The automorphism group of the enumeration degrees

Mariya I. Soskova

Sofia University

Madison Logic Seminar, August 29, 2013

1Supported by a Marie Curie International Outgoing Fellowship STRIDE (298471), Sofia University Science Fund grant No. 44/15.04.2013 and BNSF grant No. DMU 03/07/12.12.2011
Enumeration reducibility

Definition

$A \leq_e B$ if there is a c.e. set W, such that

$$A = W(B) = \{ x \mid \exists D (\langle x, D \rangle \in W \land D \subseteq B) \} .$$
Enumeration reducibility

Definition

\(A \leq_e B \) if there is a c.e. set \(W \), such that

\[
A = W(B) = \{ x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B) \}.
\]

- \(d_e(A) = \{ B \mid A \leq_e B \& B \leq_e A \} \).
- \(d_e(A) \leq d_e(B) \) if \(A \leq_e B \).
- \(0_e = d_e(\emptyset) \) consists of all c.e. sets.
- \(d_e(A \oplus B) = d_e(A) \lor d_e(B) \).
- \(d_e(A)' = d_e(L_A \oplus \overline{L_A}) \), where \(L_A = \{ e \mid e \in W_e(A) \} \).
Enumeration reducibility

Definition

A \(\leq_e B \) if there is a c.e. set \(W \), such that

\[
A = W(B) = \{ x \mid \exists D (\langle x, D \rangle \in W \& D \subseteq B) \}.
\]

- \(d_e(A) = \{ B \mid A \leq_e B \& B \leq_e A \} \).
- \(d_e(A) \leq d_e(B) \) if \(A \leq_e B \).
- \(0_e = d_e(\emptyset) \) consists of all c.e. sets.
- \(d_e(A \oplus B) = d_e(A) \lor d_e(B) \).
- \(d_e(A)' = d_e(L_A \oplus \overline{L_A}) \), where \(L_A = \{ e \mid e \in W_e(A) \} \).

\(D_e = \langle D_e, \leq, \lor, '0 \rangle \) is an upper semi-lattice with least element and jump operation.
What connects \mathcal{D}_T and \mathcal{D}_e

Proposition

$A \leq_T B \iff A \oplus \overline{A}$ is c.e. in $B \iff A \oplus \overline{A} \leq_e B \oplus \overline{B}$.

The embedding $\iota: \mathcal{D}_T \rightarrow \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus A)$, preserves the order, the least upper bound and the jump operation.

The substructure of the total e-degrees is defined as $\text{TOT} = \iota(\mathcal{D}_T)$.

Theorem (Selman)

$A \leq_e B$ if and only if every total enumeration degree above B is also above A.

TOT is an automorphism base for \mathcal{D}_e.

Mariya I. Soskova (Sofia University)
What connects \mathcal{D}_T and \mathcal{D}_e

Proposition

$$A \leq_T B \iff A \oplus \overline{A} \text{ is c.e. in } B \iff A \oplus \overline{A} \leq_e B \oplus \overline{B}.$$

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.
What connects \mathcal{D}_T and \mathcal{D}_e

Proposition

$$A \leq_T B \iff A \oplus \overline{A} \text{ is c.e. in } B \iff A \oplus \overline{A} \leq_e B \oplus \overline{B}.$$

The embedding $\iota : \mathcal{D}_T \rightarrow \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

The substructure of the total e-degrees is defined as $\mathcal{TOT} = \iota(D_T)$.

Mariya I. Soskova (Sofia University)
What connects \mathcal{D}_T and \mathcal{D}_e

Proposition

\[A \leq_T B \iff A \oplus \overline{A} \text{ is c.e. in } B \iff A \oplus \overline{A} \leq_e B \oplus \overline{B}. \]

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

The substructure of the total e-degrees is defined as $\mathcal{TOT} = \iota(D_T)$.

\[(\mathcal{D}_T, \leq_T, \lor', 0_T) \cong (\mathcal{TOT}, \leq_e, \lor', 0_e) \subseteq (\mathcal{D}_e, \leq_e, \lor', 0_e)\]
What connects \mathcal{D}_T and \mathcal{D}_e

Proposition

$$A \leq_T B \iff A \oplus \overline{A} \text{ is c.e. in } B \iff A \oplus \overline{A} \leq_e B \oplus \overline{B}.$$

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

The substructure of the total e-degrees is defined as $\mathcal{TOT} = \iota(D_T)$.

$$(\mathcal{D}_T, \leq_T, \lor', \bot_T) \cong (\mathcal{TOT}, \leq_e, \lor', \bot_e) \subseteq (\mathcal{D}_e, \leq_e, \lor', \bot_e)$$

Theorem (Selman)

$A \leq_e B$ if and only if every total enumeration degree above B is also above A.

Mariya I. Soskova (Sofia University)
What connects \mathcal{D}_T and \mathcal{D}_e

Proposition

\[A \leq_T B \iff A \oplus \overline{A} \text{ is c.e. in } B \iff A \oplus \overline{A} \leq_e B \oplus \overline{B}. \]

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

The substructure of the total e-degrees is defined as $\mathcal{TOT} = \iota(D_T)$.

\[(\mathcal{D}_T, \leq_T, \lor, ', 0_T) \cong (\mathcal{TOT}, \leq_e, \lor, ', 0_e) \subseteq (\mathcal{D}_e, \leq_e, \lor, ', 0_e) \]

Theorem (Selman)

$A \leq_e B$ if and only if every total enumeration degree above B is also above A. \mathcal{TOT} is an automorphism base for \mathcal{D}_e.
Defining the Turing jump operator

Theorem (Shore, Slaman)

The Turing jump operator is first order definable in \mathcal{D}_T.

Mariya I. Soskova (Sofia University)
Defining the Turing jump operator

Theorem (Shore, Slaman)
The Turing jump operator is first order definable in \mathcal{D}_T.

1. The double jump is first order definable in \mathcal{D}_T: Slaman and Woodin’s analysis of the automorphisms of the Turing degrees and “involves explicit translation of automorphism facts in definability facts via a coding of second order arithmetic”.

Mariya I. Soskova (Sofia University)
Theorem (Shore, Slaman)

The Turing jump operator is first order definable in \mathcal{D}_T.

1. The double jump is first order definable in \mathcal{D}_T: Slaman and Woodin’s analysis of the automorphisms of the Turing degrees and “involves explicit translation of automorphism facts in definability facts via a coding of second order arithmetic”.

2. An additional structural fact: for every $a \not<_{T} 0'_{T}$ there is g such that $a \lor g = g''$.
Definition (Kalimullin)

A pair of sets A, B are called a \mathcal{K}-pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.
\textbf{Definition (Kalimullin)}

A pair of sets A, B are called a \mathcal{K}-pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

- A trivial example is $\{A, U\}$ and $\{U, A\}$, where U is c.e.
Definition (Kalimullin)

A pair of sets A, B are called a \mathcal{K}-pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times B \subseteq \overline{W}$.

- A trivial example is $\{A, U\}$ and $\{U, A\}$, where U is c.e.
- If A is a semi-recursive set, then $\{A, \overline{A}\}$ is a \mathcal{K}-pair.
\(\kappa \)-pairs in the enumeration degrees

Definition (Kalimullin)

A pair of sets \(A, B \) are called a \(\kappa \)-pair if there is a c.e. set \(W \), such that \(A \times B \subseteq W \) and \(\overline{A} \times \overline{B} \subseteq W \).

- A trivial example is \(\{ A, U \} \) and \(\{ U, A \} \), where \(U \) is c.e.
- If \(A \) is a semi-recursive set, then \(\{ A, \overline{A} \} \) is a \(\kappa \)-pair.

Theorem (Kalimullin)

A pair of sets \(A, B \) are a \(\kappa \)-pair if and only if their enumeration degrees \(a \) and \(b \) satisfy:

\[
\kappa(a, b) \iff (\forall x \in D_e)((a \lor x) \land (b \lor x) = x).
\]
\(\mathcal{K} \)-pairs are invisible in the Turing universe

- \(\mathcal{K} \)-pairs are always quasi-minimal: the only total degree below either of them is \(\mathbf{0}_e \).

There are no \(\mathcal{K} \)-pairs in the structure of the Turing degrees.
K-pairs are invisible in the Turing universe

- K-pairs are always quasi-minimal: the only total degree below either of them is 0_e.
- A consequence of the existence of nontrivial K-pairs in D_e is that the Slaman-Shore property fails, there is a degree a ≰ e 0'_e, such that for every g, a ∨ g <_e g''.
\(\mathcal{K} \)-pairs are invisible in the Turing universe

- \(\mathcal{K} \)-pairs are always quasi-minimal: the only total degree below either of them is \(0_e \).
- A consequence of the existence of nontrivial \(\mathcal{K} \)-pairs in \(D_e \) is that the Slaman-Shore property fails, there is a degree \(a \not\leq_e 0'_e \), such that for every \(g, a \lor g <_e g'' \).
- There are no \(\mathcal{K} \)-pairs in the structure of the Turing degrees.
Theorem (Kalimullin)

$0'_e$ is the largest degree which can be represented as the least upper bound of a triple a, b, c, such that $K(a, b)$, $K(b, c)$ and $K(c, a)$.
Theorem (Kalimullin)

$0'_e$ is the largest degree which can be represented as the least upper bound of a triple a, b, c, such that $\mathcal{K}(a, b), \mathcal{K}(b, c)$ and $\mathcal{K}(c, a)$.

Corollary (Kalimullin)

The enumeration jump is first order definable in D_e.
\(\mathcal{K} \)-pairs and the definability of the enumeration jump

Theorem (Kalimullin)

\(\mathbf{0}'_e \) is the largest degree which can be represented as the least upper bound of a triple \(a, b, c \), such that \(\mathcal{K}(a, b), \mathcal{K}(b, c) \) and \(\mathcal{K}(c, a) \).

Corollary (Kalimullin)

The enumeration jump is first order definable in \(\mathcal{D}_e \).

Theorem (Ganchev, S)

For every nonzero enumeration degree \(u \in \mathcal{D}_e \), \(u' \) is the largest among all least upper bounds \(a \lor b \) of nontrivial \(\mathcal{K} \)-pairs \(\{a, b\} \), such that \(a \leq_e u \).
Definability in the local structure of the enumeration degrees

Theorem (Ganchev, S)

The class of \mathcal{K}-pairs below $0'_{e}$ is first order definable in $D_{e}(\leq 0'_{e})$.
Definability in the local structure of the enumeration degrees

Theorem (Ganchev, S)

The class of K-pairs below $0'e$ is first order definable in $D_e(\leq 0'e)$.

Definition

A K-pair $\{a, b\}$ is maximal if for every K-pair $\{c, d\}$ with $a \leq c$ and $b \leq d$, we have that $a = c$ and $b = d$.
Definability in the local structure of the enumeration degrees

Theorem (Ganchev, S)

The class of \mathcal{K}-pairs below $0'_e$ is first order definable in $\mathcal{D}_e(\leq 0'_e)$.

Definition

A \mathcal{K}-pair $\{a, b\}$ is maximal if for every \mathcal{K}-pair $\{c, d\}$ with $a \leq c$ and $b \leq d$, we have that $a = c$ and $b = d$.

Theorem (Ganchev, S)

In $\mathcal{D}_e(\leq 0'_e)$ a degree is total if and only if it is the least upper bound of a maximal \mathcal{K}-pair.
Definability in the local structure of the enumeration degrees

Theorem (Ganchev, S)

The class of \mathcal{K}-pairs below $0'_e$ is first order definable in $\mathcal{D}_e(\leq 0'_e)$.

Definition

A \mathcal{K}-pair $\{a, b\}$ is maximal if for every \mathcal{K}-pair $\{c, d\}$ with $a \leq c$ and $b \leq d$, we have that $a = c$ and $b = d$.

Theorem (Ganchev, S)

In $\mathcal{D}_e(\leq 0'_e)$ a degree is total if and only if it is the least upper bound of a maximal \mathcal{K}-pair.

The class of total degrees is first order definable in $\mathcal{D}_e(\leq 0'_e)$.
Open question

We know that:

- $\mathcal{TOT} \cap D_e(\geq 0^e)$ is first order definable.

Question

Is \mathcal{TOT} first order definable in D_e?

Recall that the total degrees are an automorphism base for D_e.
Open question

We know that:

- $\mathcal{TOT} \cap \mathcal{D}_e(\geq 0'_e)$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_e(\leq 0'_e)$ is first order definable.
Open question

We know that:

- $\mathcal{TOT} \cap D_e(\geq 0'_e)$ is first order definable.
- $\mathcal{TOT} \cap D_e(\leq 0'_e)$ is first order definable.

Question

Is \mathcal{TOT} first order definable in D_e?
Open question

We know that:

- $\mathcal{TOT} \cap D_e(\geq 0'_e)$ is first order definable.
- $\mathcal{TOT} \cap D_e(\leq 0'_e)$ is first order definable.

Question

Is \mathcal{TOT} first order definable in D_e?

Recall that the total degrees are an automorphism base for D_e.
Open question

We know that:

- $\mathcal{TOT} \cap D_e(\geq 0'_e)$ is first order definable.
- $\mathcal{TOT} \cap D_e(\leq 0'_e)$ is first order definable.

Question

Is \mathcal{TOT} first order definable in D_e?

Recall that the total degrees are an automorphism base for D_e.

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.
One step further in the dream world

Theorem (Ganchev,S)

For every nonzero enumeration degree $u \in D_e$,

$$u' = \max \{ a \lor b \mid \mathcal{K}(a, b) \& a \leq_e u \}.$$
One step further in the dream world

Theorem (Ganchev,S)

For every nonzero enumeration degree $u \in D_e$,

$$u' = \max \{a \vee b \mid K(a, b) & a \leq e u\}.$$

- Suppose that a degree is total if and only if it is the least upper bound of a maximal K-pair.
One step further in the dream world

Theorem (Ganchev,S)

For every nonzero enumeration degree $u \in \mathcal{D}_e$,

$$u' = \max \{a \lor b \mid \mathcal{K}(a, b) \& a \leq_e u\}.$$

- Suppose that a degree is total if and only if it is the least upper bound of a maximal \mathcal{K}-pair.
- The relation x is c.e. in u would also be definable for total degrees by:

$$\exists a \exists b (x = a \lor b \& \mathcal{K}(a, b) \& a \leq_e u).$$
One step further in the dream world

Theorem (Ganchev,S)

For every nonzero enumeration degree $u \in \mathcal{D}_e$,

$$u' = \max \{ a \lor b \mid K(a, b) \& a \leq_e u \}.$$

- Suppose that a degree is total if and only if it is the least upper bound of a maximal K-pair.
- The relation x is c.e. in u would also be definable for total degrees by:

$$\exists a \exists b (x = a \lor b \& K(a, b) \& a \leq_e u).$$

- Then for total u, our definition of the jump would read u' is the largest total degree, which is c.e. in u.
Definability via automorphism analysis in \mathcal{D}_e

1. Coding theorem.
2. A characterization of an automorphism in terms of a countable object.
3. A finite automorphism base.
The Coding Theorem

Theorem (Slaman, Woodin)

Every countable relation on D_e can be uniformly coded by parameters.

The theory of D_e is computably isomorphic to second order arithmetic.

Definition

A countable relation $R \subseteq D^n_e$ is e-presented beneath a set A if there is a set $W \leq_e A$ such that $R = \{(d_e(W_{i_1}(A)), \ldots, d_e(W_{i_n}(A))) | (i_1, \ldots, i_n) \in W\}$.

Theorem (Ganchev, S)

Every countable relation on $D_e(\leq_e 0'_{e})$ which is e-presented beneath a half of a Δ^0_2-pair can be uniformly coded by parameters below $0'_{e}$.

The theory of $D_e(\leq_e 0'_{e})$ is computably isomorphic to first order arithmetic.
The Coding Theorem

Theorem (Slaman, Woodin)

Every countable relation on D_e can be uniformly coded by parameters. The theory of D_e is computably isomorphic to second order arithmetic.
The Coding Theorem

Theorem (Slaman, Woodin)

Every countable relation on D_e can be uniformly coded by parameters. The theory of D_e is computably isomorphic to second order arithmetic.

Definition

A countable relation $\mathcal{R} \subseteq D_e^n$ is e-presented beneath a set A if there is a set $W \leq_e A$ such that

$$\mathcal{R} = \{ (d_e(W_{i_1}(A)), \ldots, d_e(W_{i_n}(A))) \mid (i_1, \ldots, i_n) \in W \}.$$
The Coding Theorem

Theorem (Slaman, Woodin)

Every countable relation on \mathcal{D}_e can be uniformly coded by parameters. The theory of \mathcal{D}_e is computably isomorphic to second order arithmetic.

Definition

A countable relation $\mathcal{R} \subseteq \mathcal{D}_e^n$ is e-presented beneath a set A if there is a set $W \leq_e A$ such that

$$\mathcal{R} = \left\{ (\mathbf{d}_e(W_{i_1}(A)), \ldots, \mathbf{d}_e(W_{i_n}(A))) \mid (i_1, \ldots, i_n) \in W \right\}.$$

Theorem (Ganchev, S)

Every countable relation on $\mathcal{D}_e(\leq_e 0'_e)$ which is e-presented beneath a half of a Δ^0_2 \mathcal{K}-pair can be uniformly coded by parameters below $0'_e$.
The Coding Theorem

Theorem (Slaman, Woodin)

Every countable relation on \mathcal{D}_e can be uniformly coded by parameters. The theory of \mathcal{D}_e is computably isomorphic to second order arithmetic.

Definition

A countable relation $\mathcal{R} \subseteq \mathcal{D}_e^n$ is e-presented beneath a set A if there is a set $W \leq_e A$ such that

$$\mathcal{R} = \{ (d_e(W_{i_1}(A)), \ldots, d_e(W_{i_n}(A))) \mid (i_1, \ldots, i_n) \in W \}.$$

Theorem (Ganchev, S)

Every countable relation on $\mathcal{D}_e(\leq_e 0'_e)$ which is e-presented beneath a half of a Δ^0_2 K-pair can be uniformly coded by parameters below $0'_e$. The theory of $\mathcal{D}_e(\leq_e 0'_e)$ is computably isomorphic to first order arithmetic.
Effectively coding and decoding

Theorem (Effective Coding Theorem)

For every n there is a formula φ_n, such that for every countable relation on enumeration degrees $\mathcal{R} \subseteq \mathcal{D}_e^n$ which is e-presented beneath R there are parameters $\bar{p} \leq_e d_e(\mathcal{R})''$ such that $\mathcal{R} = \{ (x_1, \ldots, x_n) \mid \mathcal{D}_e \models \varphi_n(x_1, \ldots, x_n, \bar{p}) \}$.

Theorem (Decoding Theorem)

Let $\mathcal{R} \subseteq \mathcal{D}_e^n$ be countable and coded by parameters \bar{p}. Let $d_e(\mathcal{P})$ be an upper bound on these parameters. Then there is a presentation W of \mathcal{R}, such that $W \leq_e \mathcal{P}$.

Effectively coding and decoding

Theorem (Effective Coding Theorem)

For every n there is a formula φ_n, such that for every countable relation on enumeration degrees $R \subseteq D_e^n$ which is e-presented beneath R there are parameters $\bar{p} \leq_e d_e(R)''$ such that

$$R = \{ (x_1, \ldots, x_n) \mid D_e \models \varphi_n(x_1, \ldots, x_n, \bar{p}) \}.$$

Theorem (Decoding Theorem)

Let $R \subseteq D^n_e$ be countable and coded by parameters \bar{p}. Let $d_e(P)$ be an upper bound on these parameters. Then there is a presentation W of R, such that $W \leq_e P^5$.

Mariya I. Soskova (Sofia University)
Jump ideals in \mathcal{D}_e

Definition

A set of enumeration degrees $\mathcal{I} \subseteq \mathcal{D}_e$ is a jump ideal if it is downwards closed, closed under least upper bound and closed under the jump operation.

\[
\phi_J(u, u') = \max\{a \lor b \mid K(a, b) \land a \leq u\}.
\]

Theorem

Let $\mathcal{I} \subseteq \mathcal{D}_e$ be a jump ideal. For every element $u \in \mathcal{I}$ we have the following equivalence:

\[
\mathcal{I}|_J(u, u') \iff \mathcal{D}_e|_J(u, u').
\]

If $\{a, b\}$ are not a K-pair then there exists $x \leq a' \lor b'$ such that $x \neq (x \lor a) \land (x \lor b)$.

If $\{a, b\}$ are a K-pair and $a \leq u$ then $b \leq u'$.

Corollary

If ρ is an automorphism of a jump ideal \mathcal{I} then $\rho(x') = \rho(x)'$.

Mariya I. Soskova (Sofia University)
Jump ideals in \mathcal{D}_e

Definition

A set of enumeration degrees $\mathcal{I} \subseteq \mathcal{D}_e$ is a jump ideal if it is downwards closed, closed under least upper bound and closed under the jump operation.

Denote by $\varphi(u, u') : u' = \max \{ a \lor b \mid \mathcal{K}(a, b) \& a \leq u\}$.

Theorem

Let $\mathcal{I} \subseteq \mathcal{D}_e$ be a jump ideal. For every element $u \in \mathcal{I}$ we have the following equivalence: $\mathcal{I} \models \varphi_J(u, u') \iff \mathcal{D}_e \models \varphi_J(u, u')$.

Corollary

If ρ is an automorphism of a jump ideal \mathcal{I} then $\rho(x') = \rho(x)'$.

Mariya I. Soskova (Sofia University)
Jump ideals in \mathcal{D}_e

Definition

A set of enumeration degrees $\mathcal{I} \subseteq \mathcal{D}_e$ is a jump ideal if it is downwards closed, closed under least upper bound and closed under the jump operation.

Denote by $\varphi(u, u') : u' = \max \{a \lor b \mid K(a, b) \& a \leq u\}$.

Theorem

Let $\mathcal{I} \subseteq \mathcal{D}_e$ be a jump ideal. For every element $u \in \mathcal{I}$ we have the following equivalence: $\mathcal{I} \models \varphi_J(u, u') \iff \mathcal{D}_e \models \varphi_J(u, u')$.

- If $\{a, b\}$ are not a K-pair then there exists $x \leq a' \lor b'$ such that $x \neq (x \lor a) \land (x \lor b)$.
Jump ideals in \mathcal{D}_e

Definition

A set of enumeration degrees $\mathcal{I} \subseteq \mathcal{D}_e$ is a jump ideal if it is downwards closed, closed under least upper bound and closed under the jump operation.

Denote by $\varphi(u, u') : u' = \max \{a \lor b \mid \mathcal{K}(a, b) \& a \leq u\}$.

Theorem

Let $\mathcal{I} \subseteq \mathcal{D}_e$ be a jump ideal. For every element $u \in \mathcal{I}$ we have the following equivalence: $\mathcal{I} \models \varphi_{\mathcal{J}}(u, u') \iff \mathcal{D}_e \models \varphi_{\mathcal{J}}(u, u')$.

- If $\{a, b\}$ are not a \mathcal{K}-pair then there exists $x \leq a' \lor b'$ such that $x \neq (x \lor a) \land (x \lor b)$.
- If $\{a, b\}$ are a \mathcal{K}-pair and $a \leq u$ then $b \leq u'$.
Jump ideals in \mathcal{D}_e

Definition

A set of enumeration degrees $\mathcal{I} \subseteq \mathcal{D}_e$ is a jump ideal if it is downwards closed, closed under least upper bound and closed under the jump operation.

Denote by $\varphi(u, u') : u' = \max \{a \lor b \mid \mathcal{K}(a, b) \& a \leq u\}$.

Theorem

Let $\mathcal{I} \subseteq \mathcal{D}_e$ be a jump ideal. For every element $u \in \mathcal{I}$ we have the following equivalence: $\mathcal{I} \models \varphi_J(u, u') \iff \mathcal{D}_e \models \varphi_J(u, u')$.

- If $\{a, b\}$ are not a \mathcal{K}-pair then there exists $x \leq a' \lor b'$ such that $x \neq (x \lor a) \land (x \lor b)$.
- If $\{a, b\}$ are a \mathcal{K}-pair and $a \leq u$ then $b \leq u'$.

Corollary

If ρ is an automorphism of a jump ideal \mathcal{I} then $\rho(x') = \rho(x)'$.
Example 1: Automorphisms act locally

Let $\langle \mathbb{N}, 0, s, +, \ast, X \rangle$ be the standard model of arithmetic with one additional predicate for membership in the set X.
Example 1: Automorphisms act locally

Let $\langle \mathbb{N}, 0, s, +, *, X \rangle$ be the standard model of arithmetic with one additional predicate for membership in the set X.

1. Coding Theorem: The structure can be coded by parameters below X''.

2. Decoding Theorem: Suppose the structure is coded by parameters below P then the set X is enumeration reducible to P.

Corollary

Let $I \subseteq J$ be jump ideals in D_e. Let $\rho: J \to J$ be an automorphism of J. Then $\rho \upharpoonright I$ is an automorphism of I.

Fix $x \in I$. Consider $R(X) \in \rho(x)$. Find parameters $p \leq \rho(x) = \rho(x^2)$ which code $\langle \mathbb{N}, 0, s, +, *, R(X) \rangle$. Then $\rho^{-1}(p) \leq x^2$ code the same structure. Hence $\rho(x) \leq x^7$ and hence a member of I.

Mariya I. Soskova (Sofia University)
Example 1: Automorphisms act locally

Let $\langle \mathbb{N}, 0, s, +, \ast, X \rangle$ be the standard model of arithmetic with one additional predicate for membership in the set X.

1. Coding Theorem: The structure can be coded by parameters below X''.

2. Decoding Theorem: Suppose the structure is coded by parameters below P then the set X is enumeration reducible to P^5.

Corollary

Let $I \subseteq J$ be jump ideals in D. Let $\rho : J \to J$ be an automorphism of J. Then $\rho \upharpoonright I$ is an automorphism of I.

Fix $x \in I$. Consider $R(X) \in \rho(x)$. Find parameters $p \leq \rho(x)$ which code $\langle \mathbb{N}, 0, s, +, \ast, R(X) \rangle$. Then $\rho^{-1}(p) \leq x$ code the same structure. Hence $\rho(x) \leq x^7$ and hence a member of I.

Mariya I. Soskova (Sofia University)
Example 1: Automorphisms act locally

Let \(\langle \mathbb{N}, 0, s, +, *, X \rangle \) be the standard model of arithmetic with one additional predicate for membership in the set \(X \).

1. Coding Theorem: The structure can be coded by parameters below \(X'' \).

2. Decoding Theorem: Suppose the structure is coded by parameters below \(P \) then the set \(X \) is enumeration reducible to \(P^5 \).

Corollary

Let \(\mathcal{I} \subseteq \mathcal{J} \) be jump ideals in \(D_e \). Let \(\rho : \mathcal{J} \to \mathcal{J} \) be an automorphism of \(\mathcal{J} \). Then \(\rho \upharpoonright \mathcal{I} \) is an automorphism of \(\mathcal{I} \).
Example 1: Automorphisms act locally

Let \(\langle \mathbb{N}, 0, s, +, *, X \rangle \) be the standard model of arithmetic with one additional predicate for membership in the set \(X \).

1. Coding Theorem: The structure can be coded by parameters below \(X'' \).

2. Decoding Theorem: Suppose the structure is coded by parameters below \(P \) then the set \(X \) is enumeration reducible to \(P^5 \).

Corollary

Let \(\mathcal{I} \subseteq \mathcal{J} \) be jump ideals in \(\mathcal{D}_e \). Let \(\rho : \mathcal{J} \rightarrow \mathcal{J} \) be an automorphism of \(\mathcal{J} \). Then \(\rho \upharpoonright \mathcal{I} \) is an automorphism of \(\mathcal{I} \).

Fix \(x \in \mathcal{I} \). Consider \(R(X) \in \rho(x) \). Find parameters \(p \leq \rho(x)^2 = \rho(x^2) \) which code \(\langle \mathbb{N}, 0, s, +, *, R(X) \rangle \). Then \(\rho^{-1}(p) \leq x^2 \) code the same structure. Hence \(\rho(x) \leq x^7 \) and hence a member of \(\mathcal{I} \).
Example 2: Automorphisms are locally presented

Let \(C \subseteq D_e \) be countable and e-presented beneath \(C \). Let
\(\langle \mathbb{N}, 0, s, +, *, C, \psi \rangle \) be the standard model of arithmetic together with a counting \(\psi : \mathbb{N} \rightarrow C \), arithmetically presented beneath \(C \).
Example 2: Automorphisms are locally presented

Let $C \subseteq \mathcal{D}_e$ be countable and e-presented beneath C. Let $\langle \mathbb{N}, 0, s, +, *, C, \psi \rangle$ be the standard model of arithmetic together with a counting $\psi : \mathbb{N} \rightarrow C$, arithmetically presented beneath C.

1. Coding Theorem: The structure can be coded arithmetically in C.

Corollary

Let $I \subseteq J$ be jump ideals in \mathcal{D}_e. Let $\rho : J \rightarrow J$ be an automorphism of J. If I is countable and e-presented beneath I and $I \in J$ then $\rho | I$ is arithmetically presented in I.

Mariya I. Soskova (Sofia University)
Example 2: Automorphisms are locally presented

Let $C \subseteq D_e$ be countable and e-presented beneath C. Let $\langle \mathbb{N}, 0, s, +, *, C, \psi \rangle$ be the standard model of arithmetic together with a counting $\psi : \mathbb{N} \rightarrow C$, arithmetically presented beneath C.

1. Coding Theorem: The structure can be coded arithmetically in C.

2. Decoding Theorem: Given two such structures, $\langle \mathbb{N}_1, 0_1, s_1, +_1, *_1, C_1, \psi_1 \rangle$ and $\langle \mathbb{N}_2, 0_2, s_2, +_2, *_2, C_2, \psi_2 \rangle$, both coded by parameters below P. Then the relation $C_1 \rightarrow C_2 = \{(x, y) \mid x \in C_1 \& y \in C_2 \& \psi_1^{-1}(x) = \psi_2^{-1}(y)\}$ is arithmetically presented relative to P.
Example 2: Automorphisms are locally presented

Let $C \subseteq D_e$ be countable and e-presented beneath C. Let $\langle \mathbb{N}, 0, s, +, *, C, \psi \rangle$ be the standard model of arithmetic together with a counting $\psi : \mathbb{N} \rightarrow C$, arithmetically presented beneath C.

1. Coding Theorem: The structure can be coded arithmetically in C.

2. Decoding Theorem: Given two such structures, $\langle \mathbb{N}_1, 0_1, s_1, +_1, *_1, C_1, \psi_1 \rangle$ and $\langle \mathbb{N}_2, 0_2, s_2, +_2, *_2, C_2, \psi_2 \rangle$, both coded by parameters below P. Then the relation $C_1 \rightarrow C_2 = \left\{(x, y) \mid x \in C_1 \& y \in C_2 \& \psi_1^{-1}(x) = \psi_2^{-1}(y)\right\}$ is arithmetically presented relative to P.

Corollary

Let $I \subseteq J$ be jump ideals in D_e. Let $\rho : J \rightarrow J$ be an automorphism of J. If I is countable and e-presented beneath I and $I \in J$ then $\rho \upharpoonright I$ is arithmetically presented in I.
Persistent automorphisms

Definition

Let $\mathcal{I} \subseteq \mathcal{D}_e$ be countable jump ideal. An automorphism $\rho : \mathcal{I} \rightarrow \mathcal{I}$ is called persistent if for every $x \in \mathcal{D}_e$ there is a countable jump ideal \mathcal{J} and an automorphism $\rho_1 : \mathcal{J} \rightarrow \mathcal{J}$ such that $\{x\} \cup \mathcal{I} \subseteq \mathcal{J}$ and $\rho_1 \upharpoonright \mathcal{I} = \rho$.
Persistent automorphisms

Definition

Let $\mathcal{I} \subseteq \mathcal{D}_e$ be countable jump ideal. An automorphism $\rho : \mathcal{I} \to \mathcal{I}$ is called persistent if for every $x \in \mathcal{D}_e$ there is a countable jump ideal \mathcal{J} and an automorphism $\rho_1 : \mathcal{J} \to \mathcal{J}$ such that $\{x\} \cup \mathcal{I} \subseteq \mathcal{J}$ and $\rho_1 \restriction \mathcal{I} = \rho$.

Theorem

Let $\mathcal{I} \subseteq \mathcal{J}$ be countable jump ideals in \mathcal{D}_e. Every persistent automorphism of \mathcal{I} can be extended to a persistent automorphism of \mathcal{J}.
Persistent automorphisms

Definition

Let $\mathcal{I} \subseteq \mathcal{D}_e$ be countable jump ideal. An automorphism $\rho : \mathcal{I} \to \mathcal{I}$ is called persistent if for every $x \in \mathcal{D}_e$ there is a countable jump ideal \mathcal{J} and an automorphism $\rho_1 : \mathcal{J} \to \mathcal{J}$ such that $\{x\} \cup \mathcal{I} \subseteq \mathcal{J}$ and $\rho_1 \upharpoonright \mathcal{I} = \rho$.

Theorem

Let $\mathcal{I} \subseteq \mathcal{J}$ be countable jump ideals in \mathcal{D}_e. Every persistent automorphism of \mathcal{I} can be extended to a persistent automorphism of \mathcal{J}.

Note: Every automorphism π of \mathcal{D}_e restricted to a countable ideal \mathcal{I} is a persistent automorphism of \mathcal{I}.
Generic persistence

Definition
Let $\mathcal{I} \subseteq \mathcal{D}_e$ be a jump ideal. An automorphism $\rho : \mathcal{I} \to \mathcal{I}$ is generically persistent if for some generic extension $V[G]$ in which \mathcal{I} is countable, ρ is persistent.

Theorem 1
Every automorphism $\pi : \mathcal{D}_e \to \mathcal{D}_e$ is generically persistent.

2. Let π be an automorphism of \mathcal{D}_e in some generic extension $V[G]$. Then $\pi \in L(R)$.

3. Every persistent automorphism of a countable ideal $\mathcal{I} \subseteq \mathcal{D}_e$ can be extended to an automorphism π of \mathcal{D}_e.
Generic persistence

Definition
Let \(\mathcal{I} \subseteq \mathcal{D}_e \) be a jump ideal. An automorphism \(\rho : \mathcal{I} \to \mathcal{I} \) is generically persistent if for some generic extension \(V[G] \) in which \(\mathcal{I} \) is countable, \(\rho \) is persistent.

Theorem
1. Every automorphism \(\pi : \mathcal{D}_e \to \mathcal{D}_e \) is generically persistent.
Generic persistence

Definition

Let $\mathcal{I} \subseteq \mathcal{D}_e$ be a jump ideal. An automorphism $\rho : \mathcal{I} \to \mathcal{I}$ is generically persistent if for some generic extension $V[G]$ in which \mathcal{I} is countable, ρ is persistent.

Theorem

1. Every automorphism $\pi : \mathcal{D}_e \to \mathcal{D}_e$ is generically persistent.
2. Let π be an automorphism of \mathcal{D}_e in some generic extension $V[G]$. Then $\pi \in L(\mathbb{R})$.
Generic persistence

Definition

Let $\mathcal{I} \subseteq \mathcal{D}_e$ be a jump ideal. An automorphism $\rho : \mathcal{I} \to \mathcal{I}$ is generically persistent if for some generic extension $V[G]$ in which \mathcal{I} is countable, ρ is persistent.

Theorem

1. Every automorphism $\pi : \mathcal{D}_e \to \mathcal{D}_e$ is generically persistent.
2. Let π be an automorphism of \mathcal{D}_e in some generic extension $V[G]$. Then $\pi \in L(\mathbb{R})$.
3. Every persistent automorphism of a countable ideal $\mathcal{I} \subseteq \mathcal{D}_e$ can be extended to an automorphism π of \mathcal{D}_e.
Arithmetically representing images of generic degrees

Theorem (Ganchev, Soskov)

Every automorphism of D_e is the identity on the cone above \emptyset^4.

Mariya I. Soskova (Sofia University)
Theorem (Ganchev, Soskov)

Every automorphism of D_e is the identity on the cone above \emptyset^4.

Uses a result by Richter in the Turing degrees: If the cone above a is isomorphic to the cone above b in the structure of the Turing degrees with jump operation then $a^2 \leq b^3$.
Theorem (Ganchev, Soskov)

Every automorphism of \mathcal{D}_e is the identity on the cone above \emptyset^4.

- Uses a result by Richter in the Turing degrees: If the cone above a is isomorphic to the cone above b in the structure of the Turing degrees with jump operation then $a^2 \leq b^3$.

Theorem

Let π be an automorphism of \mathcal{D}_e. There exists an enumeration operator Γ such that for every 8-generic total function g, $\pi(d_e(g)) = d_e(\Gamma(g \oplus \emptyset^4))$.
Corollary

Let π be an automorphism of D_e. There exists an arithmetic formula φ such that $\varphi(X, Y)$ is true if and only if $\pi(d_e(X)) = d_e(Y)$. There are therefore at most countably many automorphisms of D_e.
Corollary

Let π be an automorphism of \mathcal{D}_e. There exists an arithmetic formula φ such that $\varphi(X, Y)$ is true if and only if $\pi(d_e(X)) = d_e(Y)$. There are therefore at most countably many automorphisms of \mathcal{D}_e.

- By Rozinas every enumeration degree a is the meet of two total degrees f_1 and f_2 uniformly reducible to a''.
Arithmetically representing automorphisms of \mathcal{D}_e

Corollary

Let π be an automorphism of \mathcal{D}_e. There exists an arithmetic formula φ such that $\varphi(X, Y)$ is true if and only if $\pi(d_e(X)) = d_e(Y)$. There are therefore at most countably many automorphisms of \mathcal{D}_e.

- By Rozinas every enumeration degree a is the meet of two total degrees f_1 and f_2 uniformly reducible to a''.
- Every total enumeration degree f is the meet of two 8-generic degrees uniformly reducible to f^8.
Automorphism bases

Theorem

Let π be an automorphism of D_e. There exists an enumeration operator Γ such that for every S-generic total function g,

$$\pi(d_e(g)) = d_e(\Gamma(g \oplus \emptyset^4)).$$

Corollary

The structure of the enumeration degrees D_e has an automorphism base consisting of:

1. A single total degree g.
2. A single quasiminimal degree a.
3. The enumeration degrees below 0^8.

Mariya I. Soskova (Sofia University)
Automorphism bases

Theorem

Let π be an automorphism of \mathcal{D}_e. There exists an enumeration operator Γ such that for every 8-generic total function g,

$$\pi(d_e(g)) = d_e(\Gamma(g \oplus 0^4)).$$

Corollary

The structure of the enumeration degrees \mathcal{D}_e has an automorphism base consisting of:

1. A single total degree g.
2. A single quasiminimal degree a.
3. The enumeration degrees below 0^8_e.
Assigning reals

Definition

Let T be a finitely axiomatizable fragment of ZFC with Σ_1 replacement and Σ_1 comprehension;
Assigning reals

Definition
Let T be a finitely axiomatizable fragment of ZFC with Σ_1 replacement and Σ_1 comprehension; An e-assignment of reals consists of

1. A countable ω-model M of T.

Theorem
If (M, f, I) is an e-assignment of reals then $D_M = I$ and f is an automorphism of I.

Mariya I. Soskova (Sofia University)
Assigning reals

Definition

Let T be a finitely axiomatizable fragment of ZFC with Σ_1 replacement and Σ_1 comprehension; An e-assignment of reals consists of

1. A countable ω-model \mathcal{M} of T.
2. A jump ideal \mathcal{I} in \mathcal{D}_e.

Theorem

If $(\mathcal{M}, f, \mathcal{I})$ is an e-assignment of reals then $\mathcal{D}_e = \mathcal{I}$ and f is an automorphism of \mathcal{I}.
Assigning reals

Definition

Let T be a finitely axiomatizable fragment of ZFC with Σ_1 replacement and Σ_1 comprehension; An e-assignment of reals consists of

1. A countable ω-model \mathcal{M} of T.
2. A jump ideal \mathcal{I} in \mathcal{D}_e.
3. A bijection $f : \mathcal{D}^\mathcal{M}_e \rightarrow \mathcal{I}$, such that for all $x, y \in \mathcal{D}^\mathcal{M}_e$, if $\mathcal{M} \models x \geq y$ then $f(x) \geq f(y)$.

Theorem

If $(\mathcal{M}, f, \mathcal{I})$ is an e-assignment of reals then $\mathcal{D}^\mathcal{M}_e = \mathcal{I}$ and f is an automorphism of \mathcal{I}.
Assigning reals

Definition

Let T be a finitely axiomatizable fragment of ZFC with Σ_1 replacement and Σ_1 comprehension; An e-assignment of reals consists of

1. A countable ω-model \mathcal{M} of T.
2. A jump ideal \mathcal{I} in \mathcal{D}_e.
3. A bijection $f : D^\mathcal{M}_e \rightarrow \mathcal{I}$, such that for all $x, y \in D^\mathcal{M}_e$, if $\mathcal{M} \models x \geq y$ then $f(x) \geq f(y)$.

Theorem

If $(\mathcal{M}, f, \mathcal{I})$ is an e-assignment of reals then $D^\mathcal{M}_e = \mathcal{I}$ and f is an automorphism of \mathcal{I}.
An e-assignment of reals $(\mathcal{M}, f, \mathcal{I})$ is extendable if for every $z \in D_e$ there exists an e-assignment of reals $(\mathcal{M}_1, f_1, \mathcal{I}_1)$ such that $D_e^\mathcal{M} \subseteq D_e^\mathcal{M}_1$, $\mathcal{I} \cup \{z\} \subseteq \mathcal{I}_1$ and $f \subseteq f_1$.
Definition

An e-assignment of reals \((M, f, I)\) is extendable if for every \(z \in D_e\) there exists an e-assignment of reals \((M_1, f_1, I_1)\) such that \(D_e^M \subseteq D_e^{M_1}\), \(I \cup \{z\} \subseteq I_1\) and \(f \subseteq f_1\).

Theorem

If \((M, f, I)\) is an extendible e-assignment then there is an automorphism \(\pi : D_e \rightarrow D_e\), such that for all \(x \in D_e^M\), \(\pi(x) = f(x)\).
Example 3: Interpreting automorphisms

Let \((\mathcal{M}, f, I)\) be an extendable e-assignment of reals.
Example 3: Interpreting automorphisms

Let \((M, f, I)\) be an extendable e-assignment of reals.

1. We can interpret this structure in \(\mathcal{D}_e\).
Example 3: Interpreting automorphisms

Let $(\mathcal{M}, f, \mathcal{I})$ be an extendable e-assignment of reals.

1. We can interpret this structure in \mathcal{D}_e.
2. Coding Theorem: This interpretation can be coded by finitely many parameters \bar{p}.

Mariya I. Soskova (Sofia University)
Example 3: Interpreting automorphisms

Let \((M, f, I)\) be an extendable e-assignment of reals.

1. We can interpret this structure in \(D_e\).
2. Coding Theorem: This interpretation can be coded by finitely many parameters \(\overline{p}\).
3. \(\overline{p}\) codes an extendable e-assignment of reals " is a definable property.
Example 3: Interpreting automorphisms

Let \((\mathcal{M}, f, \mathcal{I})\) be an extendable e-assignment of reals.

1. We can interpret this structure in \(D_e\).
2. Coding Theorem: This interpretation can be coded by finitely many parameters \(\vec{p}\).
3. “\(\vec{p}\) codes an extendable e-assignment of reals” is a definable property.

Theorem

Let \(g\) be the enumeration degree of an \(8\)-generic \(g \leq_e \emptyset^8\). Then the relation \(Bi(\vec{c}, d)\), stating that “\(\vec{c}\) codes a model of arithmetic with a unary predicate for \(X\) and \(d_e(X) = d\)” is definable in \(D_e\) using parameter \(g\).
Example 3: Interpreting automorphisms

Let \((\mathcal{M}, f, \mathcal{I})\) be an extendable e-assignment of reals.

1. We can interpret this structure in \(\mathcal{D}_e\).
2. Coding Theorem: This interpretation can be coded by finitely many parameters \(\bar{p}\).
3. “\(\bar{p}\) codes an extendable e-assignment of reals” is a definable property.

Theorem

Let \(g\) be the enumeration degree of an 8-generic \(g \leq_e \emptyset^8\). Then the relation \(\text{Bi}(\bar{c}, \bar{d})\), stating that “\(\bar{c}\) codes a model of arithmetic with a unary predicate for \(X\) and \(d_e(X) = \bar{d}\)” is definable in \(\mathcal{D}_e\) using parameter \(g\). \(\mathcal{D}_e\) is biinterpretable with second order arithmetic using parameters.
Corollary

Let $R \subseteq (2^\omega)^n$ be relation definable in second order arithmetic and invariant under enumeration reducibility.

In particular TOT is definable with one parameter.

If R is invariant under automorphisms then R is definable without parameters in D_e. In particular the hyperarithmetic jump operation is first order definable in D_e.
Definability in \mathcal{D}_e

Corollary

Let $R \subseteq (2^\omega)^n$ be relation definable in second order arithmetic and invariant under enumeration reducibility.

1. The relation $R \subseteq \mathcal{D}_e^n$ defined by

$$R(d_e(X_1), \ldots, d_e(X_n)) \leftrightarrow R(X_1, \ldots, X_n)$$

is definable in \mathcal{D}_e with one parameter.

In particular

TOT is definable with one parameter.

If R is invariant under automorphisms then R is definable without parameters in \mathcal{D}_e.

In particular the hyperarithmetic jump operation is first order definable in \mathcal{D}_e.

Mariya I. Soskova (Sofia University)
Definability in \mathcal{D}_e

Corollary

Let $R \subseteq (2^\omega)^n$ be relation definable in second order arithmetic and invariant under enumeration reducibility.

1. The relation $\mathcal{R} \subseteq \mathcal{D}_e^n$ defined by $\mathcal{R}(\text{d}_e(X_1), \ldots, \text{d}_e(X_n)) \leftrightarrow R(X_1, \ldots, X_n)$ is definable in \mathcal{D}_e with one parameter.

In particular TOT is definable with one parameter.
Definability in D_e

Corollary

Let $R \subseteq (2^\omega)^n$ be relation definable in second order arithmetic and invariant under enumeration reducibility.

1. The relation $R \subseteq D^n_e$ defined by

 $R(d_e(X_1), \ldots, d_e(X_n)) \leftrightarrow R(X_1, \ldots, X_n)$

 is definable in D_e with one parameter.

 In particular TOT is definable with one parameter.

2. If R is invariant under automorphisms then R is definable without parameters in D_e.
Corollary

Let $R \subseteq (2^\omega)^n$ be relation definable in second order arithmetic and invariant under enumeration reducibility.

1. The relation $R \subseteq \mathcal{D}^n_e$ defined by $R(d_e(X_1), \ldots, d_e(X_n)) \leftrightarrow R(X_1, \ldots, X_n)$ is definable in \mathcal{D}_e with one parameter.
 In particular TOT is definable with one parameter.

2. If R is invariant under automorphisms then R is definable without parameters in \mathcal{D}_e.
 In particular the hyperarithmetic jump operation is first order definable in \mathcal{D}_e.
Thank you!