Generalized Polynomial Models of Biochemical Systems

Gheorghe Craciun\(^1\), Stefan Müller\(^2\), Casian Pantea\(^3\), and Polly Yu\(^4\)

\(^1\) University of Wisconsin–Madison \(^2\) University of Vienna \(^3\) West Virginia University

Biological Motivations

- Mass action systems model metabolite concentrations, but unrealistic assumptions for biological systems, e.g., well-mixed and homogeneous environment.
- Some other models are time-dependent parameters, power-law or generalized polynomials [4], and stochastic processes [1].
- Use generalized polynomial models as a tool to study dynamically equivalent mass action systems [3].

Philosophical Objectives

- Avoid unwieldy computations: Infer dynamical properties based on network structure, independent of parameters.
- Beyond statistics: Insights into biological processes and mechanisms based on kinetics.

Example: Futile Cycle

- Enzymes E, F catalyzing reactions on substrates S:\n
 \[
 E + S \xrightleftharpoons{\kappa_{12}}{\kappa_{21}} S E \xrightleftharpoons{\kappa_{34}}{\kappa_{43}} E + S
 \]

 F + S \xrightleftharpoons{\kappa_{40}}{\kappa_{04}} S F \xrightleftharpoons{\kappa_{13}}{\kappa_{31}} F + S

 Let \(x^T = (x_E, x_S, x_{SE}, x_E, x_S, x_F, x_S) \) be a concentration vector.

 Represent the reaction complexes as:

 \(y_1 \sim E + S \), \(y_2 \sim ES \), \(y_3 \sim E + S \), \(y_4 \sim F + S \), \(y_5 \sim F + S \), \(y_6 \sim F + S \).

 Under mass action kinetics:

 \[
 \frac{dx}{dt} = \kappa_{12} x_E x_S \left[y_2 - y_1 \right] + \kappa_{21} x_E x_S \left[y_1 - y_2 \right] + \ldots
 \]

 Representation of the network as a directed graph:

 \[
 \begin{array}{ccc}
 \bullet & \xrightarrow{\kappa_{12}} & \bullet \\
 \bullet & \xrightarrow{\kappa_{21}} & \bullet \\
 \bullet & \xleftrightarrow{\kappa_{34}} & \bullet \\
 \bullet & \xleftrightarrow{\kappa_{43}} & \bullet \\
 \bullet & \xleftarrow{\kappa_{40}} & \bullet \\
 \end{array}
 \]

- **Weakly reversible** networks admit **complex-balanced equilibria**, positive steady states where the net flux across each vertex is 0.
- For mass action, complex-balanced implies uniqueness and stability of steady states.
- For stochastic mass action, complex-balanced system has a product of Poissons as its stationary distribution. [1]

Generalized Mass Action Systems

- Reaction network: a weighted directed graph \(G_n = (V, E, \kappa) \)
- Assign a **reaction complex** \(y_i \in \mathbb{R}^n \) and a **kinetic complex** \(\tilde{y}_i \in \mathbb{R}^n \) to each vertex \(y_i \in V \).

```
  y_1 \sim E + S, \ y_2 \sim ES, \ y_3 \sim E + S, \ y_4 \sim F + S,
  y_5 \sim F + S, \ y_6 \sim E + S.
```

- The **sign vector** \(\sigma(x) \) of vector \(x \in \mathbb{R}^n \) is \(\sigma(x) = (\text{sign}(x_i))_{i=1}^n \).
- **Interpretations:**
 - the orthants that the vectors \(x \in S \) point in (geometry of \(S \)),
 - the face lattice of convex cone generated by basis elements of \(S^{\perp} \) (relative positions of vectors).
- **Closure** \(\overline{\sigma(S)} \) includes sign vectors in \(\sigma(S) \) and those with possibly more zero components, i.e., signs of vectors lying on the coordinate walls of orthants containing vectors of \(S \).

Network Condition for Existence and Uniqueness of Steady State

- **Proposition: Uniqueness [4]**
 At most one vertex-balanced equilibrium exists within \(x_0 + S \) for any \(x_0 \in \mathbb{R}^n \) if and only if \(\sigma(S) \cap \overline{\sigma(S)} = \{0\} \).

- **Corollary:**
 A system is **multistationary** if \(\sigma(S) \cap \overline{\sigma(S)} \neq \{0\} \).

Main Tool: Sign Vectors

- **Theorem: Uniqueness and Existence**
 Suppose \(Z_k \neq \emptyset \) if \(\dim S = \dim \overline{S} \) and \(\sigma(S) \subseteq \overline{\sigma(S)} \) then there is exactly one vertex-balanced equilibrium in \(x_0 + S \) for any \(x_0 \in \mathbb{R}^n \).

Future Directions

- Characterize when a positive steady state of a mass action system is vertex-balanced for a dynamically equivalent generalized mass action system.
- Study the effects of perturbing \(S \mapsto \tilde{S} \) on the set of steady states of a mass action system.
- Find necessary and sufficient condition on the network, \(S \), and \(\tilde{S} \) for the existence of a vertex-balanced equilibrium.

References