1 Random walks and recurrence

DEF 28.1 A random walk (RW) on \(\mathbb{R}^d \) is an SP of the form:

\[
S_n = \sum_{i \leq n} X_i, \quad n \geq 1
\]

where the \(X_i \)s are iid in \(\mathbb{R}^d \).

EX 28.2 (SRW on \(\mathbb{Z}^d \)) This is the special case:

\[
P[X_i = e_j] = P[X_i = -e_j] = \frac{1}{2d},
\]

for all \(j = 1, \ldots, d \) where \(e_j \) is the unit vector in the \(j \)-th direction.

DEF 28.3 We say that \(x \in \mathbb{R}^d \) is a recurrent value if, for all \(\varepsilon > 0 \), \(P[\|S_n - x\| < \varepsilon \text{ i.o.}] = 1 \). Let \(V \) be the set of recurrent values. We say that \(S_n \) is transient if \(V = \emptyset \), o.w. it is recurrent.

2 SRW on \(\mathbb{Z} \)

Recall Stirling’s formula:

\[
n! \sim n^ne^{-n}\sqrt{2\pi n}.
\]

THM 28.4 (SRW on \(\mathbb{Z} \)) SRW on \(\mathbb{Z} \) is recurrent.

Proof: First note the periodicity. So we look at \(S_{2n} \). Then

\[
P[S_{2n} = 0] = \binom{2n}{n} 2^{-2n}
\]

\[
\sim 2^{-2n} \left(\frac{(2n)^{2n}}{(n^n)^2} \right)^2 \frac{\sqrt{2n}}{\sqrt{2\pi n}}
\]

\[
\sim \frac{1}{\sqrt{\pi n}}.
\]
Lecture 28: Random walks: recurrence

So
\[\sum_m \mathbb{P}[S_m = 0] = \infty. \]

Denote
\[T_0^{(n)} = \inf \{ m > T_0^{(n-1)} : S_m = 0 \}. \]

By the strong Markov property \(\mathbb{P}[T_0^{(n)} < \infty] = \mathbb{P}[T_0 < \infty]^n. \) Note that
\[\sum_m \mathbb{P}[S_m = 0] = \mathbb{E}[\sum_m 1_{S_m = 0}] = \mathbb{E}[\sum_n 1_{T_0^{(n)} < \infty}] = \sum_n \mathbb{P}[T_0^{(n)} < \infty] = \sum_n \mathbb{P}[T_0 < \infty]^n = \frac{1}{1 - \mathbb{P}[T_0 < \infty]}.
\]

So \(\mathbb{P}[T_0 < \infty] = 1. \)

3 SRW on \(\mathbb{Z}^2 \)

Now \(X_1 \) is in \(\mathbb{Z}^2 \) and \(\mathbb{P}[X_1 = (1, 0)] = \cdots = \mathbb{P}[X_1 = (0, -1)] = 1/4. \)

THM 28.5 (SRW on \(\mathbb{Z}^2 \)) SRW on \(\mathbb{Z}^2 \) is recurrent.

Proof: Let \(R_n = (S_n^{(1)}, S_n^{(2)}) \) where \(S_n^{(i)} \) are independent SRW on \(\mathbb{Z} \). Note that \(R_n \) is a SRW on \(\mathbb{Z}^2 \) rotated by 45 degrees. So the probability to be back at \((0, 0) \) is the same as for two independent SRW on \(\mathbb{Z} \) to be back at 0 simultaneously. Therefore,
\[\mathbb{P}[S_{2n} = (0, 0)] = \mathbb{P}[S_{2n}^{(1)} = 0]^2 \sim \frac{1}{\pi n}, \]
whose sum diverges. \(\blacksquare \)

4 SRW on \(\mathbb{Z}^3 \)

Now \(X_1 \) is in \(\mathbb{Z}^3 \) and \(\mathbb{P}[X_1 = (1, 0, 0)] = \cdots = \mathbb{P}[X_1 = (0, 0, -1)] = 1/6. \)

THM 28.6 (SRW on \(\mathbb{Z}^3 \)) SRW on \(\mathbb{Z}^3 \) is transient.
Proof: Note, since the number of steps in opposite directions has to be equal,

\[\mathbb{P}[S_{2n} = 0] = 6^{-2n} \sum_{j,k} \frac{(2n)!}{j!k!(n-k-j)!}^2 \]

\[= 2^{-2n} \binom{2n}{n} \sum_{j,k} \frac{n!}{j!k!(n-k-j)!} \]

\[\leq 2^{-2n} \binom{2n}{n} \max_{j,k} \frac{n!}{j!k!(n-k-j)!}, \]

where we used that \(\sum_{j,k} a_{j,k}^2 \leq \max_{i,j} a_{j,k} \equiv a^* \) if \(\sum_{j,k} a_{j,k} = 1 \) and \(a_{j,k} \geq 0 \).

Note that if \(j < n/3 \) and \(k > n/3 \) then

\[\frac{(j+1)!(k-1)!}{j!k!} = \frac{j+1}{k} \leq 1. \]

That implies that the term in the max is maximized when \(j, k, (n-k-j) \) are roughly \(n/3 \). Using Stirling

\[\frac{n!}{j!k!(n-k-j)!} \sim \frac{n^n}{j^j k^k (n-k-j)^{n-k-j}} \sqrt{\frac{n}{j!k!(n-k-j)!}} \frac{1}{2\pi} \sim C \frac{3^n}{n}. \]

Hence \(\mathbb{P}[S_{2n} = 0] \sim C n^{-3/2} \) which is summable and \(\mathbb{P}[T_0 < \infty] < 1. \)

Corollary 28.7 SRW on \(\mathbb{Z}^d \) with \(d > 3 \) is transient.

Proof: Let \(R_n = (S_n^1, S_n^2, S_n^3) \). Let

\[U_m = \inf\{n > U_{m-1} : R_n \neq R_{U_{m-1}} \}. \]

Then \(R_{U_n} \) is a three-dimensional SRW. It visits \((0,0,0) \) only finitely many times whp.

5 RW in \(\mathbb{R}^d \)

Now \(X_1 \) is in \(\mathbb{R}^d \). See [Dur10, Section 3.2] for a proof of:

- \(S_n \) is recurrent in \(d = 1 \) if \(S_n/n \to 0 \) in probability
- \(S_n \) is recurrent in \(d = 2 \) if \(S_n/\sqrt{n} \Rightarrow \) Gaussian
- \(S_n \) is recurrent in \(d \geq 3 \) if it is truly three-dimensional (for all \(\theta \neq 0 \), \(\mathbb{P}[X_1 \cdot \theta \neq 0] > 0 \))
References