Geometry of the pure n-ary ab initio Hrushovski construction

Omer Mermelstein
Ben-Gurion University of the Negev

Set Theory, Model Theory and Applications, Eilat 2018
26.04.2018
Definition

A *combinatorial pregeometry* is a (assume countable) set X with a dimension function $d : \mathcal{P}(X) \to \mathbb{N} \cup \{\infty\}$ such that for all $Y, Z \in \mathcal{P}(X), x \in X$:

1. $d(Y) \leq |Y|
2. d(Y) \leq d(Yx) \leq d(Y) + 1$
3. $d(Y \cup Z) \leq d(Y) + d(Z) - d(Y \cap Z)$ (submodular)
4. $d(Y) = \sup \{d(Y_0) \mid Y_0 \in \text{Fin}(Y)\}$ (finitary)

Examples: cardinality, linear dimension, transcendence degree.

Definition

A set Y is *closed* if for any x

$$d(Yx) = d(Y) \implies x \in Y.$$
Definition

A finite set \(Y \) is *independent* if \(d(Y) = |Y| \).
An infinite set \(Y \) is independent if all its finite subsets are independent.

A pregeometry is uniquely determined by its set of dependent/independent finite tuples.
A pregeometry can be identified with a first-order structure in the language \(\{ D_k \mid k \in \omega \} \) by interpreting \(D_k \) as the set of dependent \(k \)-tuples.

Definition

A pregeometry on a set \(X \) is *\(n \)-pure* if \(D_n = \emptyset \). Equivalently, every subset of \(X \) of size \(n \) is independent.
A finite set Y is independent if $d(Y) = |Y|$. An infinite set Y is independent if all its finite subsets are independent.

A pregeometry is uniquely determined by its set of dependent/independent finite tuples. A pregeometry can be identified with a first-order structure in the language $\{D_k \mid k \in \omega\}$ by interpreting D_k as the set of dependent k-tuples.

A pregeometry on a set X is n-pure if $D_n = \emptyset$. Equivalently, every subset of X of size n is independent.
Definition

A finite set Y is independent if $d(Y) = |Y|$. An infinite set Y is independent if all its finite subsets are independent.

A pregeometry is uniquely determined by its set of dependent/independent finite tuples. A pregeometry can be identified with a first-order structure in the language $\{D_k \mid k \in \omega\}$ by interpreting D_k as the set of dependent k-tuples.

Definition

A pregeometry on a set X is n-pure if $D_n = \emptyset$. Equivalently, every subset of X of size n is independent.
Fraïssé’s Theorem

Let \mathbb{C} be a countable (up to isomorphisms) class of finitely generated structures, closed under isomorphisms. Let \leq be a distinguished notion of embedding, preserved under isomorphism. Assume

HP \quad A \leq B, \ B \in \mathbb{C} \implies A \in \mathbb{C}.

JEP \quad A, B \in \mathbb{C} \implies \exists D \in \mathbb{C} \text{ s.t. } A, B \leq D.

AP \quad \forall A, B_1, B_2 \in \mathbb{C}

\[A \leq B_1 \leq B_2 \leq D \]

Then there exists a unique (up to isomorphism) countable generic structure \mathcal{M} with $\text{age}_{\leq}(\mathcal{M}) = \mathbb{C}$ such that $\forall A, B \in \mathbb{C}$

\[A \leq B \leq \mathcal{M} \]
Definition

For any finite hypergraph $A = (V, E)$ define

$$\delta(A) = |V| - |E|$$

and for any induced subgraph $B \subseteq A$ define

$$d_A(B) = \min \{ \delta(B') \mid B \subseteq B' \subseteq_{\text{fin}} A \}$$

$$B \leq A \iff \delta(B) = d_A(B)$$

The function d_A is the dimension function of a pregeometry on A whenever $\emptyset \leq A$.

Definition

Say that B strongly embeds into A if there exists an embedding $f : B \to A$ such that $f[B] \leq A$.
Hrushovski’s construction

Let $\mathcal{C} = \{A \mid \emptyset \subseteq A\}$. The class \mathcal{C} is a Fraïssé amalgamation class with respect to \subseteq-embeddings. We denote its generic structure \mathcal{M} and its associated pregeometry G.

Variations

- Restrict \mathcal{C} to n-uniform hypergraphs — \mathcal{M}^n

 Fact: $n \neq k \implies G^n \not\cong G^k$ (Evans and Ferreira)

- Consider directed hypergraphs — \mathcal{M}^\neq

 Fact: $G^\neq \cong G$

- Restrict to hypergraphs whose geometries are n-pure — \mathcal{M}_n

For a fixed n, we will construct the pregeometry \mathcal{M}_n^{n+1} — the n-pure $(n + 1)$-ary construction — as a Fraïssé-Hrushovski limit.
Hrushovski’s construction

Let \(C = \{ A \mid \emptyset \leq A \} \). The class \(C \) is a Fraïssé amalgamation class with respect to \(\leq \)-embeddings. We denote its generic structure \(M \) and its associated pregeometry \(G \).

Variations

- Restrict \(C \) to \(n \)-uniform hypergraphs — \(M^n \)

 Fact: \(n \neq k \implies G^n \not\cong G^k \) (Evans and Ferreira)

- Consider directed hypergraphs — \(M^{\nabla} \)

 Fact: \(G^{\nabla} \cong G \)

- Restrict to hypergraphs whose geometries are \(n \)-pure — \(M_n \)

For a fixed \(n \), we will construct the pregeometry \(M_n^{n+1} \) — the \(n \)-pure \((n+1)\)-ary construction — as a Fraïssé-Hrushovski limit.
Hrushovski’s construction

Let $\mathcal{C} = \{ A \mid \emptyset \leq A \}$. The class \mathcal{C} is a Fraïssé amalgamation class with respect to \leq-embeddings. We denote its generic structure \mathbb{M} and its associated pregeometry \mathbb{G}.

Variations

- Restrict \mathcal{C} to n-uniform hypergraphs — \mathbb{M}^n
 Fact: $n \neq k \implies \mathbb{G}^n \not\cong \mathbb{G}^k$ (Evans and Ferreira)

- Consider directed hypergraphs — \mathbb{M}^\prec
 Fact: $\mathbb{G}^\prec \cong \mathbb{G}$

- Restrict to hypergraphs whose geometries are n-pure — \mathbb{M}_n

For a fixed n, we will construct the pregeometry \mathbb{M}^{n+1}_n — the n-pure $(n + 1)$-ary construction — as a Fraïssé-Hrushovski limit.
Hrushovski’s construction

Let $\mathcal{C} = \{A \mid \emptyset \leq A\}$. The class \mathcal{C} is a Fraïssé amalgamation class with respect to \leq-embeddings. We denote its generic structure \mathbb{M} and its associated pregeometry \mathbb{G}.

Variations

- Restrict \mathcal{C} to n-uniform hypergraphs — \mathbb{M}^n
 Fact: $n \neq k \implies \mathbb{G}^n \not\cong \mathbb{G}^k$ (Evans and Ferreira)
- Consider directed hypergraphs — \mathbb{M}^{\prec}
 Fact: $\mathbb{G}^{\prec} \cong \mathbb{G}$
- Restrict to hypergraphs whose geometries are n-pure — \mathbb{M}_n

For a fixed n, we will construct the pregeometry \mathbb{M}_n^{n+1} — the n-pure $(n + 1)$-ary construction — as a Fraïssé-Hrushovski limit.
Our first goal is assigning n-pure pregeometries associated to $(n+1)$-ary hypergraphs a predimension.

Predimension

The standard δ does not work – a graph of a pregeometry may have too many edges. The solution is to calculate predimension using cliques, instead of individual edges.

A closed set Y of dimension n has on it all possible $(n+1)$-edges. Since its dimension should be n, we define

$$\lambda(Y) = |Y| - (|Y| - n)$$

Generalizing, for an n-pure pregeometry A with $M(A)$ its set of closed sets of dimension $(n+1)$ we define

$$\lambda(A) = |A| - \sum_{C \in M(A)} (|C| - n)$$
Free amalgamation does not work in the case of pregeometries.

Example

Let A, B, C be $(n+1)$-uniform cliques (sets of dimension n) with $A \subset B$, C, $|A| > n$.
The hypergraph on $B \cup C$ with set of hyperedges $E^B \cup E^C$ is not a hypergraph representing a pregeometry.

The problem is that two distinct “closed sets” have too big of an intersection, and so they must be the same closed set.
Treating a union of intersecting closed sets as a single closed set solves the problem.
Free amalgamation does not work in the case of pregeometries.

Example

Let A, B, C be $(n + 1)$-uniform cliques (sets of dimension n) with $A \subset B$, C, $|A| > n$.

The hypergraph on $B \cup C$ with set of hyperedges $E^B \cup E^C$ is not a hypergraph representing a pregeometry.

The problem is that two distinct “closed sets” have too big of an intersection, and so they must be the same closed set.

Treating a union of intersecting closed sets as a single closed set solves the problem.
Definition

Define C_{0}^{geo} to be the class of finite n-pure pregeometries associated to $(n+1)$-uniform hypergraphs. Define $C^{geo} = \{A \upharpoonright D_{n+1} | A \in C_{0}^{geo}\}$.

With respect to the predimension function λ and the altered amalgam, C^{geo} is a Fraïssé-Hrushovski amalgamation class. Denote its generic M^{geo}.

Proposition

The pregeometry on M^{geo} given by the predimension function λ, is precisely G_{n}^{n+1} – the pregeometry given by the predimension function δ on M^{n+1}.

Moreover, the hyperedges of M^{geo} are exactly D_{n+1} of G_{n}^{n+1}.

The dependent $(n+1)$-tuples are sufficient information to calculate the dimension of any subset of G_{n}^{n+1}, so in some sense we could say that G_{n}^{n+1} is a Fraïssé-Hrushovski limit. However, that is not exactly the case...
Definition

Define $\mathcal{C}_{\text{geo}}^0$ to be the class of finite n-pure pregeometries associated to $(n+1)$-uniform hypergraphs. Define $\mathcal{C}_{\text{geo}} = \{ A \upharpoonright D_{n+1} \mid A \in \mathcal{C}_{\text{geo}}^0 \}$.

With respect to the predimension function λ and the altered amalgam, \mathcal{C}_{geo} is a Fraïssé-Hrushovski amalgamation class. Denote its generic $\mathfrak{M}_{\text{geo}}$.

Proposition

The pregeometry on $\mathfrak{M}_{\text{geo}}$ given by the predimension function λ, is precisely G_n^{n+1} - the pregeometry given by the predimension function δ on \mathfrak{M}_n^{n+1}.

Moreover, the hyperedges of $\mathfrak{M}_{\text{geo}}$ are exactly D_{n+1} of G_n^{n+1}.

The dependent $(n+1)$-tuples are sufficient information to calculate the dimension of any subset of G_n^{n+1}, so in some sense we could say that G_n^{n+1} is a Fraïssé-Hrushovski limit. However, that is not exactly the case...
Definition

Define \mathbb{C}_0^{geo} to be the class of finite n-pure pregeometries associated to $(n+1)$-uniform hypergraphs.
Define $\mathbb{C}^{geo} = \{ A \mid D_{n+1} \mid A \in \mathbb{C}_0^{geo} \}$.

With respect to the predimension function λ and the altered amalgam, \mathbb{C}^{geo} is a Fraïssé-Hrushovski amalgamation class. Denote its generic \mathbb{M}^{geo}.

Proposition

The pregeometry on \mathbb{M}^{geo} given by the predimension function λ, is precisely \mathbb{G}^{n+1}_n — the pregeometry given by the predimension function δ on \mathbb{M}^{n+1}_n.
Moreover, the hyperedges of \mathbb{M}^{geo} are exactly D_{n+1} of \mathbb{G}^{n+1}_n.

The dependent $(n+1)$-tuples are sufficient information to calculate the dimension of any subset of \mathbb{G}^{n+1}_n, so in some sense we could say that \mathbb{G}^{n+1}_n is a Fraïssé-Hrushovski limit. However, that is not exactly the case...
Definition

Define C_{geo}^0 to be the class of finite n-pure pregeometries associated to $(n + 1)$-uniform hypergraphs.
Define $C_{geo} = \{A \upharpoonright D_{n+1} \mid A \in C_{geo}^0\}$.

With respect to the predimension function λ and the altered amalgam, C_{geo} is a Fraïssé-Hrushovski amalgamation class. Denote its generic M_{geo}.

Proposition

The pregeometry on M_{geo} given by the predimension function λ, is precisely G_{n}^{n+1} – the pregeometry given by the predimension function δ on M_{n}^{n+1}. Moreover, the hyperedges of M_{geo} are exactly D_{n+1} of G_{n}^{n+1}.

The dependent $(n + 1)$-tuples are sufficient information to calculate the dimension of any subset of G_{n}^{n+1}, so in some sense we could say that G_{n}^{n+1} is a Fraïssé-Hrushovski limit. However, that is not exactly the case...
The structures differ in language: \mathcal{M}^{geo} is an $n + 1$-uniform hypergraph, whereas \mathcal{G}_n^{n+1} is an expansion that has edges of all arities. Combinatorially, the two hypergraphs hold the exact same information, but this information is not first-order.

Example

\mathcal{M}^{geo} is ω-stable and saturated. \mathcal{G}_n^{n+1} is not saturated.

Consider the type of a dependent $(n+2)$-tuple whose every $(n+1)$-subtuple is independent.

In particular, the relations $\{D_i\}_{i>n+1}$ are not definable in \mathcal{M}^{geo}. They are strictly \mathcal{V}-definable.
The structures differ in language: \mathbb{M}^{geo} is an $n + 1$-uniform hypergraph, whereas \mathbb{G}^{n+1}_n is an expansion that has edges of all arities. Combinatorially, the two hypergraphs hold the exact same information, but this information is not first-order.

Example

\mathbb{M}^{geo} is ω-stable and saturated.

\mathbb{G}^{n+1}_n is not saturated.

Consider the type of a dependent $(n + 2)$-tuple whose every $(n + 1)$-subtuple is independent.

In particular, the relations $\{D_i\}_{i > n+1}$ are not definable in \mathbb{M}^{geo}. They are strictly V-definable.
The structures differ in language: \mathfrak{M}^{geo} is an $n + 1$-uniform hypergraph, whereas \mathfrak{G}_n^{n+1} is an expansion that has edges of all arities. Combinatorially, the two hypergraphs hold the exact same information, but this information is not first-order.

Example

\mathfrak{M}^{geo} is ω-stable and saturated.
\mathfrak{G}_n^{n+1} is not saturated.
Consider the type of a dependent $(n + 2)$-tuple whose every $(n + 1)$-subtupple is independent.

In particular, the relations $\{D_i\}_{i > n + 1}$ are not definable in \mathfrak{M}^{geo}. They are strictly \forall-definable.
Questions - first order

1. Is $Th(G_n^{n+1})$ ω-stable?
2. Is $Th(G_n^{n+1}) = Th(G_m^{m+1})$ for $m, n \geq 3$?
3. Does G_n^{n+1} have any proper (geometrically) non-trivial reducts?

When the purity and arity differ, say G_n^{n+2}, naive generalizations of λ fail submodularity. The magic in the case of $(n, n+1)$ is that the class of n-pure $(n+1)$-ary pregeometries is closed under substructures.

The construction of G_n^{n+2} can be carried out from a class of pregeometries (Evans-Ferreira) that is not closed under substructures.

Question - predimension construction

Can the construction of G_n^{n+2} be carried out as a Fraïssé-Hrushovski predimension construction?