Let Z be a discrete random variable. Let Σ the set of all values of Z. Let \(\{Z_n\}_{n=1}^{\infty} \) be a sequence of iid random variables with distribution as Z.

Let A and B to finite sequences over Σ, such that B is not a connected subsequence of A. Define

\[
N_B = \min\{k : B \text{ is a connected subsequence of } (Z_1, \cdots, Z_k)\},
\]

Then N_B is a stopping times. The goal is to find EN_B and EN_{AB} for a given sequence A.

Notice that since B is finite, and every finite sequence has a positive probability, then $N_B \leq G$, for some geometric random variable. (G for example could be the smallest n, such that $Z_{nk}, Z_{nk+1}, \cdots, Z_{(n+1)k-1}$ matches the pattern we want.

Example 1 Let a die, which shows x, y and z with respective probabilities $\frac{1}{2}, \frac{1}{3},$ and $\frac{1}{6}$ be rolled repeatedly. Let B be the sequence (x, z, x). Compute N_B.

Solution:

We introduce the following fair game. A gambler bets 1 dollar. At the first roll if x appears, he receives 2 dollars (including his bet) and must parlay the 2 dollars on the occurrence of z at the second roll. If he wins, he receives 12 dollars and must parlay the whole amount of 12 dollars on the occurrence of x at the third roll. If he wins three times in a row, he receives 24 dollars and the game is over.

Now suppose that, before each roll, a new gambler joins the game and starts betting 1 dollar on the same sequence B. We continue the game until the first person wins. For example if the rolls turn out to be $(y, x, x, z, y, x, x, z, x)$, then we have 9 participants. The gambler 7 wins 24, and the gambler 9 wins 2 dollars. Since this game is a martingale, then the sequence of the participants gain $\{X_{N_B} \wedge n\}$ forms a martingale. Therefore

\[
EX_{N_B} \wedge n = 0
\]

We will argue that

\[
EX_N = \lim_{N \to \infty} EX_{N \wedge n} = 0
\]

Equation(1) will let us to calculate EN. This is because of the following relation between the net gain X of the participants and N_B. Given $N_B = n$, then all...
n participants except for n – 2th who wins 24 and n th who wins 2 dollars, the rest of n participants lose 1 dollar, therefore

\[0 = EX = E(E(X|N)) = E[24 + 2 - (N_B)] \]

Therefore

\[EN = 26 \]

In General we can design a fair game by defining the random net gain of the \(j \) th gambler at the time \(k \) as

\[M^{(j)}_k = \begin{cases} 0 & \text{if } k < j \\ \frac{1}{P(Z=b_1)\cdots P(Z=b_{k-j+1})} - 1 & \text{if } k - j + 1 \text{ terms in } \omega_k \text{ are identical with } b_1, \ldots, b_{k-j+1}, \\ -1 & \text{otherwise} \end{cases} \]

where \(\omega_k \) denote the sequence \((Z_1, \ldots, Z_k)\).

Therefore if add the net gain for the all participants we get

\[\sum_{j=1}^{\infty} M^{(j)}_k = \sum_{j=1}^{k} M^{(j)}_k = \omega_k * B - k \]

(2)

where \(\omega_k * B \) is define as follows

Definition 1 Let \(A = (a_1, \ldots, a_m) \) and \(B = (b_1, \ldots, b_n) \) be a sequence over \(\Sigma \).

For every pair \((i, j)\) of integers, write

\[\delta_{ij} = \begin{cases} P(Z = b_j)^{-1} & \text{if } 1 \leq i \leq m, \ 0 \leq j \leq n, \text{ and } a_i = b_j \\ 0 & \text{otherwise} \end{cases} \]

and define

\[A * B = \delta_{11}\delta_{22}\cdots\delta_{mm} + \delta_{21}\delta_{32}\cdots\delta_{m,m-1} + \delta_{m1} \]

Lemma 1 Given a starting sequence \(B \), the expected waiting time for a sequence \(B \) is \(EN_B = B * B \).

Proof. Define \(X_k = \omega_k * B - k \). Then by (2)

\[\{X_k \wedge N_B\} \]

is a martingale. Let \(k \to \infty \), to get

\[X_{N_B} = B * B - N_B \]

Since \(EX_{N_B} \leq B * B - EN_B < \infty \), and on the set \(\{N_B > k\} \) we have \(|X_k| \leq B * B + N_B \) Then \(EN_B = B * B \).
Let A_1, \ldots, A_n be sequences over Σ. For each i, we want to calculate the probability that A_i precedes all the remaining $n-1$ sequences in a realization of the process Z_1, Z_2, \ldots. Naturally we assume that none of the sequences contain any other as a connected subsequence. Write N_i for N_{A_i}. Let N be the minimum among N_1, \ldots, N_n. We want to compute $P(N = N_j)$ for each j.

Theorem 1 Let Z, Z_1, Z_2, \ldots be discrete iid random variables and A_1, \ldots, A_n be finite sequences of possible values of Z not containing one another. Let A be another such sequence not containing any A_i. Let p_i be the probability that A_i precedes the remaining $n-1$ sequences in a realization of the process Z_1, Z_2, \ldots

The for every i,

$$\sum_{j=1}^n p_j A_j \ast A_i = EN,$$

where N is the stopping time when any A_j’s occurs.