Some basic inequalities

Definition. Let V be a vector space over the complex numbers. An *inner product* is given by a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$

$$(x, y) \mapsto \langle x, y \rangle$$

satisfying the following properties (for all $x \in V$, $y \in V$ and $c \in \mathbb{C}$)

1. $\langle x + \tilde{x}, y \rangle = \langle x, y \rangle + \langle \tilde{x}, y \rangle$
2. $\langle cx, y \rangle = c \langle x, y \rangle$
3. $\langle y, x \rangle = \overline{\langle x, y \rangle}$
4. $\langle x, x \rangle \geq 0$ and $\langle x, x \rangle = 0$ if and only if $x = 0$.

Note that if $\langle \cdot, \cdot \rangle$ is an inner product then for each y the function $x \mapsto \langle x, y \rangle$ is a linear function. Also we have $\langle x, cy \rangle = \overline{c} \langle x, y \rangle$ and $\langle x, y + \tilde{y} \rangle = \langle x, y \rangle + \langle x, \tilde{y} \rangle$.

Remark: We can also define inner products for vector spaces over \mathbb{R}, but then the third axiom is changed to the symmetry axiom $\langle y, x \rangle = \langle x, y \rangle$ for all $x, y \in V$. Thus if V is a vector space over the real numbers then for each y the function $x \mapsto \langle x, y \rangle$ is a linear function, and for each x the function $y \mapsto \langle x, y \rangle$ is a linear function. The latter statement for $y \mapsto \langle x, y \rangle$ fails in vector spaces over \mathbb{C}.

Definition. A semi-norm on a vector space over \mathbb{C} (or over \mathbb{R}) is a function $\|\cdot\| : V \to [0, \infty)$ satisfying the following properties for all $x, y \in V$.

1. $\|x\| \geq 0$
2. For scalars c, $\|cx\| = |c|\|x\|$.
3. $\|x + y\| \leq \|x\| + \|y\|$ (the triangle inequality).

If in addition we also have the property that and $\|x\| = 0$ only if $x = 0$ then we call $\|\cdot\|$ a norm.

1. The Cauchy-Schwarz inequality

Theorem. Let $\langle \cdot, \cdot \rangle$ be an inner product on V. Then for all $x, y \in V$,

$$|\langle x, y \rangle| \leq \sqrt{\langle x, x \rangle} \sqrt{\langle y, y \rangle}.$$

Proof. The inequality is immediate if one of the two vectors is 0. We may thus assume that $y \neq 0$ and therefore $\langle y, y \rangle > 0$. We shall first show the weaker inequality

$$\text{Re} \langle x, y \rangle \leq \sqrt{\langle x, x \rangle} \sqrt{\langle y, y \rangle} \tag{1.1}$$

Let $t \in \mathbb{R}$. We shall use that

$$\langle x + ty, x + ty \rangle \geq 0.$$
Then compute
\[\langle x + ty, x + ty \rangle = \langle x, x \rangle + t\langle x, y \rangle + t\langle y, x \rangle + t^2\langle y, y \rangle \]
\[= \langle x, x \rangle + 2t \text{Re} \langle x, y \rangle + t^2\langle y, y \rangle. \]

Here we used that for the complex number \(z = \langle x, y \rangle \) we have \(z + \overline{z} = 2 \text{Re} (z) \).
We have seen that for all \(t \in \mathbb{R} \)
\[\langle x, x \rangle + 2t \text{Re} \langle x, y \rangle + t^2\langle y, y \rangle \geq 0. \]
We use this inequality for the special choice \(t = -\frac{\text{Re} (\langle x, y \rangle)}{\langle y, y \rangle} \) (which happens to be the choice of \(t \) that minimizes the quadratic polynomial). Plugging in this value of \(t \) yields the inequality
\[\langle x, x \rangle - \frac{(\text{Re} \langle x, y \rangle)^2}{\langle y, y \rangle} \geq 0 \]
which gives
\[(\text{Re} \langle x, y \rangle)^2 \leq \langle x, x \rangle \langle y, y \rangle \]
and (1.1) follows.

Finally let \(z := \langle x, y \rangle \). If \(z = 0 \) there is nothing to prove, so assume \(z \neq 0 \).
Then we can write \(z \) in polar form, i.e. \(z = |z|(\cos \phi + i \sin \phi) \) for some angle \(\phi \). Let \(c = \cos \phi - i \sin \phi \). Then \(cz = |z| \) and \(cz \) is real and positive. \footnote{If you prefer not to use polar notation, another equivalent way to define \(c \), given \(z = a + bi \) with \(z \neq 0 \) is to set \(c = \frac{a+ib}{\sqrt{a^2+b^2}} \), i.e. \(c = \overline{z}/|z| \). Note that \(cz = z\overline{z}/|z| = |z|^2/|z| = |z| \).}
Also \(|c| = 1 \). Hence we get
\[|\langle x, y \rangle| = c\langle x, y \rangle = \langle cx, y \rangle = \text{Re} \langle cx, y \rangle. \]
Applying the already proved inequality (1.1) for the vectors \(cx \) and \(y \) we see that the last expression is
\[\leq \sqrt{\langle cx, cx \rangle} \sqrt{\langle y, y \rangle} = \sqrt{c^2\langle x, x \rangle} \sqrt{\langle y, y \rangle} = \sqrt{\langle x, x \rangle} \sqrt{\langle y, y \rangle}. \]
This finishes the proof. \(\square \)

Exercise: Show that equality in Cauchy-Schwarz, \(|\langle x, y \rangle| = \sqrt{\langle x, x \rangle} \sqrt{\langle y, y \rangle} \), only happens if \(x \) and \(y \) are linearly dependent (i.e. one of the two is a scalar multiple of the other).

Definition. We set \(\|x\| = \sqrt{\langle x, x \rangle} \).

Theorem The map \(x \mapsto \sqrt{\langle x, x \rangle} \) defines a norm on \(V \).

Proof. Setting \(\|x\| := \sqrt{\langle x, x \rangle} \) we clearly have that \(\|x\| \geq 0 \) and \(\|x\| = 0 \) if and only if \(x = 0 \), by property (4) for the inner product. Also \(\sqrt{\langle cx, cx \rangle} = \sqrt{c^2\langle x, x \rangle} = |c|\sqrt{\langle x, x \rangle} \). It remains to prove the triangle inequality.
We compute
\[\|x + y\|^2 = \langle x + y, x + y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle = \|x\|^2 + 2\Re(\langle x, y \rangle) + \|y\|^2 \]
and by the Cauchy-Schwarz inequality the last expression is
\[\leq \|x\|^2 + 2\|x\|\|y\| + \|y\|^2 = (\|x\| + \|y\|)^2. \]
So we have shown \(\|x + y\|^2 \leq (\|x\| + \|y\|)^2 \) and the triangle inequality follows. □

2. Generalized arithmetic and geometric means

Given two nonnegative numbers \(a, b \) we call \(\sqrt{ab} \) the geometric mean of \(a \) and \(b \). The geometric significance is that the rectangle with sides of length \(a \) and \(b \) has the same area as the square with sidelength \(\sqrt{ab} \). The arithmetic mean is \(\frac{a + b}{2} \). The arithmetic mean exceeds the geometric mean:

\[\sqrt{ab} \leq \frac{a + b}{2}. \]

This follows immediately from \((\sqrt{a} - \sqrt{b})^2 \geq 0\), i.e. \(a + b - 2\sqrt{ab} \geq 0 \) (for nonnegative \(a, b \)).

A useful generalization is

Theorem. Let \(a, b \) be nonnegative numbers and let \(0 < \vartheta < 1 \). Then

\[a^{1-\vartheta}b^\vartheta \leq (1 - \vartheta)a + \vartheta b. \] (2.1)

Proof. If one of \(a, b \) is zero then the inequality is immediate. Let’s assume that \(a \neq 0 \). Then setting \(c = b/a \) the assertion is equivalent with

\[c^\vartheta \leq (1 - \vartheta) + \vartheta c, \text{ for } c \geq 0. \] (2.2)

To prove (2.2) we set

\[f(c) := (1 - \vartheta) + \vartheta c - c^\vartheta \]

and observe that \(f'(c) = \vartheta(1 - c^{\vartheta - 1}) \). Since by assumption \(0 < \vartheta < 1 \) we see that \(f'(c) \leq 0 \) for \(0 \leq c \leq 1 \) and \(f'(c) \geq 0 \) for \(c \geq 1 \). Hence \(f \) must have a minimum at \(c = 1 \). Clearly \(f(1) = 0 \) and therefore \(f(c) \geq 0 \) for all \(c \geq 0 \). Thus (2.2) holds. □

3. The inequalities by Hölder and Minkowski

For vectors \(x = (x_1, \ldots, x_n) \) in \(\mathbb{R}^n \) (or in \(\mathbb{C}^n \)) we define

\[\|x\|_p = \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p}. \]

It is our intention to show that \(\|x\|_p \) defines a norm even \(p > 1 \). We shall use the following result (Hölder’s inequality) to prove this.
For \(p > 1 \) we define the conjugate number \(p' \) by
\[
\frac{1}{p} + \frac{1}{p'} = 1
\]
i.e. \(p' = \frac{p}{p-1} \).

Theorem: (Hölder’s inequality): Let \(1 < p < \infty, 1/p + 1/p' = 1 \). For \(x, y \in \mathbb{C}^n \),
\[
\left| \sum_{i=1}^{n} x_i y_i \right| \leq \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^{p'} \right)^{1/p'}
\]
or in the above notation
\[
\left| \sum_{i=1}^{n} x_i y_i \right| \leq \|x\|_p \|y\|_{p'}.
\]

Remark. When \(p = 2 \), then \(p' = 2 \) and Hölder’s inequality becomes the Cauchy-Schwarz inequality for the standard scalar product \(\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i \) on \(\mathbb{R}^n \) (or the standard scalar product \(\langle x, y \rangle = \sum_{i=1}^{n} x_i \bar{y}_i \) on \(\mathbb{C}^n \)).

Proof of Hölder’s inequality. If we replace \(x \) with \(x/\|x\|_p \) and \(y \) with \(y/\|y\|_{p'} \) then we see that it is enough to show that
\[
\left| \sum_{i=1}^{n} x_i y_i \right| \leq 1 \text{ provided that } \|x\|_p = 1 \text{ and } \|y\|_{p'} = 1
\]
Also it is clearly sufficient to do this for vectors \(x \) and \(y \) with nonnegative entries (simply replace \(x_i \) with \(|x_i| \) etc.)

Thus for the rest of the proof we assume that \(x, y \) are vectors with nonnegative entries satisfying \(\|x\|_p = 1, \|y\|_{p'} = 1 \).

Set \(a_i = x_i^p, b_i = y_i^{p'} \). And set \(\vartheta = 1 - 1/p \). Since we assume \(p > 1 \) we see that \(0 < \vartheta < 1 \). By the inequality for the generalized arithmetic and geometric means we have
\[
a_i^{1-\vartheta} b_i^{\vartheta} \leq (1-\vartheta) a_i + \vartheta b_i \text{ i.e.}
\]
\[
x_i y_i = a_i^{1/p} b_i^{1-1/p} \leq \frac{1}{p} a_i + (1 - \frac{1}{p}) b_i = \frac{1}{p} x_i^p + (1 - \frac{1}{p}) y_i^{p'}
\]
Thus
\[
\sum_{i=1}^{n} x_i y_i \leq \frac{1}{p} \sum_{i=1}^{n} x_i^p + (1 - \frac{1}{p}) \sum_{i=1}^{n} y_i^{p'}
\]
\[
= \frac{1}{p} \|x\|_p^p + (1 - \frac{1}{p}) \|y\|_{p'}^{p'} = \frac{1}{p} + (1 - \frac{1}{p}) = 1;
\]
here we have used that \(\|x\|_p = 1, \|y\|_{p'} = 1 \). \(\square \)

Remark: Hölder’s inequality has extensions to their settings. One is in Problem 6 on the first homework assignment. Here note that Riemann integrals can be approximated by sums, and so the Hölder inequality with \(n \) summands may be useful for similar versions for integrals as well.
The following result called Minkowski’s inequality\(^2\) establishes the triangle inequality for \(\| \cdot \|_p\).

Theorem: For \(x, y \in \mathbb{C}^n\)

\[
\left(\sum_{i=1}^n |x_i + y_i|^p \right)^{1/p} \leq \left(\sum_{i=1}^n |x_i|^p \right)^{1/p} + \left(\sum_{i=1}^n |y_i|^p \right)^{1/p}
\]

or shortly, \(\|x + y\|_p \leq \|x\|_p + \|y\|_p\).

Proof. If \(x + y = 0\) the inequality is trivial, thus we assume that \(x + y \neq 0\) and hence \(\|x + y\|_p > 0\).

Write

\[
\|x + y\|_p^p = \sum_{i=1}^n |x_i + y_i|^p = \sum_{i=1}^n |x_i + y_i|^{p-1} |x_i + y_i|
\]

\[
\leq \sum_{i=1}^n |x_i + y_i|^{p-1} (|x_i| + |y_i|) = \sum_{i=1}^n |x_i| |x_i + y_i|^{p-1} + \sum_{i=1}^n |y_i| |x_i + y_i|^{p-1}
\]

By Hölder’s inequality

\[
\sum_{i=1}^n |x_i| |x_i + y_i|^{p-1} \leq \left(\sum_{i=1}^n |x_i|^p \right)^{1/p} \left(\sum_{i=1}^n |x_i + y_i|^{(p-1)p'} \right)^{1/p'}
\]

\[
= \|x\|_p \|x + y\|_p^{p-1}
\]

since \((p - 1)p' = p\). The same calculation yields

\[
\sum_{i=1}^n |y_i| |x_i + y_i|^{p-1} \leq \|y\|_p \|x + y\|_p^{p-1}
\]

We add the two inequalities and we get

\[
\|x + y\|_p^p \leq \|x + y\|_p^{p-1} (\|x\|_p + \|y\|_p).
\]

Divide by \(\|x + y\|_p^{p-1}\) and the asserted inequality follows. \(\square\)

Corollary. Let \(1 \leq p < \infty\). The expression \(\|x\|_p = (\sum_{i=1}^n |x_i|^p)^{1/p}\) defines a norm on \(\mathbb{C}^n\) (or \(\mathbb{R}^n\)).

\(^2\)Minkowski is pronounced “Minkoffski”