are \(\Sigma^0_2 \) enumeration degrees such that \(u \lor v = 0'_e \) then \(u \) is low-cuppable or \(v \) is low-cuppable.

Proof:
Fix \(U, V \) such that \(U \oplus V \equiv_e \overline{K} \).

We construct an auxiliary \(\Pi^0_1 \) set \(E \) and find an e-operator \(\Theta \) such that \(\Theta(U \oplus V) = E \).

First we try to construct a 1-generic \(\Delta^0_2 \) set \(A \) such that \(A \oplus U \equiv_e \overline{K} \).

If this plan fails we have acquired sufficient information to construct a 1-generic \(\Delta^0_2 \) set \(B \) such that \(B \oplus V \equiv_e \overline{K} \).
Corollary

If \(a, b \) are nonzero \(\Sigma_2^0 \) degrees such that \(G_e \models \kappa(a, b) \) and \(a \lor b = 0'_e \) then \((a, b)\) is a true \(\kappa \)-pair.

Proof:
By the previous theorem \(a \) is low-cuppable or \(b \) is low-cuppable.

\[b \text{ is low-cuppable } \Rightarrow a \text{ is low } \Rightarrow a \text{ is } \Delta^0_2 \Rightarrow \]
\[a \text{ is low cuppable } \Rightarrow b \text{ is low } \Rightarrow b \text{ is } \Delta^0_2 \Rightarrow b \text{ is low cuppable.} \]

In either case both \(a \) and \(b \) are \(\Delta^0_2 \) and hence \(\kappa(a, b) \) ensures that they form a true \(\kappa \)-pair.
Defining true κ-pairs: Step 1

Corollary

If a, b are nonzero Σ^0_2 degrees such that $G_e \models \kappa(a, b)$ and $a \lor b = 0'^e$ then (a, b) is a true κ-pair.

Proof:

By the previous theorem a is low-cuppable or b is low-cuppable.

If b is low-cuppable

$\Rightarrow \ a$ is low $\Rightarrow \ a$ is Δ^0_2 \Rightarrow

a is low cuppable $\Rightarrow \ b$ is low $\Rightarrow \ b$ is Δ^0_2 $\Rightarrow \ b$ is low cuppable.

In either case both a and b are Δ^0_2 and hence $\kappa(a, b)$ ensures that they form a true κ-pair.
Defining true κ-pairs: Step 1

Corollary

If a, b are nonzero Σ^0_2 degrees such that $G_e \models \kappa(a, b)$ and $a \lor b = 0'_e$ then (a, b) is a true κ-pair.

Proof:

By the previous theorem a is low-cuppable or b is low-cuppable.

b is low-cuppable \Rightarrow a is low \Rightarrow a is Δ^0_2 \Rightarrow

a is low cuppable \Rightarrow b is low \Rightarrow b is Δ^0_2 \Rightarrow b is low cuppable.

In either case both a and b are Δ^0_2 and hence $\kappa(a, b)$ ensures that they form a true κ-pair.
Defining true \(K \)-pairs: Step 1

Corollary

If \(a, b \) are nonzero \(\Sigma^0_2 \) degrees such that \(G_e \models K(a, b) \) and \(a \lor b = 0'_e \) then \((a, b) \) is a true \(K \)-pair.

Proof:

By the previous theorem \(a \) is low-cuppable or \(b \) is low-cuppable.

*\(b \) is low-cuppable \(\Rightarrow a \) is low \(\Rightarrow a \) is \(\Delta^0_2 \) \(\Rightarrow \)

\(a \) is low cuppable \(\Rightarrow b \) is low \(\Rightarrow b \) is \(\Delta^0_2 \) \(\Rightarrow b \) is low cuppable.

In either case both \(a \) and \(b \) are \(\Delta^0_2 \) and hence \(K(a, b) \) ensures that they form a true \(K \)-pair.
Corollary

If \(a, b \) are nonzero \(\Sigma^0_2 \) degrees such that \(G_e \models \mathcal{K}(a, b) \) and \(a \lor b = 0'_e \) then \((a, b)\) is a true \(\mathcal{K} \)-pair.

Proof:

By the previous theorem \(a \) is low-cuppable or \(b \) is low-cuppable.

- \(b \) is low-cuppable \(\Rightarrow \) \(a \) is low \(\Rightarrow \) \(a \) is \(\Delta^0_2 \) \(\Rightarrow \)
- \(a \) is low cuppable \(\Rightarrow \) \(b \) is low \(\Rightarrow \) \(b \) is \(\Delta^0_2 \) \(\Rightarrow \) \(b \) is low cuppable.

In either case both \(a \) and \(b \) are \(\Delta^0_2 \) and hence \(\mathcal{K}(a, b) \) ensures that they form a true \(\mathcal{K} \)-pair.
Corollary

If \(a, b \) are nonzero \(\Sigma^0_2 \) degrees such that \(\mathcal{G}_e \models \mathcal{K}(a, b) \) and \(a \lor b = 0' \), then \((a, b) \) is a true \(\mathcal{K} \)-pair.

Proof:

By the previous theorem \(a \) is low-cuppable or \(b \) is low-cuppable.

\(b \) is low-cuppable \(\Rightarrow \) \(a \) is low \(\Rightarrow \) \(a \) is \(\Delta^0_2 \) \(\Rightarrow \)
\(a \) is low cuppable \(\Rightarrow \) \(b \) is low \(\Rightarrow \) \(b \) is \(\Delta^0_2 \) \(\Rightarrow \) \(b \) is low cuppable.

In either case both \(a \) and \(b \) are \(\Delta^0_2 \) and hence \(\mathcal{K}(a, b) \) ensures that they form a true \(\mathcal{K} \)-pair.
Defining true \mathcal{K}-pairs: Step 1

Corollary

If a, b are nonzero Σ_2^0 degrees such that $G_e \models \mathcal{K}(a, b)$ and $a \lor b = 0_e'$ then (a, b) is a true \mathcal{K}-pair.

Proof:

By the previous theorem a is low-cuppable or b is low-cuppable.

- If b is low-cuppable $\implies a$ is low $\implies a$ is Δ_2^0 $\implies a$ is low cuppable.
- If a is low cuppable $\implies b$ is low $\implies b$ is Δ_2^0 $\implies b$ is low cuppable.

In either case both a and b are Δ_2^0 and hence $\mathcal{K}(a, b)$ ensures that they form a true \mathcal{K}-pair.
There is a true nontrivial \mathcal{K}-pair (a, b), such that $a \lor b = 0'_e$, so:

Theorem

The formula

$$\mathcal{L}(a) \iff a > 0_e \land (\exists b > 0_e)(\mathcal{K}(a, b) \land (a \lor b = 0'_e))$$

defines in \mathcal{G}_e a nonempty set of true halves of nontrivial \mathcal{K}-pairs.
Defining true \mathcal{K}-pairs: Step 1

There is a true nontrivial \mathcal{K}-pair (a, b), such that $a \lor b = 0'_e$, so:

Theorem

The formula

$$\mathcal{L}(a) \iff a > 0_e \land (\exists b > 0_e)(\mathcal{K}(a, b) \land (a \lor b = 0'_e))$$

defines in \mathcal{G}_e a nonempty set of true halves of nontrivial \mathcal{K}-pairs.
Defining true \mathcal{K}-pairs: Step 2

Denote by \mathcal{L} the definable set of all degrees a, such that

$$G_e \models \mathcal{L}(a).$$

Definition

x is downwards properly Σ^0_2 every $y \in (0_e, x]$ is properly Σ^0_2.

Example

If x is not low cuppable then it is downwards properly Σ^0_2.

If (a, b) is a fake \mathcal{K}-pair then i.e.:

$$G_e \models \mathcal{K}(a, b), \text{ but } D_e \models \neg \mathcal{K}(a, b)$$

then a and b are non-low cuppable, hence downwards properly Σ^0_2, hence incomparable with every member of \mathcal{L}.
Defining true \mathcal{K}-pairs: Step 2
Denote by \mathcal{L} the definable set of all degrees a, such that

$$\mathcal{G}_e \models \mathcal{L}(a).$$

Definition

x is downwards properly Σ^0_2 every $y \in (0_e, x]$ is properly Σ^0_2.

Example

If x is not low cuppable then it is downwards properly Σ^0_2.

If (a, b) is a fake \mathcal{K}-pair then i.e.:

$$\mathcal{G}_e \models \mathcal{K}(a, b), \text{ but } \mathcal{D}_e \models \neg \mathcal{K}(a, b)$$

then a and b are non-low cuppable, hence downwards properly Σ^0_2, hence incomparable with every member of \mathcal{L}.
Defining true \mathcal{K}-pairs: Step 2

Denote by \mathcal{L} the definable set of all degrees a, such that

$$G_e \models \mathcal{L}(a).$$

Definition

x is downwards properly Σ^0_2 every $y \in (0_e, x]$ is properly Σ^0_2.

Example

If x is not low cuppable then it is downwards properly Σ^0_2.

If (a, b) is a fake \mathcal{K}-pair then i.e.:

$$G_e \models \mathcal{K}(a, b), \text{ but } D_e \models \neg \mathcal{K}(a, b)$$

then a and b are non-low cuppable, hence downwards properly Σ^0_2, hence incomparable with every member of \mathcal{L}.
Defining true \mathcal{K}-pairs: Step 2

Denote by \mathcal{L} the definable set of all degrees a, such that

$$G_e \models \mathcal{L}(a).$$

Definition

x is downwards properly Σ^0_2 every $y \in (0_e, x]$ is properly Σ^0_2.

Example

If x is not low cuppable then it is downwards properly Σ^0_2.

If (a, b) is a fake \mathcal{K}-pair then i.e.:

$$G_e \models \mathcal{K}(a, b), \text{ but } D_e \models \neg\mathcal{K}(a, b)$$

then a and b are non-low cuppable, hence downwards properly Σ^0_2, hence incomparable with every member of \mathcal{L}.
Theorem

For every nonzero Δ^0_2 degree b there is a nontrivial \mathcal{K}-pair, (c, d), such that

$$b \lor c = c \lor d = 0'_e.$$

Hence if (a, b) is a true \mathcal{K}-pair of Σ^0_2 e-degrees (hence low and Δ^0_2) we apply this theorem to get a \mathcal{K}-pair (c, d) such that:

- $b \lor c = 0'_e$ and hence $a \leq c$.
- $c \lor d = 0'_e$ and hence $c \in \mathcal{L}$.
Defining true \mathcal{K}-pairs: Step 2

Theorem

For every nonzero Δ^0_2 degree b there is a nontrivial \mathcal{K}-pair, (c, d), such that

$$b \lor c = c \lor d = 0'_e.$$

Hence if (a, b) is a true \mathcal{K}-pair of Σ^0_2 e-degrees (hence low and Δ^0_2) we apply this theorem to get a \mathcal{K}-pair (c, d) such that:

- $b \lor c = 0'_e$ and hence $a \leq c$.
- $c \lor d = 0'_e$ and hence $c \in \mathcal{L}$.
Defining true \mathcal{K}-pairs: Step 2

Theorem

For every nonzero Δ^0_2 degree b there is a nontrivial \mathcal{K}-pair, (c, d), such that:

$$b \lor c = c \lor d = 0'_e.$$

Hence if (a, b) is a true \mathcal{K}-pair of Σ^0_2 e-degrees (hence low and Δ^0_2) we apply this theorem to get a \mathcal{K}-pair (c, d) such that:

- $b \lor c = 0'_e$ and hence $a \leq c$.
- $c \lor d = 0'_e$ and hence $c \in L$.
Theorem

For every nonzero Δ^0_2 degree b there is a nontrivial \mathcal{K}-pair, (c, d), such that

$$b \lor c = c \lor d = 0_e'.$$

Hence if (a, b) is a true \mathcal{K}-pair of Σ^0_2 e-degrees (hence low and Δ^0_2) we apply this theorem to get a \mathcal{K}-pair (c, d) such that:

- $b \lor c = 0_e'$ and hence $a \leq c$.
- $c \lor d = 0_e'$ and hence $c \in \mathcal{L}$.
Defining true \mathcal{K}-pairs

- If (a, b) is a fake \mathcal{K}-pair then a and b are incomparable with all members of \mathcal{L}.
- If (a, b) is a true \mathcal{K}-pair then a is bounded by a member of \mathcal{L}.

Let $\mathcal{LK}(a, b) \iff \mathcal{K}(a, b) & a > 0_e & b > 0_e & \exists c (c \geq a & \mathcal{L}(c))$

Corollary

A pair of Σ^0_2 enumeration degrees a, b forms a nontrivial \mathcal{K}-pair if and only if:

$$\mathcal{G}_e \models \mathcal{LK}(a, b).$$
Defining true \mathcal{K}-pairs

- If $\langle a, b \rangle$ is a fake \mathcal{K}-pair then a and b are incomparable with all members of \mathcal{L}.
- If $\langle a, b \rangle$ is a true \mathcal{K}-pair then a is bounded by a member of \mathcal{L}.

Let $\mathcal{L}K(a, b) \iff \mathcal{K}(a, b) \land a > 0_e \land b > 0_e \land \exists c (c \geq a \land \mathcal{L}(c))$

Corollary

A pair of Σ^0_2 enumeration degrees a, b forms a nontrivial \mathcal{K}-pair if and only if:

$$\mathcal{G}_e \models \mathcal{L}K(a, b).$$
Defining true κ-pairs

- If (a, b) is a fake κ-pair then a and b are incomparable with all members of L.
- If (a, b) is a true κ-pair then a is bounded by a member of L.

Let $L\kappa(a, b) \iff \kappa(a, b) \land a \geq 0_e \land b \geq 0_e \land \exists c (c \geq a \land L(c))$

Corollary

A pair of Σ^0_2 enumeration degrees a, b forms a nontrivial κ-pair if and only if:

$$G_e \models L\kappa(a, b).$$
Application I: The complexity of $Th(G_e)$

Theorem

The first order theory of G_e is computably isomorphic to first order arithmetic.

Given a sentence in the language of true arithmetic φ we want to be able to computably translate it into a sentence φ_e in the language of the G_e so that:

$$\langle \mathbb{N}, +, \ast \rangle \models \varphi \text{ iff } G_e \models \varphi_e$$

1. Represent $\langle \mathbb{N}, +, \ast \rangle$ as a partial order (PO).
2. Embed this partial order in G_e and code it with a finite number of parameters.
3. Find a first order condition on the parameters, which ensures that they code a SMA.
Application I: The complexity of $\text{Th}(G_e)$

Theorem

The first order theory of G_e is computably isomorphic to first order arithmetic.

Given a sentence in the language of true arithmetic φ we want to be able to computably translate it into a sentence φ_e in the language of the G_e so that:

$$\langle \mathbb{N}, +, \ast \rangle \models \varphi \iff G_e \models \varphi_e$$

I Represent $\langle \mathbb{N}, +, \ast \rangle$ as a partial order (PO).

II Embed this partial order in G_e and code it with a finite number of parameters.

III Find a first order condition on the parameters, which ensures that they code a SMA.
Application I: The complexity of $Th(G_e)$

Theorem

The first order theory of G_e is computably isomorphic to first order arithmetic.

Given a sentence in the language of true arithmetic φ we want to be able to computably translate it into a sentence φ_e in the language of the G_e so that:

$$\langle \mathbb{N}, +, \ast \rangle \models \varphi \iff G_e \models \varphi_e$$

I Represent $\langle \mathbb{N}, +, \ast \rangle$ as a partial order (PO).

II Embed this partial order in G_e and code it with a finite number of parameters.

III Find a first order condition on the parameters, which ensures that they code a SMA.
A special type of partial order

We can represent an SMA $\langle \mathbb{N}, +, * \rangle$ as follows:

![Diagram of SMA representation]
First tool: Coding antichains

\[\varphi_{SW}(x, a, p, q) \iff x \leq a \text{ is a minimal solution to } x \neq (x \lor p) \land (x \lor q). \]

Theorem (Slaman, Woodin)

If \(\{x_i \mid i \in \mathbb{N}\} \) is an antichain, uniformly enumeration reducible to a low \(a \) then there are \(\Sigma^0_2 \) e-degrees \(p \) and \(q \), such that for arbitrary \(\Sigma^0_2 \) degree \(x \)

\[\mathcal{G}_e \models \varphi_{SW}(x, a, p, q) \iff \exists i[x_i \in x]. \]

Goal: Embed the PO so that each level is *well presented*.
Second tool: \mathcal{K}-systems

Definition

We shall say that a system of nonzero degrees $\{a_i \mid i \in I\}$ ($|I| \geq 2$) is a \mathcal{K}-system, if $\mathcal{K}(a_i, a_j)$ for each $i, j \in I$, such that $i \neq j$.

- Every \mathcal{K}-pair is a minimal pair, hence every \mathcal{K}-system is an antichain.
- The degrees that form a \mathcal{K}-pair with a fixed degree form an ideal. Hence if $\{a_i \mid i \in I\}$ is a \mathcal{K}-system and $i_1 \neq i_2 \in I$ then $\{a_{i_1} \lor a_{i_2}\} \cup \{a_i \mid i \in I, i \neq i_1, i_2\}$ is a \mathcal{K}-system.

Theorem

Every non-zero Δ^0_2 e-degree bounds a well-presented \mathcal{K}-system.
Second tool: \mathcal{K}-systems

Definition

We shall say that a system of nonzero degrees $\{a_i \mid i \in I\}$ $(|I| \geq 2)$ is a \mathcal{K}-system, if $\mathcal{K}(a_i, a_j)$ for each $i, j \in I$, such that $i \neq j$.

- Every \mathcal{K}-pair is a minimal pair, hence every \mathcal{K}-system is an antichain.
- The degrees that form a \mathcal{K}-pair with a fixed degree form an ideal. Hence if $\{a_i \mid i \in I\}$ is a \mathcal{K}-system and $i_1 \neq i_2 \in I$ then $\{a_{i_1} \lor a_{i_2}\} \cup \{a_i \mid i \in I, i \neq i_1, i_2\}$ is a \mathcal{K}-system.

Theorem

Every non-zero Δ^0_2 e-degree bounds a well-presented \mathcal{K}-system.
Second tool: \(\mathcal{K} \)-systems

Definition

We shall say that a system of nonzero degrees \(\{a_i \mid i \in I\} (|I| \geq 2) \) is a \(\mathcal{K} \)-system, if \(\mathcal{K}(a_i, a_j) \) for each \(i, j \in I \), such that \(i \neq j \).

- Every \(\mathcal{K} \)-pair is a minimal pair, hence every \(\mathcal{K} \)-system is an antichain.
- The degrees that form a \(\mathcal{K} \)-pair with a fixed degree form an ideal. Hence if \(\{a_i \mid i \in I\} \) is a \(\mathcal{K} \)-system and \(i_1 \neq i_2 \in I \) then \(\{a_{i_1} \lor a_{i_2}\} \cup \{a_i \mid i \in I, i \neq i_1, i_2\} \) is a \(\mathcal{K} \)-system.

Theorem

Every non-zero \(\Delta^0_2 \) e-degree bounds a well-presented \(\mathcal{K} \)-system.
Second tool: \mathcal{K}-systems

Definition

We shall say that a system of nonzero degrees $\{a_i \mid i \in I\}$ ($|I| \geq 2$) is a \mathcal{K}-system, if $\mathcal{K}(a_i, a_j)$ for each $i, j \in I$, such that $i \neq j$.

- Every \mathcal{K}-pair is a minimal pair, hence every \mathcal{K}-system is an antichain.
- The degrees that form a \mathcal{K}-pair with a fixed degree form an ideal. Hence if $\{a_i \mid i \in I\}$ is a \mathcal{K}-system and $i_1 \neq i_2 \in I$ then $\{a_{i_1} \lor a_{i_2}\} \cup \{a_i \mid i \in I, i \neq i_1, i_2\}$ is a \mathcal{K}-system.

Theorem

Every non-zero Δ_0^2 e-degree bounds a well-presented \mathcal{K}-system.
Coding an SMA below any half of a \mathcal{K}-pair

Fix a half of a nontrivial \mathcal{K}-pair a and a well presented \mathcal{K}-system below it.

We computably divide the system $\{a_i\}_{i<\omega}$ into six infinite groups.
Coding an SMA below any half of a \mathcal{K}-pair

The elements of G_1 will represent the natural numbers. There are parameters p_0 and q_0 such that $\varphi_{SW}(x, a, p_0, q_0)$ defines them.
Coding an SMA below any half of a \mathcal{K}-pair

L1 is constructed from lub’s of elements from G1 and G2. There are parameters p_1 and q_1 such that $\varphi_{SW}(x, a, p_1, q_1)$ defines them.
Coding an SMA below any half of a \mathcal{K}-pair

L2 is constructed from lub’s of elements from L1 and G3. There are parameters p_2 and q_2 such that $\varphi_{SW}(x, a, p_2, q_2)$ defines them.
Coding an SMA below any half of a \mathcal{K}-pair

L3 is constructed from lub’s of elements from L2 and G4. There are parameters p_3 and q_3 such that $\varphi_{SW}(x, a, p_3, q_3)$ defines them.
Coding an SMA below any half of a \mathcal{K}-pair

L4 is constructed from lub’s of elements from L3 and G5. There are parameters p_4 and q_4 such that $\varphi_{SW}(x, a, p_4, q_4)$ defines them.
Finally the maximal elements are constructed from lub’s of elements from L1, L2, L3, L4 and G6. $\varphi_{SW}(x, a, p_5, q_5)$ defines them.
Coding an SMA below any half of a \mathcal{K}-pair

parameters $a, p_0, p_1, p_2, p_3, p_4, p_5, q_0, q_1, q_2, q_3, q_4, q_5$ code a partial order, which represents a standard model of arithmetic $\mathcal{A}(a, \overline{p}, \overline{q})$.

So the
The other direction

Given parameters \(a, \overline{p}, \overline{q} \), let we can define a first order condition \(ST_0(a, \overline{p}, \overline{q}) \) which ensures that the parameters code a structure \(\mathcal{A}(a, \overline{p}, \overline{q}) \) which is a model of arithmetic which contains a standard part.

We ask additionally that \(ST_0(a, \overline{p}, \overline{q}) \) ensures:

- \(a \) is half of a nontrivial \(\mathcal{K} \)-pair;
- The domain of \(\mathcal{A}(a, \overline{p}, \overline{q}) \) is a \(\mathcal{K} \)-system.

Let \(b \) be such that \(a \) and \(b \) are a \(\mathcal{K} \)-pair.

If the model coded below \(a \) is embedded in all models coded below \(b \), then \(\mathcal{A}(a, \overline{p}, \overline{q}) \) will be embedded into a SMA and hence will be itself a SMA.
The other direction

Given parameters a, \bar{p}, \bar{q}, let we can define a first order condition $ST_0(a, \bar{p}, \bar{q})$ which ensures that the parameters code a structure $\mathcal{A}(a, \bar{p}, \bar{q})$ which is is a model of arithmetic which contains a standard part.

We ask additionally that $ST_0(a, \bar{p}, \bar{q})$ ensures:

- a is half of a nontrivial \mathcal{K}-pair;
- The domain of $\mathcal{A}(a, \bar{p}, \bar{q})$ is a \mathcal{K}-system.

Let b be such that a and b are a \mathcal{K}-pair.

If the model coded below a is embedded in all models coded below b, then $\mathcal{A}(a, \bar{p}, \bar{q})$ will be embedded into a SMA and hence will be itself a SMA.
The other direction

Given parameters $a, \overline{p}, \overline{q}$, let we can define a first order condition $ST_0(a, \overline{p}, \overline{q})$ which ensures that the parameters code a structure $\mathcal{A}(a, \overline{p}, \overline{q})$ which is a model of arithmetic which contains a standard part.

We ask additionally that $ST_0(a, \overline{p}, \overline{q})$ ensures:

- a is half of a nontrivial \mathcal{K}-pair;
- The domain of $\mathcal{A}(a, \overline{p}, \overline{q})$ is a \mathcal{K}-system.

Let b be such that a and b are a \mathcal{K}-pair. If the model coded below a is embedded in all models coded below b, then $\mathcal{A}(a, \overline{p}, \overline{q})$ will be embedded into a SMA and hence will be itself a SMA.
Comparison maps

For every model $\mathcal{A}(b, p', q')$ we ask that
\[\forall m_a \in \mathcal{A}(a, p, q) \text{ there is an } m_b \in \mathcal{A}(b, p', q') \text{ and an antichain } (y_0, y_1, \ldots, y_m) \text{ coded by parameters } c, p'' \text{ and } q'' \text{ such that:} \]
Comparison maps

If $\mathcal{A}(a, p, q)$ is an SMA then for every $\mathcal{A}(b, p', q')$ this is true.

$c = y_0 V \ldots V y_m$
Application II

If a bounds a nonzero Δ^0_2 degree then it bounds a nontrivial \mathcal{K}-pair.

If a is a downwards properly Σ^0_2 degree, then it bounds no \mathcal{K}-pair.

Theorem

A degree a is downwards properly Σ^0_2 if and only if:

$$G_e \models \forall b, c[(b \leq a \land c \leq a) \Rightarrow \neg \mathcal{K}(b, c)].$$
If a bounds a nonzero Δ_2^0 degree then it bounds a nontrivial \mathcal{K}-pair.

If a is a downwards properly Σ_2^0 degree, then it bounds no \mathcal{K}-pair.

Theorem

A degree a is downwards properly Σ_2^0 if and only if:

$$\mathcal{G}_e \models \forall b, c [(b \leq a \& c \leq a) \Rightarrow \neg \mathcal{L}\mathcal{K}(b, c)].$$
Application III

Definition

\(x \) is upwards properly \(\Sigma_2^0 \) every \(y \in [x, 0'_{e}) \) is properly \(\Sigma_2^0 \).

Example

1. If \(a \) is a non-splitting degree then it is upwards properly \(\Sigma_2^0 \).

2. (Bereznyuk, Coles, Sorbi) For every enumeration degree \(a < 0'_{e} \) there exists an upwards properly \(\Sigma_2^0 \) degree \(c \geq a \).
Application III

Definition

\(x \) is upwards properly \(\Sigma_2^0 \) every \(y \in [x, 0'_e) \) is properly \(\Sigma_2^0 \).

Example

1. If \(a \) is a non-splitting degree then it is upwards properly \(\Sigma_2^0 \).
2. (Bereznyuk, Coles, Sorbi) For every enumeration degree \(a < 0'_e \) there exists an upwards properly \(\Sigma_2^0 \) degree \(c \geq a \).
Definition

\(x \) is upwards properly \(\Sigma^0_2 \) every \(y \in [x, 0'_e) \) is properly \(\Sigma^0_2 \).

Example

1. If \(a \) is a non-splitting degree then it is upwards properly \(\Sigma^0_2 \).
2. (Bereznyuk, Coles, Sorbi) For every enumeration degree \(a < 0'_e \) there exists an upwards properly \(\Sigma^0_2 \) degree \(c \geq a \).
Application III

Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

Corollary

Every nonzero total enumeration degree can be represented as the least upper bound of a nontrivial K-pair.

Theorem (Arslanov, Cooper, Kalimullin)

For every Δ^0_2 enumeration degree $a < 0'_e$ there is a total enumeration degree b such that $a \leq b < 0'_e$.
Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

Corollary

Every nonzero total enumeration degree can be represented as the least upper bound of a nontrivial \mathcal{K}-pair.

Theorem (Arslanov, Cooper, Kalimullin)

For every Δ^0_2 enumeration degree $a < 0'_e$ there is a total enumeration degree b such that $a \leq b < 0'_e$.
Theorem (Jockusch)

For every noncomputable set \(B \) there is a semi recursive set \(A \equiv_T B \) such that both \(A \) and \(\overline{A} \) are not c.e.

Corollary

Every nonzero total enumeration degree can be represented as the least upper bound of a nontrivial \(K \)-pair.

Theorem (Arslanov, Cooper, Kalimullin)

For every \(\Delta^0_2 \) enumeration degree \(a < 0'_e \) there is a total enumeration degree \(b \) such that \(a \leq b < 0'_e \).
So a degree a is upwards properly Σ^0_2 if and only if no element above it other than $0'_e$ can be represented as the least upper bound of a nontrivial \mathcal{K}-pair.

Theorem

A degree a is upwards properly Σ^0_2 if and only if:

$$G_e \models \forall c, d (L\mathcal{K}(c, d) \& a \leq c \lor d \Rightarrow c \lor d = 0'_e).$$
Dynamic characterizations

Lemma (McEvoy)

C is low if and only if it has a Δ^0_2 approximation $\{C^s\}_{s<\omega}$ such that for all enumeration operators Θ, $\{\Theta^s(C^s)\}_{s<\omega}$ is a Δ^0_2 approximation to $\Theta(C)$.

Lemma (Kalimullin)

A pair of Δ^0_2 sets A and B form a \mathcal{K}-pair if and only if there are Δ^0_2 approximations $\{A^s\}_{s<\omega}$ and $\{B^s\}_{s<\omega}$ to A and B respectively such that for all s:

$$A^s \subseteq A \lor B^s \subseteq B.$$
Dynamic characterizations

Lemma (McEvoy)

C is low if and only if it has a Δ^0_2 approximation $\{C^s\}_{s<\omega}$ such that for all enumeration operators Θ, $\{\Theta^s(C^s)\}_{s<\omega}$ is a Δ^0_2 approximation to $\Theta(C)$.

Lemma (Kalimullin)

A pair of Δ^0_2 sets A and B form a \mathcal{K}-pair if and only if there are Δ^0_2 approximations $\{A^s\}_{s<\omega}$ and $\{B^s\}_{s<\omega}$ to A and B respectively such that for all s:

$$A^s \subseteq A \lor B^s \subseteq B.$$
Proposition

If \((a, b)\) is a nontrivial \(\kappa\)-pair in \(G_e\) then \(a \lor b\) is either low or total.

Proof:

Suppose that \(A\) and \(B\) are a \(\Delta^0_2\) nontrivial \(\kappa\)-pair such that \(A \oplus B\) is not low. Let \(\{A^s\}_s < \omega\) and \(\{B^s\}_s < \omega\) be their \(\kappa\)-approximations. Then \(\{A^s \oplus B^s\}_s < \omega\) is not a low approximation.

Let \(\Theta\) and \(x\) be such that at infinitely many stages \(s\):

\[x \in \Theta^s (A^s \oplus B^s) \setminus \Theta^{s+1} (A^{s+1} \oplus B^{s+1}). \]
Application IV

Proposition

If \((a, b)\) is a nontrivial \(\mathcal{K}\)-pair in \(G_e\) then \(a \lor b\) is either low or total.

Proof:

Suppose that \(A\) and \(B\) are a \(\Delta^0_2\) nontrivial \(\mathcal{K}\)-pair such that \(A \oplus B\) is not low. Let \(\{A^s\}_{s<\omega}\) and \(\{B^s\}_{s<\omega}\) be their \(\mathcal{K}\)-approximations. Then \(\{A^s \oplus B^s\}_{s<\omega}\) is not a low approximation.

Let \(\Theta\) and \(x\) be such that at infinitely many stages \(s\):

\[x \in \Theta^s (A^s \oplus B^s) \setminus \Theta^{s+1} (A^{s+1} \oplus B^{s+1}).\]
Proposition

If \((a, b)\) is a nontrivial \(\mathcal{K}\)-pair in \(G_e\) then \(a \lor b\) is either low or total.

Proof:
Suppose that \(A\) and \(B\) are a \(\Delta_2^0\) nontrivial \(\mathcal{K}\)-pair such that \(A \oplus B\) is not low. Let \(\{A^s\}_{s<\omega}\) and \(\{B^s\}_{s<\omega}\) be their \(\mathcal{K}\)-approximations. Then \(\{A^s \oplus B^s\}_{s<\omega}\) is not a low approximation.

Let \(\Theta\) and \(x\) be such that at infinitely many stages \(s\):
\[
x \in \Theta^s(A^s \oplus B^s) \setminus \Theta^{s+1}(A^{s+1} \oplus B^{s+1}).
\]
Application IV

Proposition

If \((a, b)\) is a nontrivial \(\mathcal{K}\)-pair in \(G_e\) then \(a \lor b\) is either low or total.

Proof:

Suppose that \(A\) and \(B\) are a \(\Delta^0_2\) nontrivial \(\mathcal{K}\)-pair such that \(A \oplus B\) is not low. Let \(\{A^s\}_{s<\omega}\) and \(\{B^s\}_{s<\omega}\) be their \(\mathcal{K}\)-approximations. Then \(\{A^s \oplus B^s\}_{s<\omega}\) is not a low approximation.

Let \(\Theta\) and \(x\) be such that at infinitely many stages \(s\):

\[x \in \Theta^s (A^s \oplus B^s) \setminus \Theta^{s+1} (A^{s+1} \oplus B^{s+1}). \]
Application IV

Proposition

If \((a, b)\) is a nontrivial \(\mathcal{K}\)-pair in \(G_e\) then \(a \lor b\) is either low or total.

Proof:

Suppose that \(A\) and \(B\) are a \(\Delta^0_2\) nontrivial \(\mathcal{K}\)-pair such that \(A \oplus B\) is not low. Let \(\{A^s\}_{s<\omega}\) and \(\{B^s\}_{s<\omega}\) be their \(\mathcal{K}\)-approximations. Then \(\{A^s \oplus B^s\}_{s<\omega}\) is not a low approximation.

Let \(\Theta\) and \(x\) be such that at infinitely many stages \(s\):

\[x \in \Theta^s (A^s \oplus B^s) \setminus \Theta^{s+1} (A^{s+1} \oplus B^{s+1}). \]
Application IV

Proposition

If \((a, b)\) is a nontrivial \(K\)-pair in \(G_e\) then \(a \lor b\) is either low or total.

Proof:

We have an infinite computable sequence of bad stages for \(\{A^s \oplus B^s\}_{s<\omega}\):

\[s_0 < s_1 < \cdots < s_n < \cdots\]

Let \(G_A = \{n \mid A^{s_n} \subseteq A\}\) and \(G_B = \{n \mid B^{s_n} \subseteq B\}\).

- Then \(G_B = \overline{G_A}\).
- \(G_A \equiv_e A\) and \(G_B \equiv_e B\).

Hence \(A \oplus B \equiv_e G_A \oplus G_B = G_A \oplus \overline{G_A}\) and is total.
Application IV

Proposition

If \((a, b)\) is a nontrivial \(\mathcal{K}\)-pair in \(G_e\) then \(a \lor b\) is either low or total.

Proof:
We have an infinite computable sequence of bad stages for \(\{A^s \oplus B^s\}_{s<\omega}\):

\[s_0 < s_1 \cdots < s_n \cdots\]

Let \(G_A = \{ n \mid A^{s_n} \subseteq A \}\) and \(G_B = \{ n \mid B^{s_n} \subseteq B \}\).

- Then \(G_B = \overline{G_A}\).
- \(G_A \equiv_e A\) and \(G_B \equiv_e B\).

Hence \(\overline{A} \oplus B \equiv_e G_A \oplus \overline{G_A} = G_A \oplus G_B\) and is total.
Proposition

If \((a, b)\) is a nontrivial \(\mathcal{K}\)-pair in \(G_e\) then \(a \lor b\) is either low or total.

Proof:

We have an infinite computable sequence of bad stages for \(\{A^s \oplus B^s\}_{s<\omega}\):

\[s_0 < s_1 \cdots < s_n \cdots\]

Let \(G_A = \{ n \mid A^{s_n} \subseteq A \}\) and \(G_B = \{ n \mid B^{s_n} \subseteq B \}\).

- Then \(G_B = \overline{G_A}\).
- \(G_A \equiv_e A\) and \(G_B \equiv_e B\).

Hence \(A \oplus B \equiv_e G_A \oplus G_B = G_A \oplus \overline{G_A}\) and is total.
Application IV

Proposition

If \((a, b)\) is a nontrivial \(K\)-pair in \(G_e\) then \(a \lor b\) is either low or total.

Proof:

We have an infinite computable sequence of bad stages for \(\{A^s \oplus B^s\}_{s<\omega}\):

\[s_0 < s_1 \cdots < s_n \cdots\]

Let \(G_A = \{n \mid A^{s_n} \subseteq A\}\) and \(G_B = \{n \mid B^{s_n} \subseteq B\}\).

- Then \(G_B = \overline{G_A}\).
- \(G_A \equiv_e A\) and \(G_B \equiv_e B\).

Hence \(A \oplus B \equiv_e G_A \oplus G_B = G_A \oplus \overline{G_A}\) and is total.
Application IV

Proposition

If \((a, b)\) is a nontrivial \(K\)-pair in \(\mathcal{G}_e\) then \(a \lor b\) is either low or total.

Proof:
We have an infinite computable sequence of bad stages for \(\{A^s \oplus B^s\}_{s<\omega}\):

\[
s_0 < s_1 \ldots < s_n \ldots
\]

Let \(G_A = \{n \mid A^{s_n} \subseteq A\}\) and \(G_B = \{n \mid B^{s_n} \subseteq B\}\).

- Then \(G_B = \overline{G_A}\).
- \(G_A \equiv_e A\) and \(G_B \equiv_e B\).

Hence \(A \oplus B \equiv_e G_A \oplus \overline{G_A} = G_A \oplus G_B\) and is total.
Theorem (Giorgi, Sorbi, Yang)

Every non-low total degree bounds a downwards properly Σ^0_2 enumeration degree.

Corollary

The class of the non-low total Σ^0_2 enumeration degrees is first order definable in \mathcal{G}_e

Proof:
A Σ^0_2 e-degree a is non-low and total is and only if
- It is the least upper bound of the members in a nontrivial \mathcal{K}-pair;
- It bounds a downwards properly Σ^0_2 degree.
Application IV

Theorem (Giorgi, Sorbi, Yang)

Every non-low total degree bounds a downwards properly Σ^0_2 enumeration degree.

Corollary

The class of the non-low total Σ^0_2 enumeration degrees is first order definable in \mathcal{G}_e

Proof:

A Σ^0_2 e-degree a is non-low and total is and only if

- It is the least upper bound of the members in a nontrivial \mathcal{K}-pair;
- It bounds a downwards properly Σ^0_2 degree.
The end

Thank you!