
A NOTE ON ENDPOINT BOCHNER–RIESZ ESTIMATES

DAVID BELTRAN JORIS ROOS ANDREAS SEEGER

Abstract. We revisit an ε-removal argument of Tao to obtain sharp Lp →
Lr(Lp) estimates for sums of Bochner–Riesz bumps which are conditional on
non-endpoint bounds for single scale bumps. These can be used to obtain sharp
conditional sparse bounds for Bochner–Riesz multipliers at the critical index,
refining the conditional weak-type (p, p) estimates of Tao.

1. Introduction

Let Ω be a convex open subset of Rd, d ≥ 2, containing the origin. We assume
that Ω has C∞-boundary with non-vanishing Gaussian curvature. Let

ρ(ξ) = inf{t > 0 : ξ/t ∈ Ω}
be the Minkowski functional of Ω. Then ρ ∈ C∞(Rd \ {0}) and ρ is homogeneous
of degree 1, ρ(ξ) > 0 for ξ ̸= 0 and ρ(ξ) = 1 on the boundary ∂Ω. Given λ > 0,
consider the Bochner–Riesz type operator

Rλ := (1− ρ(D))λ+.

The critical index for Lp → Lr boundedness is defined by

λ(r) = d
(1
r
− 1

2

)
− 1

2
.

In this note we establish Lp → Lr(Lp) vector-valued inequalities for Bochner–Riesz
bumps, and acting on families of functions {fQ} indexed by dyadic cubes D. We
denote by Dj the dyadic cubes of of sidelength 2j .

For M ≥ 1 define YM as the class of all CM functions χ supported on (12 , 2) so

that ∥χ∥CM =
∑M

ν=0 ∥χ(ν)∥∞ ≤ 1.

Definition 1.1. For 1 ≤ p ≤ r < ∞ let VBR(p, r) denote the following statement.
There exists M > 0 such that for all collections of functions χj in YM , the inequality

(1.1)
∥∥∥∑

j>0

2j
d+1
2 χj(2

j(1− ρ(D)))
[ ∑
Q∈Dj

fQ
]∥∥∥

Lr(Rd)
≤ C

(∑
Q

|Q|∥fQ∥rLp(Rd)

)1/r

holds for all families {fQ}Q∈D of Lp functions fQ, with supp (fQ) ⊆ Q.

The statement VBR(p, r) plays a significant role in [1] which deals with essen-

tially sharp sparse domination results for the operator Rλ(p) in the sense that such
sparse bounds follow from VBR(p, r). Satisfactory VBR(p, r) bounds are known for
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Figure 1. The conclusion of Theorem 1.2 holds in the interior of
the green region. The red line corresponds to the line 1

r = 1
r∗(p,p◦,r◦)

.

example in two dimensions for p, r in the range 1 ≤ p < 4/3, p ≤ r < min{p′/3, 2}
and in higher dimensions for p ≤ 2(d+1)

d+3 and r = 2 (the Stein-Tomas range), see

[13, 14, 16]. Familiar necessary conditions based on Knapp examples show that we

need to have r◦ ≤ d−1
d+1p

′
◦; and thus for p◦ ≥ 2(d+1)

d+3 we must have r◦ ≤ 2. Our result

will involve the exponent r∗(p, p◦, r◦) obtained by interpolation of the pairs (p◦, r◦)

and the Stein-Tomas pair (2(d+1)
d+3 , 2); the desired vector-valued inequalities for the

latter follow from well-known arguments. It is given by

(1.2)
1

r∗(p, p◦, r◦)
:=

1
r◦
( d+3
2(d+1) −

1
p) +

1
2(

1
p − 1

p◦
)

d+3
2(d+1) −

1
p◦

.

Theorem 1.2. Let 2(d+1)
d+3 < p◦ < 2d

d+1 and r◦ ∈ [p◦,
d−1
d+1p

′
◦]. Assume that Rλ maps

Lp◦(Rd) to Lr◦(Rd) for all λ > λ(r◦). Let 2(d+1)
d+3 ≤ p < p◦. Then VBR(p, r) holds

for p ≤ r < r∗(p, p◦, r◦)

It is useful to note that r∗(p, p◦, r◦) → d−1
d+1p

′ as r◦ ↗ d−1
d+1p

′
◦. This implies that

if we have the non-endpoint Bochner-Riesz Lp◦ → Lr◦ assumption for some p◦ ∈
[2(d+1)

d+3 , 2d
d+1) and all r ∈ [p◦,

d−1
d+1p

′
◦) then the conclusion of VBR(p, r) holds for the

full non-endpoint range 2(d+1)
d+3 < p < p◦ and r ∈ [p, d−1

d+1p
′).

Theorem 1.2 corresponds to an off-diagonal version of a theorem of Tao [16] in
which the r◦ = p◦ version was obtained. The purpose of the resulting VBR(p, r)

estimate in [16] was to prove conditional weak type (p, p) bounds for Rλ(p) and
strong type results for a class of related multipliers such as (1−ρ)λ+(1−log(1−ρ))−γ ,
based on reductions in [3, 2, 13, 16]. These reductions also work in the off-diagonal
case and yield the following endpoint multiplier theorems (we will not provide more
details).
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Corollary 1.3. Let p◦, r◦ be as in Theorem 1.2. Assume 1 ≤ p < p◦, p ≤ r <
r∗(p, p◦, r◦), r ≤ 2, r ≤ σ ≤ ∞. Then, for sequences a = {aj}∞j=1 ∈ ℓσ we have the
inequality

(1.3)
∥∥∥∑

j>0

aj2
−jλ(q)χj(2

j(1− ρ(D)))f
∥∥∥
Lr,σ

≲ ∥a∥ℓσ∥f∥Lp

The proof of Theorem 1.2 for r > p is a re-elaboration of that of Tao for r = p.
We claim no originality but provide full details of the argument in view of the
applicability in [1] and also in view of Tao’s question [16] concerning the possibility
of ε-removal results for Lp → Lr bounds. As Tao remarks, such bounds would be
especially interesting for the critical line 1

rcrit(p)
= d+1

d−1(1−
1
p). For applicability in [1]

we only need to address the case p < r < r∗(p, p◦, r◦); the latter condition becomes
p < r < rcrit(p) if we assume VBR(p◦, r◦) for all r◦ =

d−1
d+1p

′
◦ − ε and ε → 0.

1.1. Notation. We list some frequently used notation.

◦ Families of dyadic cubes. We let D be a fixed dyadic lattice, which may or
may not satisfy the assumptions in the setup by Lerner-Nazarov [10] (this
requirement is only important when considering sparse bounds as in [1]).
Let Dj denote the subset of cubes in D of sidelength 2j . Cubes in Dj are

assumed to be half open, i.e. of the form
∏d

i=1[ai, ai+2j) for suitable a ∈ Rd.
We use Q for general subcollections of D, and let Qj be the cubes in Q which

are of sidelength 2j . The sidelength of a dyadic cube Q is denoted by 2L(Q)

with L(Q) ∈ Z.
◦ Constants. Given a list of objects L and real numbers A, B ≥ 0, we write
A ≲L B or B ≳L A to indicate A ≤ CLB for some constant CL which
depends only items in the list L. We write A ∼L B to indicate A ≲L B and
B ≲L A.

◦ Normalized bump functions. Throughout the paper we shall fix a number
N ≥ d+ 1, and set Y = Yd+1+N . The functions χj are throughout assumed
to belong to Y.

◦ Multiplier notation. For m ∈ L∞(Rd) we define the multiplier operator
m(D) which acts initially on Schwartz functions by

m(D)f(x) =
1

(2π)d

∫
Rd

ei⟨x,ξ⟩m(ξ)f̂(ξ) dξ.

Structure of this note. In §2 we provide some single scale estimates for suitable
frequency or spatially localized bumps associated to Bochner–Riesz multipliers, as
well as a vector-valued Stein–Tomas type estimate. In §3 we present some L2-
estimates based on a finer localization that will feature in the proof of Theorem 1.2.
In §4 we formulate a discrete variant of Theorem 1.2. In §5 we recall a stopping
time lemma due to Tao that features in many ε-removal arguments. In §6, in which
we give an Lp → Lr variant of an argument by Tao that deduces Fourier restriction
estimates from non-endpoint Bochner-Riesz assumptions. We present the proof of
Proposition 4.2 in §7, which in turn implies that of Theorem 1.2.
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2. Single-scale estimates

In this section we provide estimates for suitable frequency and spatially localised
Bochner–Riesz bumps. Before going into details, we make a couple of observations
regarding the function ρ that will be useful in upcoming arguments. First, we can
use polar coordinates for the distance function ρ and write ξ = ϱξ′ with ξ′ ∈ ∂Ω =
{ξ : ρ(ξ) = 1}, and

(2.1) dξ = ϱd−1 dϱdµ(ξ′) where dµ(ξ′) =
|⟨ξ′,∇ρ(ξ′)⟩|
|∇ρ(ξ′)|

dσ(ξ′).

Second, by the homogeneity and positivity of ρ there are constants c0 < 1 and
C0 > 2 such that

(2.2) c0|ξ| ≤ ρ(ξ), |∇ρ(ξ)| ≤ C0

for all ξ ∈ Rd.

2.1. Fractional derivatives and subordination formula. Given Lp → Lr bounds for

(1 − ρ(D))λ+ one can derive analogous estimates for the Fourier multiplier opera-

tors χj(2
j(1− ρ(D))) and their spatially localized versions using the subordination

formula [18]

(2.3) hj(ϱ) =
1

Γ(λ+ 1)

∫ ∞

0
(s− ϱ)λ+h

(λ+1)
j (s) ds.

Here, for smooth h compactly supported in (0,∞), h(a) for a ∈ (0,∞)\N refers to a
fractional derivative for functions on (0,∞) introduced in [5]. More precisely, when
a ∈ (0, 1) one defines

h(a)(ϱ) =
−1

Γ(1− a)
lim
u→∞

d

dϱ

∫ u

ϱ
(s− ϱ)−ah(s) ds,

and for a ∈ (0,∞) \ N, a > 1 one defines inductively h(a) = d
dρh

(a−1). This leads to

the formula

ĥ(a)(τ) = (−iτ)aĥ(τ) = (cos πa
2 − i sign(τ) sin πa

2 )|τ |aĥ(τ).

Note that h(a) coincides with (−1)a times the ordinary derivative of order a when
a is a positive integer. The following lemma will be relevant in the aforementioned
transference of bounds.

Lemma 2.1. For λ > −1 we have the inequality

(2.4)

∫ ∞

0
t
d( 1

p
− 1

r
)+λ|h(λ+1)

j (t)| dt ≲ 2jλ .

Proof. Observe that hj is supported in Ij := [1 − 2−j+1, 1 − 2−j−1]. If λ + 1 is an

integer we have |h(λ+1)(s)| ≲ 2j(λ+1)
1Ij (s) and the asserted inequality is immediate.
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Assume that κ < λ + 1 < κ + 1 for κ ∈ N0. By the definition of fractional
derivative

(2.5) h
(λ+1)
j (ϱ) = 0 for ϱ > 1− 2j−1.

We claim that

(2.6) |h(λ+1)
j (ϱ)| ≲ 2j(λ+1)

1 + (2j(1− ϱ))λ+2
, 0 ≤ ϱ ≤ 1 .

The inequality (2.4) is now immediate from (2.5) and (2.6).
To show (2.6), let a = λ+1− κ ∈ (0, 1) and observe that by integration by parts

we have the formulas

h
(λ+1)
j (ϱ) = cκ,1

( d

dϱ

)(κ+1)
∫ ∞

ϱ
(s− ϱ)−aχj(2

j(1− s)) ds(2.7a)

= cκ,2

( d

dϱ

)(κ+1)
∫ ∞

ϱ
(s− ϱ)κ+2−a2j(κ+2)χ

(κ+2)
j (2j(1− s)) ds

= cκ,32
j(κ+2)

∫ ∞

ϱ
(s− ϱ)1−aχ

(κ+2)
j (2j(1− s)) ds.(2.7b)

From (2.7b) we get that |h(λ+1)
j (ϱ)| ≲ 2j(κ+a) for ϱ > 1− 2−j+2 which gives (2.6) in

this range.
Next assume ϱ < 1 − 2−j+2. We can now differentiate under the integral sign

directly in (2.7a) and use

h(λ+1)(ϱ) = cκ,4

∫ ∞

ρ
(s− ϱ)−a−κ−1χj(2

j(1− s)) ds.

We can estimate this integral by 2−j(1− ϱ)−a−κ−1 and since a+ κ+ 1 = λ+ 1 we
obtain (2.6) also for ϱ < 1− 2−j+2. □

2.2. Spatial localizations and single scale-estimates. Let ϕ0 be a C∞
c (Rd) function

supported in {x : |x| < 1} such that ϕ0(x) = 1 for |x| ≤ 1/2. For j > 0 define

(2.8)
ϕj,0(x) := ϕ0(2

−jx)

ϕj,n(x) := ϕ0(2
−j−nx)− ϕ0(2

−j−n+1x) for n ≥ 1.

For any j > 0, define with χj ∈ Y,

(2.9) mj(ξ) := hj(ρ(ξ)), where hj(ϱ) := χj(2
j(1− ϱ)),

and let, for any n ≥ 0,

(2.10) mj,n := mj ∗ ϕ̂j,n.

In forthcoming arguments, we will use the estimate
(2.11)

|mj,n(ξ)| ≲N

N∑
k=1

∫ ∫ 1

0

(1−s)N−1

(N−1)! 2jN |η|N |ϕ̂j,n(η)||χ(k)
j (2j(1− ρ(ξ − sη)))|ds dη
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for all n > 0. Note that this follows from the vanishing moments of ϕ̂j,n and
Taylor’s formula for mj(ξ − η), which together with the multidimensional Faà di
Bruno formula allow to write
(2.12)

mj,n(ξ) =

∫ ∫ 1

0

(1−s)N−1

(N−1)! ⟨−η,∇⟩N
[
χj(2

j(1− ρ(ξ − sη)))
]
ϕ̂j,n(η) ds dη

=
N∑
k=1

∑
α∈Nd

0:|α|=N

2jk
∫ 1

0

∫
bk(s, ξ, η)η

αϕ̂j,n(η)χ
(k)
j (2j(1− ρ(ξ − sη))) dη ds

for bk ∈ C∞. From (2.11) we also obtain the pointwise estimate

(2.13) |mj,n(ξ)| ≲N1 2−nN (1 + 2j |1− ρ(ξ)|)−N1

for all n > 0, where N1 > 0 is arbitrary. This inequality also extends to the case
n = 0 by a straightforward convolution inequality.

One can transfer bounds for (1− ρ(D))λ+ to bounds on mj and mj,n through the
following lemma.

Lemma 2.2. Let 1 ≤ p ≤ r ≤ ∞ and assume that (1 − ρ(D))λ+ is bounded from

Lp(Rd) to Lr(Rd). Let mj be as in (2.9), with χj ∈ Yd+1. Then we have

(2.14) ∥mj(D)∥Lp→Lr ≲ 2jλ.

If χj ∈ Y then

(2.15) ∥mj,n(D)∥Lp→Lr ≲ 2−nN2jλ, n ≥ 0.

Moreover, if p ≤ q ≤ r,

∥mj(D)∥Lp→Lq ≲ 2
j(λ+d( 1

q
− 1

r
))
,(2.16a)

∥mj,n(D)∥Lp→Lq ≲ 2−nN2
j(λ+d( 1

q
− 1

r
))
, n ≥ 0.(2.16b)

Proof. Since ρ is homogeneous of degree 1 we get using (2.3) for mj = hj ◦ ρ,

(2.17)

∥mj(D)∥Lp→Lr ≤
∫ ∞

0
sλ|h(λ+1)

j (s)| ∥(1− ρ(D)/s)λ+∥Lp→Lr ds

= ∥(1− ρ(D))λ+∥Lp→Lr

∫ ∞

0
s
d( 1

p
− 1

r
)+λ|h(λ+1)

j (s)|ds ≲ 2jλ

where in the last inequality we have used the hypothesis and Lemma 2.1. Similarly,
for n = 0 we obtain

∥mj,0(D)∥Lp→Lr ≲
∫

|ϕ̂j,0(η)|∥mj(D − η)∥Lp→Lr dη ≲ 2jλ

where we have used the modulation invariance of the operator norm.
For n > 0 we use (2.11) to obtain that ∥mj,n(D)∥Lp→Lr is bounded by a constant

times

N∑
k=1

∫ ∫ 1

0

(1−s)N−1

(N−1)! 2jN |η|N |ϕ̂j,n(η)|
∥∥χ(k)

j (2j(1− ρ(D − sη))
∥∥
Lp→Lr ds dη.
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Since the functions χ
(k)
j are by assumption fixed multiples of Yd+1 functions and∫

2jN |η|N |ϕ̂j,n(η)|dη = O(2−nN ), we get (2.15) by the modulation invariance of the
multiplier norms.

Finally, note that the convolution kernel of mj,n is supported on a set of diameter
O(2j+n). Therefore, using (2.15) and Hölder’s inequality,

∥mj,n(D)f∥q =
∥∥∥ ∑
Q∈Dj+n

mj,n(D)[f1Q]
∥∥∥
q
≲

( ∑
Q∈Dj+n

∥mj,n(D)[f1Q]∥qq
)1/q

≲
( ∑

Q∈Dj+n

[
∥mj,n(D)[f1Q]∥r2(j+n)d( 1

q
− 1

r
)]q)1/q

≲
( ∑

Q∈Dj+n

[
2−nN2jλ∥f1Q∥p2(j+n)d( 1

q
− 1

r
)]q)1/q

≲ 2
−n(N−d( 1

q
− 1

r
))
2
j(λ+d( 1

q
− 1

r
))∥f∥p

which is (2.16b). Inequality (2.16a) follows after summing in n ≥ 0. □

It is well-known by the work of Fefferman and Stein [8] thatRλ maps L
2(d+1)
d+3 (Rd) →

L2(Rd) for all λ > −1/2. Taking this into account we note in the following corollary
that boundedness of the Bochner–Riesz operator Rλ for a specific pair of exponents
(p◦, r◦) implies Lp → Lr bounds for the region in Figure 1.

Corollary 2.3. Let 2(d+1)
d+3 < p◦ <

2d
d+1 and r◦ ∈ [p◦,

d−1
d+1p

′
◦]. Assume that Rλ maps

Lp◦(Rd) to Lr◦(Rd) for all λ > λ(r◦). Let 2(d+1)
d+3 ≤ p1 < p◦. Then for all ε > 0, the

inequalities

∥mj(D)∥Lp1→Lr ≲ε 2
j(ε+λ(r))

∥mj,n(D)∥Lp1→Lr ≲ε 2
−nN2j(ε+λ(r)), n ≥ 0

hold for all p1 ≤ r ≤ r∗(p1, p◦, r◦). Moreover, in this range, Rλ maps Lp1 to Lr for
λ > λ(r).

Proof. By Lemma 2.2 it suffices to prove this for r = r∗(p1, p◦, r◦). By the same
lemma and the boundedness assumption on the Bochner-Riesz operator we have

∥mj,n(D)∥Lp◦→Lr◦ ≲ε 2
−nN2j(ε+λ(r◦)).

On the other hand, by the same lemma and the aforementioned L
2(d+1)
d+3 (Rd) →

L2(Rd) boundedness,

∥mj,n(D)∥
L

2(d+1)
d+3 →L2

≲ε 2
−nN2−j/2+jε.

Interpolating these two inequalities yields the assertion on the Lp1 → Lr∗(p1,p◦,r◦)

operator norm of mj,n(D) and summing in n yields the corresponding assertion for

mj(D). The implication onRλ follows by the standard decomposition of (1−ρ(D))λ+
as a sum of operators of type mj(D) and an L1 bounded operator. □
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Remark 2.4. A standard argument using the Stein–Tomas theorem [7, 8] reveals that

that the Lp → L2 operator norm of mj(D) is O(2−j/2) for 1 ≤ p ≤ 2(d+1)
d+3 , without

any ε-loss. Using the orthogonality of the mj , then running the decomposition
mj =

∑∞
n=0mj,n, and using the support assumptions of mj,n we can use this to

upgrade the bounds for mj(D) when r = 2 in Corollary 2.3 to the estimates

(2.18)
∥∥∥∑

j>0

∑
Q∈Dj

2j/2mj(D)[fQ1Q]
∥∥∥
2
≲

( ∑
Q∈D

∥fQ∥2p
) 1

2

which correspond to VBR(p, 2) for 1 ≤ p ≤ 2(d+1)
d+3 .

2.3. A kernel estimate. We finish this section with a pointwise bound for the kernels

associated to the multipliers |mj,n|2. This will be used in T ∗T arguments in Section
3, and the proof is based on stationary phase calculations.

Lemma 2.5. For j > 0, n ≥ 0 let κj,n = F−1[|mj,n|2]. Then

(2.19) sup
x∈Rd

(1 + |x|)
d−1
2 |κj,n(x)| ≲ 2−2nN2−j .

Proof. We give the proof assuming n > 0; a small modification yields the cases
n = 0. Using (2.13) it is straightforward to see that

(2.20) |κj,n(x)| ≲ 2−j2−2nN ;

we use this for |x| ≲ C0 (where C0 is as in (2.2)). Note that κj,n(x) = 0 if |x| ≥
2j+n+2.

Now assume C0 ≤ |x| ≤ 2j+n+2. We use formula (2.12) for mj,n and its complex
conjugate. We then write

κj,n = κj,n,0 + κj,n,∁
where

κj,n,0(x) = (2π)−d

∫
ei⟨x,ξ⟩

∫∫∫∫
[0,1]2×U

((1− s1)(1− s2))
N−1

((N − 1)!)2
ϕ̂j,n(v)ϕ̂j,n(w) ×

⟨−v,∇⟩N
[
χj(2

j(1−ρ(ξ−s1v)))
]
⟨−w,∇⟩N

[
χj(2j(1− ρ(ξ − s2w)))

]
dv dw ds1 ds2 dξ

where the set U ≡ U(x, j, n) is defined by

U = {(v, w) : |v| < 1
8C0

2−j−n/2|x|1/4, |w| < 1
8C0

2−j−n/2|x|1/4}.

The term κj,n,∁(x) is the analogous expression where the region U is replaced by

U∁ = R2d \ U . We first analyze the terms κj,n,∁(x). We first note that for all

v, w ∈ Rd, (s1, s2) ∈ [0, 1]2,

meas({ξ : max{|ρ(ξ − s1v)− 1|, |ρ(ξ − s2v)− 1|} ≤ 2−j+1}) ≲ 2−j

and interchange the order of integration to apply the integral in ξ first. For |x| ≫ 1∫
|v|≥2−j−n/2|x|1/4

|v|N |ϕ̂j+n(v)| dη ≲N2 2(j+n)(d−N2)

∫
|η|≥2−j−n/2|x|1/4

|v|N−N2 dv

≲ 2−jN2−n
N2−d

2 |x|
N+d−N2

4
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provided we take N2 > N + d. The same consideration applies to the w-integral.
We use this in conjunction with the second part of the formula (2.12) we get for all
N1 ∈ N,

(2.21) |κj,n,∁(x)| ≲N1 2−j2−nN1 |x|−N1 , |x| ≥ C0.

We now turn to the main term κj,n,0. By (2.12), κj,n,0 is a linear combination of
terms of the form∫∫∫∫

U
2j(k1+k2)vαwβϕ̂j,n(v)ϕ̂j,n(w)Jk1,k2(x, s1, s2, v, w) dv dw ds1 ds2

where α, β ∈ Nd
0, |α| = |β| = N , 1 ≤ k1, k2 ≤ N , and Jk1,k2 is given by

(2.22) Jk1,k2(x, s1, s2, v, w) =∫
ei⟨x,ξ⟩bk1,k2(ξ, s1, s2, v, w)χ

(k1)
j (2j(1− ρ(ξ − s1v))χ

(k2)
j (2j(1− ρ(ξ − s2w)) dξ ,

with bk1,k2 ∈ C∞.

We now use polar coordinates ξ = ρ(ξ)Ξξ where Ξξ ∈ ∂Ω, with the intent to
apply the method of stationary phase in the variables parametrizing ∂Ω. Some care

is needed since these variables show up in the rough terms χ
(ki)
j (2j(1− ρ(ξ− siv))),

and for an application of the method of stationary phase we need that the amplitude
behaves reasonably well under differentiation.

Let |v| ≤ (4C0)
−1. Then |ρ(ξ − sv)− ρ(ξ)| ≤ C0|v| ≤ 1/4 and we have

(2.23)
ξ − sv = ρ(ξ − sv)Ξξ−sv

= ρs,v(ρ(ξ),Ξ
ξ) Ξs,v(ρ(ξ),Ξ

ξ)

where

(2.24) ρs,0(ϱ,Ξ) = ϱ, Ξs,0(ϱ,Ξ) = Ξ

and

(ϱ,Ξ) 7→
(
ρs,v(ϱ,Ξ),Ξs,v(ϱ,Ξ)

)
is a diffeomorphism that maps (12 , 2)× ∂Ω into an open set containing (34 ,

7
4)× ∂Ω

and contained in (14 ,
9
4)× ∂Ω. For (v, w) ∈ U we have |v| < (8C0)

−12−j−n/2|x|1/4 ≤
(8C0)

−12−j3/4−n/4+1/2 ≤ (4C0)
−1 and if 1/4 < ϱ < 3 then also ρs1,v(ϱ,Ξ) ≈ 1 and

ρs2,w(ϱ,Ξ) ≈ 1.
Using ρ-polar coordinates we write Jk1,k2 in (2.22) as

Jk1,k2(x, s1, s2, v, w) =

∫
ϱ

∫
∂Ω

ei⟨x,ϱΞ⟩βs1,s2,v,w(ϱ,Ξ)×

χ
(k1)
j (2j(1− ρs1,v(ϱ,Ξ)))χ

(k2)
j (2j(1− ρs2,w(ϱ,Ξ))) dµ(Ξ) dϱ.

For a coordinate patch on ∂Ω with parametrization y 7→ Ξ(y) we observe that the
y-derivatives of

(2.25) y 7→ χ
(k)
j (2j(1− ρs1,v(ϱ,Ξ(y))))

vanish for v = 0, by (2.24). Hence the y-derivatives of order L of the function in

(2.25) are O(1 + (2j |v|)L). By the assumption |v| ≲ 2−j−n/2|x|1/4, this is O(|x|L/4).
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The same applies to the entire amplitude of the y integral. By the inequalities
|v|, |w| ≲ 2−j−n/2|x|1/4 we see that the derivatives of total order L in Ξ are O(|x|L/4).
Since the oscillation parameter is |x|, we are still able to use the method of stationary

phase to see that the inner Ξ-integral is O(|x|−
d−1
2 ), uniformly in ϱ and (s1, s2) ∈

[0, 1], (v, w) ∈ U . For each (s1, s2, v, w) ∈ [0, 1]2 × U , the ρ integration is over a set
of measure O(2−j) and we obtain for C0 ≤ |x| ≤ 2j+n+2

|Jk1,k2(x, s1, s2, v, w)| ≲ 2−j |x|−(d−1)/2.

Finally the v, w integrations give a bound of O(2−nN ) each and we arrive at the
estimate

(2.26) |κj,n,0(x)| ≲ 2−2Nn2−j |x|−
d−1
2 for C0 ≤ |x| ≤ 2j+n+2.

We finish by combining (2.20), (2.21) and (2.26). □

3. Auxiliary L2 bounds and finer localizations

Let η be a real valued non-negative Schwartz function such that η̂ has compact
support in {ξ : |ξ| ≤ 2} and such that η(x) ≥ 1 for max1≤i≤d |xi| ≤ 2. Let B be a
cube of sidelength R = RB > 1 and center xB and define

(3.1) ηB(x) = η
(x− xB

RB

)
.

Let j > 0 and mj be as in (2.9). For Q ∈ Dj , let BQ a family of pairwise disjoint
subcubes of Q of sidelength R. From Plancherel’s theorem and the decay properties
of η, it is easy to see that for R ≤ 2j and functions {fQ,B}Q∈Dj ,B∈BQ

(3.2)
∥∥∥mj(D)

[ ∑
Q∈Dj

∑
B∈BQ

ηBfQ,B

]∥∥∥
2
≲

(∑
Q,B

∥fQ,B∥22
)1/2

.

A key insight used in Tao’s work [16] is that certain standard L2 bounds can be
improved under the assumptions that the families BQ are sufficiently separated. We
start with a definition.

Definition 3.1. Let R ≥ 1 and S ≥ 3R. A family B of axis-parallel cubes of
sidelength R is S-separated if dist(xB, xB′) > S for all B,B′ ∈ B, B ̸= B′, where
xB denotes the center of B.

Proposition 3.2. Let j > 0, R ≤ 2j. For each Q ∈ Dj let SQ ≥ 3R and BQ be a
finite family of SQ-separated cubes of sidelength R intersecting Q. Then

(3.3)
∥∥∥mj(D)

[ ∑
Q∈Dj

∑
B∈BQ

ηBfQ,B

]∥∥∥
2

≲ (2−jR)1/2 sup
Q

(
1 + S

− d−1
2

Q Rd−1#BQ

)1/2(∑
Q,B

∥fQ,B∥22
)1/2
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and

(3.4)
∥∥∥mj(D)

[ ∑
Q∈Dj

∑
B∈BQ

ηBfQ,B

]∥∥∥
1

≲ 2j(d−1)/2R1/2 sup
Q

(
1 + S

− d−1
2

Q Rd−1#BQ

)1/2∑
Q

(∑
B

∥fQ,B∥22
)1/2

for all families of functions {fQ,B}.

Clearly (3.3) is a significant improvement over (3.2) if SQ is large enough for all

Q, specifically if SQ > (Rd−1#BQ)
2/(d−1).

In the proof of Proposition 3.2, we will work with variants of mj and ηB which are
localized in space. We may decompose mj =

∑∞
n1=0mj,n1 with mj,n1 as in (2.10).

We also decompose ηB using a decomposition analogous to (2.8). Define

(3.5)
ηB,0(x) := ϕ0(

x−xB
RB

)ηB(x)

ηB,n(x) :=
(
ϕ0(

x−xB
2nRB

)− ϕ0(
x−xB

2n−1RB
)
)
ηB(x) for n ≥ 1,

so that ηB =
∑∞

n2=0 ηB,n2 . The key estimate towards establishing Proposition 3.2 is
the following lemma (in which the constant N ≥ d+1 is as in the notation section).

Lemma 3.3. Let j > 0, R ≤ 2j, Q ∈ Dj, SQ ≥ 3R and BQ be a finite family of
SQ-separated cubes of sidelength R. Then

(3.6)
∥∥∥mj,n1(D)

[ ∑
B∈BQ

ηB,n2fB
]∥∥∥

2

≲ 2−n1N2−n2N2(2−jR)1/2
(
1 + S

− d−1
2

Q Rd−1#BQ

)1/2(∑
B

∥fB∥22
)1/2

for all N2 > 0 and all families of functions {fB} indexed in BQ.

Proof. We first give the proof under the stronger separation condition

(3.7) B,B′ ∈ BQ, B ̸= B′ =⇒ dist(2n2+2B, 2n2+2B′) > SQ .

We write ∥∥∥mj,n1(D)
[ ∑
B∈BQ

ηB,n2fB
]∥∥∥2

2
=

∑
B,B′∈BQ

⟨TB,B′fB, fB′⟩

where TB,B′ is defined by

TB,B′f(x) = ηB′,n2(x)|mj,n1 |2(D)[ηB,n2f ](x)

and has Schwartz kernel

KB,B′(x, y) = ηB′,n2(x)F−1[|mj,n1 |2](x− y)ηB,n2(y).

Note that if x, y ∈ supp (ηB,n2) then ϕ0(
x−y

2n2+2R
) = 1 and thus for the case B′ = B

KB,B(x, y) = ηB,n2(x)F−1[aj,B,n1,n2 ](x− y)ηB,n2(y)

where

aj,B,n1,n2(ξ) =

∫
|mj,n1(ξ − v)|2(2n2+2R)dϕ̂0(2

n2+2Rv) dv.



12 D. BELTRAN J. ROOS A. SEEGER

Since the operator f 7→ ηB,nf is bounded on L2 with operator norm O(2−n(N2+d))

for all N2 ∈ N, then ∥TB,B∥L2→L2 ≲N2 2−2n2(N2+d)∥aj,B,n1,n2∥∞. By (2.13)

|aj,B,n1,n2(ξ)| ≲N2,N3 2−2n1N sup
ξ

∫
(2n2+2R)d|ϕ̂0(2

n2+2Rv)|
(1 + 2j |1− ρ(ξ − v)|)N3

dv

for any N3 ≥ 0. A computation shows that the integral is ≲ min{1, 2−j+n2R}.
Hence we obtain

(3.8) ∥TB,B∥L2→L2 ≲N,N2 2−2n1N−2n2(N2+d)min{1, 2−j+n2R}.

We now consider the case B ̸= B′; recall from (3.7) that dist(B,B′) ≥ 2n2+10SQ.
We use Lemma 2.5 and (3.7) together with the pointwise bound for ηB,n2 to get

|KB,B′(x, y)| ≲ 2−2n1N2−2n2(N2+d)2−j |SQ|−
d−1
2 12n2+2B(x)12n2+2B′(y)

for all N2 > 0. By Schur’s test, for B ̸= B′

(3.9) ∥TB,B′∥2 ≲ 2−2n1N2−2n2N2−n2dRd2−j |SQ|−
d−1
2 .

Now we estimate the left-hand side of (3.6) by∑
B∈BQ

|⟨TB,BfB, fB⟩|+
∑

B,B′∈BQ

B ̸=B

|⟨TB,B′fB, fB′⟩| = I + II.

The diagonal terms are estimated using Cauchy-Schwarz and (3.8), and we get

I ≲N,N2 2−2n1N−2n2N2 min{1, 2−j+n2R}
∑

B∈BQ

∥fB∥22.

Moreover, using instead (3.9) we obtain for the off-diagonal terms that

II ≲ 2−n2(2N2+d)2−n1NRd2−j |SQ|−
d−1
2

∑
B∈BQ

∥fB∥2
∑

B′∈BQ

∥fB′∥2

≲ 2−n2(2N2+d)2−n1NRd2−j |SQ|−
d−1
2 #BQ

∑
B∈BQ

∥fB∥22.

Thus, under the additional assumption (3.7), we have estimated the left-hand side
of (3.6) by 2−n2d times the right-hand side of (3.6). For the general case note that
each SQ-separated family of cubes of sidelength R < 3SQ can be split into O(2n2d)
sub-families, each of them SQ2

n2+10-separated. Applying Minkowski’s inequality we

lose a factor of O(2n2d) which leads to (3.6). □

Now we are in position of proving Proposition 3.2.

Proof of Proposition 3.2. We first consider (3.3) and estimate the left-hand side by

∞∑
n1=0

∞∑
n2=0

∥∥∥mj,n1(D)
[ ∑
Q∈Dj

∑
B∈BQ

ηB,n2fQ,B

]∥∥∥
2
.

Now fix j, n1, n2, R and set

(3.10) U ≡ Uj,n1,n2,R = max{2j+n1+10, 2n2+10R}.
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Let Qj ⊂ Dj be a family of U -separated 2j-cubes. We use the localization properties
of F−1[mj,n1 ] and ηB,n2 followed by Lemma 3.3 to obtain∥∥∥mj,n1(D)

[ ∑
Q∈Qj

∑
B∈BQ

ηB,n2fQ,B

]∥∥∥
2
≲

( ∑
Q∈Qj

∥∥∥mj,n1(D)
[ ∑
B∈BQ

ηB,n2fQ,B

]∥∥∥2
2

)1/2

≲N2

( ∑
Q∈Qj

2−2n1N2−2n2N22−jR
(
1 + S

− d−1
2

Q Rd−1#BQ

) ∑
B∈BQ

∥fQ,B∥22
)1/2

≲ 2−n1N2−n2N2(2−jR)1/2 sup
Q∈Qj

(
1 + S

− d−1
2

Q Rd−1#BQ

)1/2( ∑
Q∈Qj

∑
B∈BQ

∥fQ,B∥22
)1/2

.

We can write Dj as a union of O((2−jU)d) U -separated families of 2j-cubes. By
an application of the Minkowski and Cauchy-Schwarz inequalities we lose a factor
of O((2−jU)d/2) = O(2(n1+n2)d/2) and obtain

(3.11)
∥∥∥mj,n1(D)

[ ∑
Q∈Dj

∑
B∈BQ

ηB,n2fQ,B

]∥∥∥
2
≲ 2−n1(N− d

2
)−n2(N2− d

2
)(2−jR)

1
2 ×

sup
Q∈Dj

(
1 + S

− d−1
2

Q Rd−1#BQ

) 1
2

( ∑
Q∈Dj

∑
B∈BQ

∥fQ,B∥22
) 1

2
.

Since N1 > d/2, N2 > d/2, we may sum in n1, n2 and obtain (3.3).
We now turn to (3.4) and estimate the left-hand side by

∞∑
n1=0

∞∑
n2=0

∥∥∥mj,n1(D)
[ ∑
Q∈Dj

∑
B∈BQ

ηB,n2fQ,B

]∥∥∥
1
.

Fix j, n1, n2, R and let U be as in (3.10). We now tile Rd by dyadic cubes of
sidelength ≈ U . Then∥∥∥mj,n1(D)

[ ∑
Q∈Dj

∑
B∈BQ

ηB,n2fQ,B

]∥∥∥
1
≲

∑
□

∑
Q∈Dj

Q∩□̸=∅

Ud/2
∥∥∥mj,n1(D)

[ ∑
B∈BQ

ηB,n2fQ,B

]∥∥∥
2

≲ 2−n1(N− d
2
)−n2(N2− d

2
)2j

d−1
2 R

1
2 sup
Q∈Dj

(
1 + S

− d−1
2

Q Rd−1#BQ

) 1
2
∑
Q∈Dj

( ∑
B∈BQ

∥fQ,B∥22
) 1

2
.

Here we have used the Cauchy-Schwarz inequality and the localization properties in
the first inequality, and an application of the estimate (3.3) in the last inequality.
Summing in n1, n2 yields (3.4). □

4. Discretization

Given z ∈ Zd, let qz denote the unique dyadic cube in Q0 containing z. Let {FQ,z}
be a collection of C∞ functions parametrized by (Q, z) ∈ D× Zd satisfying

(4.1) suppFQ,z ⊆ 2qz ∩Q and sup
Q∈Q

sup
z∈Zd

∥FQ,z∥∞ ≤ 1.

We start with a reformulation of Theorem 1.2.
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Theorem 4.1. Let 2(d+1)
d+3 < p◦ < 2d

d+1 and r◦ ∈ [p◦,
d−1
d+1p

′
◦]. Assume that Rλ maps

Lp◦(Rd) to Lr◦(Rd) for all λ > λ(r◦). Let 2(d+1)
d+3 < p < p◦, p ≤ r < r∗(p, p◦, r◦).

Then the inequality

(4.2)
∥∥∥∑

j>0

2j
d+1
2 mj(D)

[ ∑
Q∈Dj

∑
z∈Q∩Zd

γ(Q, z)FQ,z

]∥∥∥
r

≲p,r

( ∑
Q∈D

|Q|
(∑

z

|γ(Q, z)|p
)r/p)1/r

holds for all functions γ : D× Zd → C and all FQ,z satisfying (4.1).

Proof of Theorem 1.2 (assuming Theorem 4.1). Let u be a Schwartz function such
that û is compactly supported and û(ξ) = 1 if ρ(ξ) < 2; then clearly mj = mj û.

Let Φ ∈ C∞
c (Rd) be supported in {x : |x| < 1/2} and such that Φ̂(ξ) ≥ 1/2 on the

support of û. Observe that û/Φ̂ is a Schwartz function and therefore convolution
with its inverse Fourier transform is bounded on Lr. Thus it suffices to prove

(4.3)
∥∥∥∑

j>0

2j
d+1
2 mj(D)

[ ∑
Q∈Dj

Φ ∗ (fQ1Q)]
∥∥∥
r
≲

( ∑
Q∈D

|Q|∥fQ∥rp
)1/r

.

Now, given Q ∈ D, z ∈ Zd, let

(4.4) FQ,z(x) =
Φ ∗ [fQ1qz∩Q](x)
∥Φ∥p′∥fQ1qz∩Q∥p

if ∥fQ1qz∩Q∥p ̸= 0

and FQ,z = 0 otherwise. Notice that FQ,z is supported in the double of qz and that
∥FQ,z∥∞ ≤ 1 by Hölder’s inequality. Let

γ(Q, z) = ∥fQ1qz∩Q∥p.

Then the left-hand side of (4.3) becomes

∥Φ∥p′
∥∥∥∑

j>0

2j
d+1
2 mj(D)

[ ∑
Q∈Dj

∑
z∈Zd

γ(Q, z)FQ,z

]∥∥∥
r

which by assumption is ≲
(∑

Q∈Q |Q|
(∑

z |γ(Q, z)|p
)r/p)1/r

. By definition of γ

this gives the right-hand side of (4.3) and thus the estimate VBR(p, r) claimed in
Theorem 1.2. □

We next reduce the main estimate for the proof of Theorem 4.1 to the situation
where for each Q the function z → γ(Q, z) is replaced by the characteristic function
of a finite set EQ ⊂ Zd ∩Q.

Proposition 4.2. Let 2(d+1)
d+3 < p◦ < 2d

d+1 and r◦ ∈ [p◦,
d−1
d+1p

′
◦]. Assume that Rλ

maps Lp◦(Rd) to Lr◦(Rd) for all λ > λ(r◦). Fix M ≥ 2 and δ > 0. Let 2(d+1)
d+3 < p <

p◦ and p ≤ r < r∗(p, p◦, r◦). Then the inequality

(4.5)
∥∥∥∑

j>0

∑
Q∈Dj

#EQ≤M

∑
z∈EQ

2j
d+1
2 βQmj(D)FQ,z

∥∥∥
Lr(Rd)

≲δ M
δ
( ∑

Q∈D
|Q||βQ|r(#EQ)

r
p1

) 1
r
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holds for all p ≤ p1 < p◦, all subsets EQ ⊆ Zd, all real-valued coefficients βQ and all
families of functions FQ,z satisfying (4.1).

Proof of Theorem 4.1 (assuming Proposition 4.2). Fix p, p◦, r, r◦ as in the assump-
tions. If p1 > p observe that r∗(p1, p◦, r◦) < r∗(p, p◦, r◦) and r∗(p1, p◦, r◦) →
r∗(p, p◦, r◦) as p1 → p. Thus we can choose p1 with p < p1 < p◦ such that
r < r∗(p1, p◦, r◦).

Let FQ,z be functions satisfying (4.1) and consider a function γ : D × Zd → C.
Define γQ(z) := γ(Q, z). Without loss of generality we may assume that ∥γQ∥ℓp(Zd)

is finite (otherwise there is nothing to prove). Clearly |γ(Q, z)| ≤ ∥γQ∥ℓp(Zd) and

therefore we can decompose γQ1Q =
∑

k≥0 γQ1Ek
Q
where

Ek
Q := {z ∈ Zd ∩Q : 2−(k+1)/p∥γQ∥ℓp(Zd) < |γ(Q, z)| ≤ 2−k/p∥γQ∥ℓp(Zd)}.

For each Q we apply Chebyshev’s inequality to get #Ek
Q ≤ 2k+1. Let

βk
Q := 2−k/p∥γQ∥ℓp(Zd), F k

Q,z :=
γ(Q, z)

βk
Q

FQ,z1Ek
Q
(z).

Then for each k the family of functions F k
Q,z continues to satisfy (4.1). Hence, by

(4.5) with exponents (p1, r), with M = 2k+1 and δ < 1
2(

1
p − 1

p1
) we obtain∥∥∥∑

j>0

2j
d+1
2 mj(D)

[ ∑
Q∈Dj

∑
z∈Q∩Zd

γ(Q, z)FQ,z

]∥∥∥
r

≲
∑
k≥0

∥∥∥∑
j>0

2j
d+1
2 mj(D)

[ ∑
Q∈Dj

βk
Q

∑
z∈Ek

Q

F k
Q,z

]∥∥∥
r

≲ C(δ, p1)
∑
k≥0

2(k+1)δ
( ∑

Q∈D
|Q||βk

Q|r(#Ek
Q)

r
p1

) 1
r

≲ C(δ, p1)
∑
k≥0

2(k+1)δ
( ∑

Q∈D
|Q|

[
2
− k

p ∥γQ∥ℓp(Zd)

]r
2
(k+1) r

p1

) 1
r

and thus we get∥∥∥∑
j>0

2j
d+1
2 mj(D)

[ ∑
Q∈Dj

∑
z∈Q∩Zd

γ(Q, z)FQ,z

]∥∥∥
r

≲ C(δ, p1)
∑
k≥0

2kδ2
−k( 1

p
− 1

p1
)
( ∑

Q∈D
|Q|∥γQ∥rℓp(Zd)

) 1
r
≲ C(δ,p1)

p1−p

( ∑
Q∈D

|Q|∥γQ∥rp
) 1

r
.

Hence (4.2) is established. □

5. A decomposition lemma

The following lemma is a discretized version of the stopping time argument by
Tao [16, Lemma 4.3].

Lemma 5.1. Let E be a finite subset of Zd and V ∈ N. Let {Lk}Vk=0 be a sequence
of integers such that L0 = 0 and Lk > Lk−1 for k = 1, . . . , V . Then for each
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0 ≤ k ≤ V − 1 there exist indexing sets Ak satisfying

(5.1) #Ak ≤ 2d(#E)1/V

and families {Bk,α}α∈Ak
with the following properties:

(i) Bk,α is a collection of dyadic cubes in DLk
.

(ii) Any two different cubes in Bk,α have mutual distance at least 2Lk+1.
(iii) For each k, α ∈ Ak, B ∈ Bk,α there exists non-empty subsets Ek,B ⊂ E ∩ B

such that

E =
V−1⋃
k=0

⋃
α∈Ak

⋃
B∈Bk,α

Ek,B .

Proof. For each ν ∈ {0, 1}d and each nonnegative integer L we denote by DL,ν the

collection of dyadic cubes
∏d

i=1[ni2
L, (ni+1)2L) where ni = νi mod 2 for i = 1, . . . d.

Notice that for fixed ν two different cubes in DL,ν have mutual distance at least 2L.

For each z ∈ Zd and each nonnegative integer L, let B(z, L) be the unique cube in
DL containing z.

For each z ∈ E , let κ(z) ∈ [1, N ] ∩ N denote the least positive integer such that

#(E ∩B(z, Lκ(z))) ≤ (#E)κ(z)/V .

For k = 0, . . . , V − 1, let Ek := {z ∈ E : κ(z) = k + 1}. Clearly E =
⋃V−1

k=0 Ek.
Let DLk

(Ek) be the collection of cubes in DLk
that contain a point in Ek. Each

cube in DLk
(Ek) is contained in a unique cube in DLk+1

. For each ν ∈ {0, 1}d denote
by DLk+1,ν(Ek) be the family of dyadic cubes B′ in DLk+1,ν which contain a point
in Ek; hence each such B′ also contains a cube B ∈ DLk

(Ek).
For B′ ∈ DLk+1,ν(Ek), enumerate the cubes in DLk

(Ek) that are contained in B′

by

Bℓ(B
′), with ℓ = 1, . . . , n(B′).

By the definition of the stopping time κ(z) = k + 1 for z ∈ Ek we have

#(E ∩Bℓ(B
′)) ≥ (#E)k/V , #(E ∩B′) ≤ (#E)(k+1)/V ,

and since the cubes Bℓ(B
′) are disjoint this implies n(B′) ≤ (#E)1/V for all cubes

B′ ∈ DLk+1,ν(Ek).
Now for fixed k, ν ∈ {0, 1}d and 1 ≤ ℓ ≤ (#E)1/V let

Bk,(ν,ℓ) = {Bℓ(B
′) : B′ ∈ DLk+1,ν(Ek), n(B

′) ≥ ℓ}

and

Ak = {α ≡ (ν, ℓ) : ν ∈ {0, 1}d, 1 ≤ ℓ ≤ (#E)1/V , Bk,(ν,ℓ) ̸= ∅}.

Then clearly #Ak ≤ 2d(#E)1/V . If Bk,(ν,ℓ) is not empty then it consists of cubes

in DLk
(Ek) which are 2Lk+1-separated, and we get properties (i) and (ii). Moreover

for every cube B in DLk
(Ek) there is a unique ℓ, ν and B′ ∈ DLk+1,ν(Ek) such that

B = Bℓ(B
′). This implies

Ek =
⋃

(ν,ℓ)∈Ak

⋃
B∈Bk,(ν,ℓ)

(Ek ∩B) .
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Recall that E =
⋃V−1

k=0 Ek is a disjoint union, and setting Ek,B = Ek ∩B property (iii)
follows. □

6. A Fourier restriction bound

For the proof of Proposition 4.5 we shall use a Fourier restriction bound when j
in the sum in (4.5) is very large. We show that such a Fourier restriction bound is
implied by the non-endpoint Bochner-Riesz assumption in Theorem 1.2.

Proposition 6.1. Let 1 < p ≤ r ≤ 2, α > 0. Suppose that Rλ(r)+α maps Lp to Lr.
Then for all R ≥ 2, the inequality

(6.1) ∥f̂ |∂Ω∥Lr(∂Ω) ≲ R2α∥f∥Lp(Rd)

holds for all f supported in a cube of sidelength R.

Remark 6.2. Under the assumption that ∥f̂ |∂Ω∥Lr◦ (∂Ω) ≲ R2α∥f∥Lp◦ (Rd) holds for

some p◦ >
2(d+1)
d+3 , r◦ ≤ d−1

d+1p
′
◦ and all α > 0 one can also show a full Fourier restric-

tion result, i.e. for p < p◦, r < r∗(p, p◦, r◦) the operator f 7→ f̂ |∂Ω maps Lp(Rd) to
Lr(∂Ω). This is accomplished by an adaptation of Tao’s ε-removal argument in [17]
(also based on the previous stopping time argument). This upgrade is not needed
here.

Proof of Proposition 6.1. The proof is an adaptation of Tao’s argument in [17, Thm.
1.1]. For the sake of completeness we provide the details. Let η ∈ C∞

c (Rd) supported
in {x : 1/4 < |x| < 4} and define for large A

(6.2) TAf(x) =

∫
eiAρ∗(x−y)η(x− y)f(y) dy.

We shall first show that under the Lp → Lr boundedness assumption on Rλ(r)+a we
have for large A

(6.3) ∥TA∥Lp→Lr ≲ Aα−d/p′ .

Let ε > 0 so that for every ξ0 ∈ ∂Ω the portion of the boundary in B8ε(ξ0) can
be parametrized by a regular parametrization y 7→ Ξ(y) (with y in an open set in
Rd−1). Note that by the assumption of convexity with nonvanishing curvature there
is for every x ̸= 0 a unique ξ(x) ∈ ∂Ω such that x/|x| is the outer unit normal to
∂Ω at ξ(x); moreover we may choose a δ > 0 such that |ξ(x) − ξ(x̃)| < ε for all
x, x̃ with 1/4 ≤ |x|, |x̃| ≤ 4 and |x− x̃| ≤ 4δ. We may now construct a finite family
of C∞

c functions ην such that
∑

ν ην = η, where ην is supported in a ball Bδ(xν).
Let Tν,a be defined as in (6.2) but with ην in place of η; it then suffices to prove

∥Tν,A∥Lp→Lr = O(Aα−d/p′).
Let wν ∈ C∞

c be supported in B2ε(ξν) such that wν(ξ) = 1 for ξ ∈ Bε(ξν). Let
Sν = {x ̸= 0 : ξ( x

|x|) ∈ Bε(ξν)} and let y 7→ Ξ(y) be a regular parametrization of

∂Ω∩B8ε(ξν). By the assumption on Rλ(r)+α, the operator wν(D)Rλ(r)+α is Lp → Lr

bounded. Let Kν be its convolution kernel. For x ∈ Sν we can express Kν(x) using
ρ-polar coordinates (see the proof of Lemma 2.5) by

Kν(x) = (2π)−d

∫ 1

0
(1− ϱ)λϱd−1

∫
wν(ϱΞ(y))e

iϱ⟨x,Ξ(y)⟩⟨Ξ(y), n(Ξ(y))⟩ dy dϱ.
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We use the assumption that ∂Ω has positive Gaussian curvature. By a standard
asymptotic expansion based on stationary phase calculations in the y-variable and
of asymptotic expansions involving Fourier transforms of χ(ϱ)(1 − ϱ)λ+ ([6, §2.8],
[12], [15, §VIII]), with λ = λ(r) + α, we see that there is a constant Aν ≫ 1 such
that

(6.4) Kν(x) = b(x)|x|−λ(r)−a−1− d−1
2 eiρ

∗(x) for x ∈ S∞
ν := Sν ∩ {x : |x| ≥ Aν}

where b is a standard symbol of order 0, with

0 < c1 ≤ |b(x)| ≤ C1 if x ∈ S∞
ν .

See e.g. [12]. Let Y (x) be the unique critical point for which ∇y⟨x,Ξ(y)⟩ = 0. Note
that x is perpendicular to the tangent space TΞ(Y (x)). Then the phase function ρ∗

is given by

(6.5) ρ∗(x) = ⟨x,Ξ(Y (x))⟩ = sup
ξ:ρ(ξ)≤1

⟨x, ξ⟩.

It turns out that ρ∗ is smooth, homogeneous of degree 1 and that the level sets of ρ∗

are strictly convex hypersurfaces with nonvanishing curvature (see [11], [9, §5.1] for
these calculations and more background on convex bodies). By Euler’s homogeneity
relation we have ρ∗(x) = ⟨x,∇ρ∗(x)⟩ and thus ⟨x,Ξ(Y (x))⟩ = ⟨x,∇ρ∗(x)⟩. From
the strict convexity property we get

(6.6) ∇ρ∗(x) = Ξ(Y (x)).

We now choose A ≥ 8Aν and define

uν,A(x) :=
ην(x)|x|d+1+λ(r)+a

b(Ax)
;

we verify that in view of the symbol and nonvanishing properties of b the functions
uν,A form a bounded family of C∞

c -functions. Note that the functions ην(A
−1·) are

supported in S∞
ν and that from (6.4) we get for all x ∈ Rd

uν,A(A
−1x)Kν(x) = A− d+1

2
−λ(r)−αην(A

−1x)eiρ
∗(x).

Clearly ∥ ̂uν,A(A−1·)∥1 = O(1) and therefore the convolution operator with convo-
lution kernel uν,A(A

−1x)Kν(x) is Lp → Lr bounded with operator norm uniform

in A. Denote the operator with convolution kernel A− d+1
2

−λ(r)−αAdην(x)e
iρ∗(Ax) by

Oν,A; then by scaling we see that Oν,A has Lp → Lr operator norm O(Ad/p−d/r).
Since ρ∗(x) is homogeneous of degree 1 we get

∥Tν,A∥Lp→Lr = A
d+1
2

+λ(r)+αA−d∥Oν,A∥Lp→Lr ≲ A
α− d

p′

and (6.3) follows by summing in ν, provided that A ≥ maxν 8Aν .
We now turn to the Fourier restriction operator. By (6.6) ∂Ω is described by

θ 7→ ∇ρ∗(θ) for x ∈ Sd−1, and we have(∫
∂Ω

|f̂(ξ)|r dσ(ξ)
) 1

r
≲

(∫
Sd−1

|f̂(∇ρ∗(θ))|r dθ
) 1

r
≲

(∫
1≤|x|≤2

|f̂(∇ρ∗(x))|r dx
) 1

r



A NOTE ON ENDPOINT BOCHNER–RIESZ ESTIMATES 19

as ∇ρ∗ is homogeneous of degree 0. Our goal is therefore to show, for R ≫ 2
√
d,

the estimate

(6.7)
(∫

1≤|x|≤2
|f̂(∇ρ∗(x))|r dx

)1/r
≲ R2α∥f∥p if supp (f) ⊂ QR;

here QR is the cube of sidelength R centered at the origin.
We may choose η in the definition of TA above so that η(w) = 1 if 1/2 ≤ |w| ≤ 3,

in particular η(x− y) = 1 for |y| ≤ 1/2 and 1 ≤ |x| ≤ 2. Then (6.3) yields

(6.8)
(∫

1≤|x|≤2
|TAg(x)|r

)1/r
≲ Aα−d/p′∥g∥p if supp (g) ⊆ {y : |y| ≤ 1

2}.

Changing variables in the oscillatory integral, we get(∫
1≤|x|≤2

|f̂(∇ρ∗(x))|r dx
)1/r

≲
(∫

1≤|x|≤2

∣∣∣ ∫
|y|∞≤R−1

e−i⟨R2y,∇ρ∗(x)⟩R2df(R2y) dy
∣∣∣r dx)1/r

(6.9)

where |y|∞ = max1≤i≤d |yi|. We rewrite the phase function using Taylor’s formula:

⟨y,∇ρ∗(x)⟩ = ρ∗(x− y)− ρ∗(x)− ⟨y,H(x, y)y⟩

with H(x, y) =
∫ 1
0 (1− s)∇2ρ∗(x− sy) ds where ∇2ρ∗ denotes the matrix of second

derivatives of ρ∗. We then see that the right-hand side of (6.9) is estimated by(∫
1≤|x|≤2

∣∣∣ ∫
|y|∞≤R−1

eiR
2ρ∗(x−y)ei⟨Ry,H(x,y)Ry⟩R2df(R2y) dy

∣∣∣r dx)1/r
.

For |x| ≤ 2, |w|∞ ≤ 1 expand

ei⟨w,H(x,
w
R )w⟩ =

∑
(n1,n2)∈Zd×Zd

cn1,n2(R)ei⟨n1,x⟩ei⟨n2,w⟩

with |cn1,n2(R)| ≤ C(1 + |n1| + |n2|)−10d and C independent of R; this is applied
for w = Ry. After taking out the sum in (n1, n2) by Minkowski’s inequality, we can

apply (6.8) with A = R2, since f(R2·) is supported in {|y|∞ ≤ R−1} and R > 2
√
d.

We obtain(∫
1≤|x|≤2

|f̂ ◦∇ρ∗(x)|rdx
)1/r

≲
∑

(n1,n2)∈Zd×Zd

|cn1,n2 |(R2)α−d/p′∥R2df(R2·)ei⟨n2,R·⟩∥p

which is ≲ R2α∥f∥p, yielding (6.7). □

7. Proof of Proposition 4.2

Let p, r be as in the statement of Proposition 4.2, i.e. 2(d+1)
d+3 < p < p◦, p ≤ r <

r∗(p, , p◦, r◦). Let p ≤ p1 < p◦ and r1 := max{r, p1}.
Let δ > 0, M ≥ 2. For the proof we will make the choice

(7.1) V ≡ V (δ) = ⌈2/δ⌉, H ≡ H(δ) = V 2V+1.
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We estimate the Lr norm of

∑
j>0

∑
Q∈Dj

#EQ≤M

∑
z∈EQ

2j
d+1
2 βQmj(D)FQ,z.

We will separately consider the terms with 2j ≤ (2M)H and 2j > (2M)H . The
estimate for the terms with 2j ≤ (2M)H will rely on the Bochner-Riesz hypothesis
in Theorem 1.2, which combined with Corollary 2.3 yields

(7.2)
∥∥2j d+1

2 mj,n(D)∥Lp1→Lr1 ≲ε 2
−nN2

j( d
r1

+ε)

for all n ≥ 0 and ε > 0 and, moreover, thatRλ maps Lp1 to Lr1 for all λ > λ(r1). The
estimate for the terms with 2j > (2M)H will rely on the Lp1 → Lr1 Fourier restriction
estimate implied by the just mentioned Bochner–Riesz bound via Proposition 6.1.

We first estimate the terms with 2j ≤ (2M)H and prove

(7.3)
∥∥∥ ∑

j>0:
2j≤(2M)H

∑
Q∈Dj

#EQ≤M

∑
z∈EQ

2j
d+1
2 βQmj(D)FQ,z

∥∥∥
Lr(Rd)

≲δ M
δ
( ∑

Q∈D
|Q||βQ|r(#EQ)r/p1

)1/r
.

To prove (7.3) it suffices to establish that for fixed j > 0 with 2j ≤ (2M)H

(7.4)∥∥∥ ∑
Q∈Dj

#EQ≤M

∑
z∈EQ

2j
d+1
2 βQmj(D)FQ,z

∥∥∥
Lr(Rd)

≲δ M
δ/2

( ∑
Q∈D

|Q||βQ|r(#EQ)r/p1
)1/r

;

then (7.3) follows from the triangle inequality summing over all j > 0 with 2j ≤
(2M)H . Write mj =

∑∞
n=0mj,n where mj,n are as in (2.10). By the support

properties of F−1[mj,n] and the triangle inequality, we have for fixed j > 0 (with
2j ≤ (2M)H)

∥∥∥2j(d+1)/2mj(D)
[ ∑

Q∈Dj

#EQ≤M

∑
z∈EQ

βQFQ,z

]∥∥∥
r

≲
∞∑
n=0

( ∑
Q′∈Dj+n

∥∥∥2j(d+1)/2mj,n(D)
[ ∑
Q∈Qj :Q⊂Q′

#EQ≤M

∑
z∈EQ

βQFQ,z]
∥∥∥r
r

)1/r
.
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By the support properties, Hölder’s inequality, (7.2) with ε = δ
2H and (4.1), we

have we then have that for each n ≥ 0 and Q′ ∈ Dj+n∥∥∥2j(d+1)/2mj,n(D)
[ ∑
Q∈Dj :Q⊂Q′

#EQ≤M

∑
z∈EQ

βQFQ,z]
∥∥∥
r

≲ 2
(j+n)d( 1

r
− 1

r1
)
∥∥∥2j(d+1)/2mj,n(D)

[ ∑
Q∈Dj :Q⊂Q′

#EQ≤M

∑
z∈EQ

βQFQ,z]
∥∥∥
r1

≲δ 2
(j+n)d( 1

r
− 1

r1
)
2−nN2

j( d
r1

+ δ
2H

)
∥∥∥ ∑
Q∈Dj :Q⊂Q′

#EQ≤M

∑
z∈EQ

βQFQ,z

∥∥∥
p1

≲ 2
−n(N−d( 1

r
− 1

r1
))
2j(

d
r
+ δ

2H
)
( ∑

Q∈Dj :Q⊂Q′

#EQ≤M

|βQ|p1(#EQ)
)1/p1

.

Furthermore, observe that( ∑
Q∈Dj :Q⊂Q′

#EQ≤M

|βQ|p1(#EQ)
)1/p1

≲ max{1, 2nd(
1
p1

− 1
r
)}
( ∑

Q∈Dj :Q⊂Q′

#EQ≤M

|βQ|r(#EQ)r/p1
)1/r

;

this follows for r ≥ p1 by Hölder’s inequality and for r < p1 by the embedding
ℓr ⊂ ℓp1 . We can combine the above observations to obtain∥∥∥2j(d+1)/2mj(D)

[ ∑
Q∈Dj

#EQ≤M

∑
z∈EQ

βQFQ,z

]∥∥∥
r

≲δ

∞∑
n=0

2
−n(N+ d

r1
)
max{2n

d
p1 , 2n

d
r }Mδ/2

( ∑
Q∈Dj

#EQ≤M

∑
z∈EQ

|Q||βQ|r(#EQ)r/p1
)1/r

where we have used that 2j ≤ (2M)H . Since N > max{d/p1, d/r} − d/r1, we
immediately obtain (7.4). Thus (7.3) is established.

We now address the terms with 2j > (2M)H and prove

(7.5)
∥∥∥ ∑

j>0:
2j>(2M)H

∑
Q∈Dj

#EQ≤M

∑
z∈EQ

2j
d+1
2 βQmj(D)FQ,z

∥∥∥
Lr(Rd)

≲δ M
δ
( ∑

Q∈D
|Q||βQ|r(#EQ)r/p1

)1/r
.

To show (7.5) we use Lemma 5.1 for each non-empty set EQ with Q ∈ Dj satisfying

#EQ ≤ M < 2j/H−1;

specifically we apply it with V = ⌈2/δ⌉, and the integer sequence L0 < · · · < LV

defined by

L0 = 0, 2Lk +
2

d−1 log2(#EQ) < Lk+1 ≤ 2Lk +
2

d−1 log2(#EQ) + 1 .
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We then write

(7.6) EQ =
V−1⋃
k=0

⋃
α∈Ak

Q

⋃
B∈Bk,α

Q

Ek
Q,B

where Ak
Q is an indexing set of cardinality

(7.7) #Ak
Q ≤ 2d(#EQ)1/V ≤ 2dMδ/2

and each Bk,α
Q is a family of cubes of sidelength 2Lk , with each pair of them having

distance at least 2Lk+1 . It will be crucial to bound 2Lk by a suitable power of M;
note that for k ≥ 1

(7.8) Lk ≤
k∑

ℓ=0

2ℓ +
log2(#EQ)

d− 1

k∑
ℓ=1

2ℓ

as one may check by induction from the definition. Hence, for k = 1, . . . , V − 1

(7.9) 2Lk ≤ 22
k+1−1

(
#EQ

) 2k+1−2
d−1 ≤ (2M)2

k+1 ≤ (2M)2
V
= (2M)2

⌈ 2
δ
⌉

and thus, we have

(7.10) 2Lk ≤ (2M)2
V ≤ 2j2

V /H ≤ 2
j

2V ≤ 2jδ/4 provided that 2j ≥ (2M)H .

Also, for each α, k and Q ∈ Dj , the cubes in Bk,α
Q are 2Lk+1-separated, in particular,

22Lk(#EQ)
2

d−1 -separated.
We will show that∥∥∥ ∑

j≥0
2j>(2M)H

∑
Q∈Qj

#EQ≤M

∑
B∈Bk,α(Q)

Q

∑
z∈Ek,Q,B

2j
d+1
2 βQmj(D)FQ,z

∥∥∥
Lr(Rd)

(7.11)

≲ Mδ/2
( ∑

Q∈Q
|Q||βQ|r

( ∑
B∈Bk,α(Q)

Q

#Ek
Q,B

)r/p1)1/r

uniformly in 0 ≤ k < V , in all subcollections Q ⊂ D, and all mappings Q 7→ α(Q)
where α(Q) is an index in Ak

Q. We may then obtain (7.5) by the triangle inequality.

Indeed, enumerate Ak
Q = {α1, . . . , αn(k,Q)} where n(k,Q) ≤ 2dMδ/2. Then from (7.6)
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and (7.11)∥∥∥ ∑
j>0:

2j>(2M)H

∑
Q∈Dj

#EQ≤M

∑
z∈EQ

2j
d+1
2 βQmj(D)FQ,z

∥∥∥
Lr(Rd)

≤
V−1∑
k=0

∑
1≤i≤2dMδ/2

∥∥∥ ∑
j>0:

2j>(2M)H

∑
Q∈Dj

#EQ≤M

n(k,Q)≥i

∑
B∈Bk,αi

Q

∑
z∈Ek

Q,B

2j
d+1
2 βQmj(D)FQ,z

∥∥∥
Lr(Rd)

≲ Mδ/2
V−1∑
k=0

∑
1≤i≤2dMδ/2

( ∑
Q∈D

n(k,Q)≥i

|Q||βQ|r
( ∑

B∈Bk,αi
Q

#Ek
Q,B

)r/p1)1/r

≲ Mδ/2(V 2dMδ/2)
( ∑

Q∈D
|Q||βQ|r(#EQ)r/p1

)1/r

and since V 2dMδ/2 ≲δ M
δ/2 we get (7.5).

It remains to show (7.11). For this we need an auxiliary lemma. For a dyadic
cube B with sidelength RB recall the definition of ηB in (3.1) and note that η̂B is
supported in {ξ : |ξ| ≤ 2/RB}.

Lemma 7.1. Let L ∈ N such that 2L > 8C0. For every j ≥ 2L let Qj be a
collection of dyadic cubes of sidelength 2j. For every Q ∈ Qj let BQ be a family of

dyadic subcubes Q, of sidelength 2L. Let SQ ≥ 22L(#BQ)
2

d−1 and assume that BQ is
SQ-separated for all Q ∈ Qj, j ≥ 2L. Then for all 1 ≤ q2 ≤ q1 ≤ 2, the inequality

(7.12)
∥∥∥ ∑
j≥2L

∑
Q∈Qj

∑
B∈BQ

2j
d+1
2 F−1[mj(η̂B ∗GQ,B)]

∥∥∥
q2

≲ 2L/q1
(∑

j

∑
Q∈Qj

|Q|
( ∑

B∈DL

∥GQ,B∥q1q1
)q2/q1)1/q2

holds for all functions GQ,B indexed by Q×DL.

We first show how the proof of (7.11) is concluded, assuming the lemma. Define,

for B ∈ Bk,α(Q)
Q

(7.13) fQ,B(x) =
βQ

ηB(x)

∑
z∈Ek

Q,B

FQ,z(x).

Define the ρ-annulus

ALk
= {ξ : 1− 4C02

−Lk ≤ ρ(ξ) ≤ 1 + 4C02
−Lk}.

We claim that

(7.14) mj(η̂B ∗ f̂Q,B) = mj

(
η̂B ∗ (1ALk

f̂Q,B)
)

whenever j ≥ Lk; this condition is certainly guaranteed in our situation by (7.10).
To see this, first note that by the mean value theorem and by (2.2) we have

|ρ(ξ + h) − ρ(ξ)| ≤ C0|h|. Hence if ρ(ξ) ≤ 1 − 4C02
−Lk and |h| ≤ 21−Lk then
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ρ(ξ + h) ≤ 1 − 2C02
−Lk . Likewise if ρ(ξ) ≥ 1 + 4C02

−Lk and |h| ≤ 21−Lk then
ρ(ξ + h) ≥ 1 + 2C02

−Lk . The support of η̂B is in {h : |h| ≤ 21−Lk} and the support
of mj is contained in {ξ : 1− 2−j+1 < ρ(ξ) < 1− 2−j−1}. Since C0 ≥ 2 we see that

for j ≥ Lk the supports of mj and η̂B ∗ (1A∁
Lk

f̂Q,B) are disjoint, from which (7.14)

follows.
Hence∑

z∈Ek
Q,B

βQmj(D)FQ,z = F−1
[
mj η̂BfQ,B

]
= F−1

[
mj

(
η̂B ∗ (1ALk

f̂Q,B)
)]

= F−1
[
mj

(
η̂B ∗GQ,B

)]
where GQ,B = 1ALk

f̂Q,B

provided that Q ∈ Dj , j ≥ Lk, B ∈ Bk,α(Q)
Q ; otherwise GQ,B = 0. Apply Lemma 7.1

with (q1, q2) = (r1, r). This yields∥∥∥ ∑
j≥0

2j>(2M)H

∑
Q∈Dj

#EQ≤M

∑
B∈Bk,α(Q)

Q

∑
z∈Ek

Q,B

2j
d+1
2 βQmj(D)FQ,z

∥∥∥
Lr(Rd)

≲ 2Lk/r1
( ∑

j≥Lk

∑
Q∈Dj

#EQ≤M

|Q|
( ∑

B∈Bk,α(Q)
Q

∫
ALk

|f̂Q,B(ξ)|r1 dξ
) r

r1

)1/r
.(7.15)

Using ρ-polar coordinates as in (2.1) we get∫
ALk

|f̂Q,B(ξ)|r1 dξ ≤
∫ 1+C02

2−Lk

1−C02
2−Lk

∫
∂Ω

|f̂Q,B(ϱξ
′)|r1 dµ(ξ′)ϱd−1 dϱ.

By Proposition 6.1 with parameters (p1, r1), and since fQ,B is supported in B we
have for every ε1 > 0,

≲ε1 2Lkε1

∫ 1+C02
2−Lk

1−C02
2−Lk

∥∥ϱ−dfQ,B(ϱ
−1·)

∥∥r1
p1
ϱd−1 dϱ

≲ε1 2Lkε1∥fQ,B∥r1p1

∫ 1+C02
2−Lk

1−C02
2−Lk

ϱ
( d
r1

−d)r1+d−1
dϱ ≲ 2Lkε12−Lk∥fQ,B∥r1p1 .(7.16)

Since ηB(x) ≥ 1 on B we can bound ∥fQ,B∥p1 ≲ βQ(#Ek
Q,B)

1/p1 using the properties

(4.1). We apply this with

ε1 < δ2−⌈ 2
δ
⌉−1

which implies 2Lkε1/r1 ≤ 2Lkε1 ≤ Mδ/2 by (7.9). Use this in (7.16) and plug it into
(7.15) to obtain that the left-hand side of (7.15) is dominated by

Mδ/2
( ∑

j≥Lk

∑
Q∈Dj

|Q||βQ|r
( ∑

B∈Bk,α(Q)
Q

(#Ek
Q,B)

r1/p1
)r/r1)1/r

.

Since r1 ≥ p1 we can use the embedding ℓ1 ↪→ ℓr1/p1 so that∑
B∈Bk,α(Q)

Q

(#Ek
Q,B)

r1/p1 ≤
( ∑

B∈Bk,α(Q)
Q

#Ek
Q,B

)r1/p1
≤ (#EQ)r1/p1
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and hence we get (7.11). □

Finally, we give the proof of Lemma 7.1.

Proof of Lemma 7.1. The proof follows by interpolation between the cases

(i) q1 = q2 = 2;
(ii) q1 = 2, q2 = 1;
(iii) q1 = q2 = 1.

As before, we use mj(D)
(
ηBF−1[GQ,B]

)
= F−1

[
mj(η̂B ∗GQ,B)

]
.

We start with (i). From (3.3) in Proposition 3.2 with fQ,B = F−1[GQ,B] we get
using the condition on the SQ and Plancherel’s theorem

(7.17) 2j/2
∥∥∥ ∑
Q∈Qj

∑
B∈BQ

F−1[mj(η̂B ∗ GQ,B)]
∥∥∥
2
≲ 2L/2

( ∑
Q∈Qj

∑
B∈BQ

∥GQ,B∥22
)1/2

.

Since the supports of mj have bounded overlap we get∥∥∥ ∑
j≥2L

∑
Q∈Qj

∑
B∈BQ

2j
d+1
2 F−1[mj(η̂B ∗GQ,B)]

∥∥∥
2

≲
( ∑

j≥2L

∥∥∥ ∑
Q∈Qj

∑
B∈BQ

2j
d+1
2 F−1[mj(η̂B ∗GQ,B)]

∥∥∥2
2

)1/2

≲ 2L/2
(∑

j

∑
Q∈Qj

|Q|
∑

B∈DL

∥GQ,B∥22
)1/2

which is the case q1 = q2 = 2 of Lemma 7.1.
The case (ii) follows in a similar way, using (3.4) in Proposition 3.2 and the

triangle inequality. Indeed, one has∥∥∥ ∑
j≥2L

∑
Q∈Qj

∑
B∈BQ

2j
d+1
2 F−1[mj(η̂B ∗GQ,B)]

∥∥∥
1

≲
∑
j≥2L

∥∥∥ ∑
Q∈Qj

∑
B∈BQ

2j
d+1
2 F−1[mj(η̂B ∗GQ,B)]

∥∥∥
2

≲ 2L/2
∑
j≥2L

∑
Q∈Qj

( ∑
B∈DL

∥GQ,B∥22
)1/2

,

as desired.
Finally, we prove (iii), that is,

(7.18)∥∥∥ ∑
j≥2L

∑
Q∈Qj

∑
B∈BQ

2j
d+1
2 F−1[mj(η̂B ∗GQ,B)]

∥∥∥
1
≲ 2L

∑
j

∑
Q∈Qj

|Q|
∑

B∈DL

∥GQ,B∥1.

We decompose in a familiar way (see e.g. [4])

mj =
∑
ν∈Aj

mν
j

where mν
j is supported in a C2−j/2 × · · · ×C2−j/2 ×C2−j box Rj,ν with long sides

tangential to ∂Ω at some point, and the boxes have bounded overlap. We have
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∥F−1[mν
j ]∥1 = O(1) and #Aj ≲ 2j(d−1)/2. Moreover, denote by D(ω, 21−L) the ball

of radius 21−L centered at ω and define

Aj(ω) := {ν ∈ Aj : Rj,ν ∩D(ω, 21−L) ̸= ∅}.

Then for L ≤ j/2 we have #Aj(ω) ≲ 2(−L+ j
2
)(d−1) and this bound is uniform in ω.

We estimate

∥F−1[mj(η̂B ∗GQ,B)]∥1 ≤
∫

|GQ,B(ω)|
∫ ∣∣F−1

[
mj(·)η̂B(· − ω)](x)

∣∣ dx dω
and get for fixed ω∥∥F−1

[
mj(·)η̂B(· − ω)]

∥∥
1
≲ 2Ld

∑
ν∈Aj(ω)

∥F−1[mν
j ]∥1∥F−1[η̂( ·−ω

2−L )]∥1

≲ 2Ld#Aj(ω) ≲ 2L2j(d−1)/2 .

Consequently, ∥∥2j(d+1)/2F−1[mj(η̂B ∗GQ,B)]
∥∥
1
≲ 2L2jd∥GQ,B∥1

and (7.18) follows. This concludes the proof. □

References

[1] David Beltran, Joris Roos, and Andreas Seeger, Bochner-Riesz operators at the critical index:
Weighted and sparse bounds, posted on arXiv.org, 2023.

[2] Michael Christ, Weak type endpoint bounds for Bochner-Riesz multipliers, Rev. Mat.
Iberoamericana 3 (1987), no. 1, 25–31.

[3] , Weak type (1, 1) bounds for rough operators, Ann. of Math. (2) 128 (1988), no. 1,
19–42.
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Moliner 50, 46100 Burjassot, Spain

Email address: david.beltran@uv.es

Joris Roos: Department of Mathematics and Statistics, University of Massachusetts
Lowell, Lowell, MA 01854, USA

Email address: joris roos@uml.edu

Andreas Seeger: Department of Mathematics, University of Wisconsin-Madison,
480 Lincoln Dr, Madison, WI-53706, USA

Email address: seeger@math.wisc.edu


	Introduction
	Notation

	Single-scale estimates
	Fractional derivatives and subordination formula
	Spatial localizations and single scale-estimates
	A kernel estimate

	Auxiliary L2 bounds and finer localizations
	Discretization
	A decomposition lemma
	A Fourier restriction bound
	Proof of Proposition 4.2

