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Abstract. Consider spherical means on the Heisenberg group with a
codimension two incidence relation, and associated spherical local max-
imal functions MEf where the dilations are restricted to a set E. We
prove Lp → Lq estimates for these maximal operators; the results de-
pend on various notions of dimension of E.

1. Introduction

The purpose of this paper is to extend recent Lp-improving results for
local spherical maximal functions on the Heisenberg group in [24] to the
setting of restricted dilation sets. To fix notation, for n ∈ N, we let Hn

denote the Heisenberg group of Euclidean dimension d = 2n+ 1. We denote
coordinates on Hn by x = (x, x̄) ∈ R2n × R. The group law is given by

x · y = (x+ y, x̄+ ȳ + xᵀJy),

where J is an invertible skew symmetric 2n × 2n matrix. The Heisenberg
group is equipped with automorphic dilations given by δt(x) = (tx, t2x̄).

Let µ be the normalized rotation-invariant measure on the 2n− 1 dimen-
sional unit sphere in the horizontal subspace R2n × {0}, centered at the
origin. The automorphic dilations map this subspace into itself. We define
the dilates of µ by 〈µt, f〉 = 〈µ, f ◦ δt〉, where t > 0. In this paper we study
the averaging operators

f ∗ µt(x) =

∫
S2n−1

f(x− tω, x̄− txᵀJω)dµ(ω),

which were introduced by Nevo and Thangavelu [21].

Let E ⊂ [1, 2]. We are interested in determining the set of exponent pairs
(1
p ,

1
q ) ∈ [0, 1]2 so that the local maximal operator

MEf = sup
t∈E
|f ∗ µt|

extends to a bounded operator Lp(Hn) → Lq(Hn). For the full maximal
function supt>0 |f ∗ µt| sharp Lp(Hn) → Lp(Hn) bounds for n ≥ 2 were
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established by Müller and the second author [19] and independently by
Narayanan and Thangavelu [20]. The problem of Lp → Lq boundedness
of the local version M[1,2] was investigated by Bagchi, Hait, Roncal and
Thangavelu [2], who were motivated by applications to sparse bounds and
weighted estimates for the corresponding global maximal function, as well
as for a lacunary variant. Lp → Lq results that are sharp up to endpoints,
for both the single averages and full local maximal function, were proved in
our previous paper [24].

In the present paper we ask what happens if we take for E more general
subsets of [1, 2]. This question was recently considered in the Euclidean
setting in [1], [23] (also see the earlier paper [26] for the case p = q). While
the Lp → Lp results depend on the Minkowski dimension of E the new
feature of [1], [23] is the dependence on various different notions of fractal
dimension. These dimensions play a congruent role in the Heisenberg case.
For E ⊂ R let N(E, δ) be the minimal number of intervals of length δ
needed to cover E. To state our main result we first recall the Minkowski
and quasi-Assouad dimensions. We say that E has Minkowski dimension
dimM E = β ∈ [0, 1] if for every ε > 0 there exists cε > 0 such that for every
δ > 0,

(1.1) N(E, δ) ≤ cεδ−β−ε.

The Assouad spectrum is a continuum of fractal dimensions defined in [8]
(see also [10, 9, 7]): for θ ∈ [0, 1] let dimA,θ E denote the smallest number
γ such that for every ε > 0 there exists cε > 0 such that for every interval
I with |I| ≥ δθ we have

(1.2) N(E ∩ I, δ) ≤ cε (|I|/δ)γ+ε.

As θ 7→ dimA,θ E is non-decreasing the limit dimqAE := limθ↗1 dimA,θ E
exists and is called the quasi-Assouad dimension, see [16].

To identify classes of sets for which our Lp-improving results are sharp
we shall need the concept of quasi-Assouad regularity in [23] (see also [1] for
a related notion). A set E ⊂ [1, 2] with β = dimME and γ = dimqAE is

called quasi-Assouad regular if either γ = 0 or dimA,θ E = dimqA E for all
θ ∈ (1− β/γ, 1). Observe that always 0 ≤ β ≤ γ ≤ 1.

Let R(β, γ) denote the closed quadrilateral with corners

(1.3)
Q1 = (0, 0), Q2,β = ( 2n−1

2n−1+β ,
2n−1

2n−1+β ),

Q3,β = (2n+1−β
2n+3−β ,

2
2n+3−β ), Q4,γ = ( n(2n+1)

2n2+3n+2γ
, 2n

2n2+3n+2γ
).

Theorem 1.1. Let n ≥ 2, E ⊂ [1, 2] with dimME = β and dimqAE = γ.
Then the following hold.

(i) ME : Lp(Hn)→ Lq(Hn) is bounded for (1
p ,

1
q ) in the interior of R(β, γ),

and on the line segment [Q1, Q2,β).
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Figure 1. The quadrilateral R(β, γ).

(ii) If E is quasi-Assouad regular and (1
p ,

1
q ) 6∈ R(β, γ), then ME does not

map Lp(Hn) to Lq(Hn).

Note that up to endpoints we recover the corresponding sharp results for
E = [1, 2] in [24]. Further examples of quasi-Assouad regular sets include
convex sequences, self-similar sets with β = γ (such as Cantor sets) and
many more; see [23, §6]. Note that we do not cover the case n = 1; indeed
it is currently unknown whether the full circular maximal operator on the
Heisenberg group H1 is bounded on any Lp for p < ∞ and Lp-improving
estimates are even more elusive (see [3, 14] for results on Heisenberg-radial
functions).

The definitions of Minkowski and Assouad dimension in (1.1) and (1.2)
allow positive or negative powers of log δ−1, or log(δ/|I|)−1, and are there-
fore not suitable for the formulation of endpoint results at the boundary of
R(β, γ). The following theorem covers such endpoint results for 0 < β < 1.
We define functions χEM,β, χ

E
A,γ : [0, 1]→ [0,∞), by

χEM,β(δ) = δβN(E, δ),(1.4a)

χEA,γ(δ) = sup
|I|>δ

(δ/|I|)γN(E ∩ I, δ) .(1.4b)

As in [23] we refer to χEM,β as the β -Minkowski characteristic of E and to χEA,γ
as the γ-Assouad characteristic of E. If these characteristics are bounded
then we obtain Lp → Lq boundedness of ME on the edges of R(β, γ), with
the possible exception of corners Q2,β, Q3,β and Q4,γ .

Theorem 1.2. Let n ≥ 2, E ⊂ [1, 2], 0 ≤ β ≤ 1 and β ≤ γ ≤ 1 and assume
that sup0<δ<1 χ

E
M,β(δ) <∞, sup0<δ<1 χ

E
A,γ(δ) <∞. Then the following hold.

(i) ME : Lp(Hn)→ Lq(Hn) for (1
p ,

1
q ) ∈ R(β, γ) \ {Q2,β, Q3,β, Q4,γ}.



4 J. ROOS A. SEEGER R. SRIVASTAVA

(ii) ME is of restricted weak type (p, q) for all (1
p ,

1
q ) ∈ R(β, γ).

The case β = 0 corresponds to single averages for which a stronger result
was proved in [24]. The main ideas for the Lp improving results in Theorems
1.1 and 1.2 follow roughly the outline in the Euclidean case [25, 15, 1, 23]
(even though the outcomes are quite different) and there are also similari-
ties to the treatment of the full maximal operators on Heisenberg groups Hn

(n ≥ 2) in [24]. However there is an important difference which makes the
proof of the estimate at Q4,γ harder. Concretely, in the case of a restricted
dilation set we can no longer efficiently use the space-time rotational cur-
vature properties for the averages (x, t) 7→ f ∗ µt(x) which we relied on in
[24]. Unlike in the Euclidean case the fixed time averages f ∗µt do not have
nonvanishing rotational curvature but are Fourier integral operators whose
canonical relations project with fold singularities. As noticed in [19] this
does not severely impact the outcome for the Lp → Lp-inequalities for the
maximal functions, however it creates technical problems in the proofs of
the sharp Lp-improving estimates for (1/p, 1/q) away from the diagonals (cf.
§4).

Further remarks and results. It is natural to ask what happens if in the
above results one drops the assumpton that E be quasi-Assouad regular.
There are many interesting examples, in particular unions of quasi-Assouad
regular sets are typically not quasi-Assouad regular. In the case of finite
unions, one can deduce from the above results that the closure of the sharp
region of boundedness exponents is given by a polygon arising as the intersec-
tion of finitely many quadrilaterals of the form R(β, γ). When considering
countable unions, more complicated convex regions can arise. The following
result is a direct analogue of a corresponding result in the Euclidean setting.

Theorem 1.3. Let n ≥ 2 and let TE be the type set of ME, i.e. the set
of (1

p ,
1
q ) such that ME : Lp(Hn) → Lq(Hn) is bounded. Then the following

hold.

(i) Suppose that E = ∪Ni=1Ei where Ei are quasi-Assouad regular sets with

dimMEi = βi and dimqAEi = γi. Then TE = ∩Ni=1R(βi, γi).

(ii) If dimME = β, dimqAE = γ, then R(β, γ) ⊂ TE ⊂ R(β, β).

(iii) For every closed convex set T satisfying R(β, γ) ⊂ T ⊂ R(β, β) there
is a set E ⊂ [1, 2] with dimME = β and dimqAE = γ such that TE = T .

In particular, (ii) and (iii) characterize exactly which closed convex sets
can arise as TE for some E ⊂ [1, 2]. It turns out that the essential sharpness
of the results for quasi-Assouad regular dilation sets in Theorem 1.1 allows
one to give a proof of Theorem 1.3 that is entirely analogous to the arguments
in [23, §5-7] and we will therefore not repeat the details of the constructions
here.

Our results have applications to sparse bounds for global maximal op-
erators given by f 7→ supk∈Z supt∈E |f ∗ µ2kt|. We refer to the detailed
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discussion in the paper by Bagchi, Hait, Roncal, Thangavelu [2] who show
how (partial) results on Lp-improving esimates imply corresponding partial
results on sparse bounds for the lacunary and full maximal functions (see
also [24, §8] for a discussion of an essentially sharp version of such results).
In the same way our results imply sparse bounds for the global maximal
operators with restricted dilation sets.

Finally we remark that the behavior of maximal operators associated
with the codimension two spherical means considered here is quite different
from the behavior of maximal functions associated with hypersurfaces in
the Heisenberg group. Of particular interest here is the Korányi sphere, for
which the sharp Lp improving properties of the local full maximal operator
up to endpoints were obtained in a recent paper by one of the authors [27],
see also partial results about averages in previous work [11] by Ganguly and
Thangavelu.

Summary of the paper.

– §2 contains some known preliminary reductions.
– §3 contains the proof of the basic bounds at the points Q1, Q2,β, Q3,β

and states the estimates proving part (i) of Theorems 1.1, 1.2 (i).
– §4 is concerned with the estimate at Q4,γ . We follow the main ar-

gument in §4 which is the reduction to an L2 → Lq estimate. This
is handled by TT ∗ arguments similar to [1], but we have to over-
come difficulties caused by the presence of fold singularities. These
arguments complete the proof of part (i) of Theorems 1.1, 1.2.

– In §5 we prove the key kernel estimate, Proposition 4.2.
– In §6 we prove part (ii) of Theorems 1.1, 1.2 by testing the operator

on some old and new counterexamples.

Notation. Partial derivatives will often be denoted by subscript. P denotes
the (2n−1)×2n matrix P = (I2n−1 0). By A . B we mean that A ≤ C ·B,
where C is a constant and A ≈ B signifies that A . B and B . A.

Acknowledgements. The authors would like to thank the Hausdorff Research
Institute of Mathematics and the organizers of the trimester program Har-
monic Analysis and Analytic Number Theory for a pleasant working environ-
ment during their visits in the summer of 2021. This work was supported by
National Science Foundation grants DMS-2054220 (A.S.) and DMS-2154835
(J.R.), and by a grant from the Simons Foundation (ID 855692, J.R.). The
authors also thank a referee for a thorough reading and suggestions that
have improved the exposition.

2. Preliminaries

Via suitable rotation and localization arguments (as explained in Section
2.1 of [24]), we may assume that f is supported in a small neighborhood
of the origin and the measure µ is supported in a small neighborhood of
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the vector e2n. Splitting y = (y′, y2n) and using the parametrization ω =

(w′, g(w′)) with g(w′) =
√

1− |w′|2 near the north pole e2n of the sphere, it
suffices to consider maximal functions supt∈E |Rf(x, t)| where the integral
operator (generalized Radon transform) R is defined by

Rf(x, x̄, t) =

∫
χ(x, t, y′)f(y′, s2n(x, t, y′), s(x, t, y′))dy′;

here χ is smooth and supported on

(2.1) {(x′, x2n, x̄, t, y
′) : |y′| ≤ ε, |x′| ≤ ε, |x2n − t| ≤ ε, |x̄| ≤ ε}.

The choice of ε will be determined by considerations in the proof of Lemma
5.1 below, depending on the size of derivatives of phase functions and the
choice of J , but it is not necessary to track this.

s2n(x, t, y′) = x2n − tg(x
′−y′
t ),(2.2a)

s̄(x, t, y′) = x̄+ xᵀJP ᵀy′ +
(
x2n − tg(x

′−y′
t )

)
(xᵀJe2n),(2.2b)

where P =
(
I2n−1 0

)
is the matrix of the projection on R2n omitting the

last coordinate. We will need that

(2.3) g(0) = 1, ∇g(0) = 0, g′′(0) = −I2n−1, g
′′′(0) = 0.

It will be convenient to introduce a nonlinear shear transformation in the
x-variables

x(x) = x,

x(x) = x̄− x2n x
ᵀJe2n.

By a change of variables it suffices to prove the relevant estimates for
Af(x, t) = Rf(x(x), t). The operator A has a Schwartz kernel which is a
co-normal distribution given by

K(x, t, y) = χ1(x, t, y′)δ0(S2n(x, t, y′)− y2n, S(x, t, y′)− y),

where χ1(x, t, y′) = χ(x(x), t, y′), δ0 is Dirac measure at the origin in R2 and
(S2n, S̄)|(x,t,y′) = (s2n, s̄)|(x(x),t,y′), that is

(2.4)
S2n(x, t, y′) = x2n − tg(x

′−y′
t ),

S̄(x, t, y′) = x̄+ (xᵀJ)(P ᵀy′ − tg(x
′−y′
t )e2n),

with g as in (2.3). Note that the function χ1 is still supported in a set of
the form (2.1), where we replace ε by O(ε). It is standard to express δ0 via
the Fourier transform

(2.5) K(x, t, y) = χ1(x, t, y′)

∫
θ∈R2

eiΨ(x,t,y,θ) dθ
(2π)2

,

where the phase function Ψ is given by

(2.6) Ψ(x, t, y, θ) = θ2n(S2n(x, t, y′)− y2n) + θ̄(S̄(x, t, y′)− ȳ)

and θ = (θ2n, θ̄).
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We now perform a dyadic decomposition of this modified kernel. Let ζ0 be
a smooth radial function on R2 with compact support in {|θ| < 1} such that
ζ0(θ) = 1 for |θ| ≤ 1/2. We set ζ1(θ) = ζ0(θ/2)−ζ0(θ) and ζj(θ) = ζ1(21−jθ)
for j ≥ 1.

We set, for k = 0, 1, 2, . . .

Akt f(x) =

∫
χ1(x, t, y′)

∫
θ∈R2

ζk(θ)e
iΨ(x,t,y,θ) dθ

(2π)2
f(y)dy.

For k ≥ 1 this can be rewritten, by a change of variables and the homogeneity
of the phase function with respect to θ, as

(2.7) Akt f(x) = 22k

∫
χ1(x, t, y′)

∫
θ∈R2

ζ1(2θ)ei2
kΨ(x,t,y,θ) dθ

(2π)2
f(y)dy.

As already observed in [19] these Fourier integral operators lack “rota-
tional curvature” (i.e. the assumption that the associated canonical relation
is locally the graph of a diffeomorphism). Indeed from Hörmander [13] the
“rotational curvature matrix” is given by

Rotcurv(Ψ) =

(
Ψxy Ψxθ

Ψθy Ψθθ

)
which is equal to

θ2nS
2n
x′y′ + θ̄ S̄x′y′ 0 0 S2n

x′ S̄x′

θ̄ eᵀ2nJP
ᵀ 0 0 1 0

0 0 0 0 1
(S2n
y′ )ᵀ −1 0 0 0

(S̄y′)
ᵀ 0 −1 0 0

 .

One calculates S2n
x′ = −∇g(x

′−y′
t ), S2n

y′ = ∇g(x
′−y′
t ) and

θ2nS
2n
x′y′ + θ̄ S̄x′y′ =

t−1(θ2n + θ̄ xᵀJe2n)g′′(x
′−y′
t ) + θ̄

[
PJP ᵀ +B(x, t, y′)

]
where the (2n− 1)× (2n− 1) matrix B(x, t, y′) is given by

B(x, t, y′) = PJe2n∇g(x
′−y′
t ).

With

(2.8) σ(x, θ) = θ2n + θ̄ xᵀJe2n

we see that Rotcurv(Ψ) equals
t−1σg′′(x

′−y′
t ) + θ̄(PJP ᵀ +B) 0 0 −∇g(x

′−y′
t ) ∗

θ̄ eᵀ2nJP
ᵀ 0 0 1 0

0 0 0 0 1

∇g(x
′−y′
t )ᵀ −1 0 0 0
∗ 0 −1 0 0
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and by using elementary row operations and the skew-symmetry of J , it is
not hard to see that

det (Rotcurv(Ψ)) = det
(
t−1σg′′(x

′−y′
t ) + θ̄ (PJP ᵀ +B −Bᵀ)

)
.

Note that PJP ᵀ +B −Bᵀ is a skew-symmetric matrix of order 2n− 1 and
is thus not invertible. Using [24, Lemma 3.1], we conclude that

t−1σg′′(x
′−y′
t ) + θ̄ (PJP ᵀ +B −Bᵀ)

is invertible if and only if σ 6= 0. Indeed from the calculations in §3 of [24]
and [19, Lemma 5.4] it follows that

det(Rotcurv(Ψ)) ≈ σ(x, θ).

It is natural to use an idea in [22] to further decompose in terms of the size
of σ (see also [6], [19], [3]). For k ≥ 1 and 1 ≤ ` ≤ bk3c, we define

(2.9) u`(x, θ) =


(1− ζ0(1

2σ(x, θ))) if ` = 0,

ζ1(2`σ(x, θ)) if 1 ≤ ` < bk/3c,
ζ0(2bk/3cσ(x, θ)) if ` = bk/3c,

so that
∑b k

3
c

`=0 u` = 1 and u` is supported where |σ| ≈ 2−` when 1 ≤ ` <
bk/3c. Set

(2.10) Ak,`t f(x) ≡ Ak,`f(x, t)

= 22k

∫
χ1(x, t, y′)

∫
θ∈R2

ζ1(2θ)u`(x, θ)e
i2kΨ(x,t,y,θ) dθ

(2π)2
f(y)dy.

Furthermore, for k ≥ 1 and 0 ≤ ` ≤ bk3c, we letM0
Ef(x) = supt∈E |A0

t f(x)|,

(2.11) Mk,`
E f(x) = sup

t∈E
|Ak,`t f(x)| and Mk

Ef(x) =
∑

0≤`≤bk3 c

Mk,`
E f(x).

Since for all E ⊂ [1, 2] the operatorM0
E maps Lp → Lq for all 1 ≤ p ≤ q ≤ ∞

it will be ignored in what follows.

2.1. The operators ∂tAk,` versus Ak,`. Finally, in order to estimate the max-

imal operators Mk,`
E , we will rely on estimates for ∂tAk,`f(x, t). As in [19],

[3] it will be crucial to observe that ∂tΨ lies in the ideal generated by σ,
indeed

(2.12) ∂tΨ(x, y, θ) = −∂t
(
tg(x

′−y′
t )

)
σ(x, θ).

In view of (2.9), (2.10), (2.12) the operator 2`−k∂tAk,` will usually have the
same quantitative behavior as Ak,`.

To expand on this let Kk,`(x, t) be the Schwartz kernel of Ak,`, i.e.

(2.13) Kk,`(x, t, y) = 22k

∫
R2

ei2
kΨ(x,t,y,θ)a`(x, t, y

′, θ)dθ,
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with Ψ as in (2.6) and a`(x, t, y
′, θ) = (2π)−2χ1(x, t, y′)ζ1(2θ)u`(x, θ).

For the t-derivatives we compute

∂tKk,`(x, t, y) = i23k

∫
∂tΨ(x, t, y, θ)ei2

kΨ(x,t,y,θ)a`(x, t, y
′, θ) dθ

+ 22k

∫
ei2

kΨ(x,t,y,θ)∂ta`(x, t, y
′, θ) dθ.

Observe that ∂ta`(x, t, y
′, θ) = (∂tχ1(x, t, y′))ζ1(2θ)u`(x, θ) and its deriva-

tives satisfy the same quantitative estimates as a`. Regarding the first sum-

mand we use (2.12). The expression ∂t(tg(x
′−y′
t )) does not depend on θ and

its derivatives satisfy uniform bounds. Since |σ(x, θ)| ≈ 2−` we see that the
modified amplitude function

ã`(x, t, y
′, θ) = 2`σ(x, θ)a`(x, t, y

′, θ)

satisfies the same estimates as a`, with a similar statement for the deriva-
tives. As a consequence of these considerations we see that the operator

2−k+`∂tAk,`t will always satisfy the same estimates as Ak,`, and we usually

omit a separate proof for ∂tAk,`t .

3. Basic estimates

We use the representation (2.13) for the Schwartz kernel Kk,` of Ak,` and
integration by parts yields the estimate

(3.1) |Kk,`(x, t, y)| ≤ CN
2k−`

(1 + 2k−`|y2n − S2n(x, t, y′)|)N

× 2k

(1 + 2k|ȳ − S̄(x, t, y′)− xᵀJe2n(y2n − S2n(x, t, y′))|)N
.

This estimate yields

sup
t∈[1,2]

sup
x,y
|Kk,`(x, t, y)| . 22k−`,

sup
t∈[1,2]

sup
x

∫
|Kk,`(x, t, y)|dy . 1,

sup
t∈[1,2]

sup
y

∫
|Kk,`(x, t, y)|dx . 1,

where for the third inequality we used the specific expressions for S2n, S̄ in
(2.4). It follows that

‖Ak,`t ‖L1→L1 + ‖Ak,`t ‖L∞→L∞ . 1,(3.2)

‖Ak,`t ‖L1→L∞ . 22k−`.(3.3)

We also have the L2 fixed-time estimate

(3.4) ‖Ak,`t f‖L2(R2n+1) . 2−k
2n−1

2 2
`
2 ‖f‖2,
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for 0 ≤ ` ≤ k
3 . Display (3.4) was established in [19] via estimates for oscil-

latory integrals with fold singularities in [6], see also the detailed treatment
of a relevant extended class of oscillatory integral operators in [3, §6]. By
interpolation we get

Proposition 3.1. Let n ≥ 1 and t ∈ [1, 2].

(i) For 1 ≤ p ≤ 2,

(3.5) ‖Ak,`t f‖p . 2
−k 2n−1

p′ 2
`
p′ ‖f‖p

and for 2 ≤ p ≤ ∞,

(3.6) ‖Ak,`t f‖p . 2
−k 2n−1

p 2
`
p ‖f‖p.

(ii) For 2 ≤ q ≤ ∞,

(3.7) ‖Ak,`t ‖q . 2
k(2− 2n+3

q
)
2
`( 3
q
−1)‖f‖q′ .

(iii) The same estimates hold for 2−k+`∂tAk,`t in place of Ak,`.

Proof. Part (i) follows by interpolating between (3.2) and (3.4), while Part
(ii) is a consequence of interpolating between (3.3) and (3.4). For part (iii)
see the considerations in §2.1. �

The above estimates give the following bounds for the maximal operator

Mk,`
E .

Proposition 3.2. For all n = 1, 2, 3, . . . we have the following bounds for
Schwartz functions f on R2n+1.

(i) For 1 ≤ p ≤ ∞,

(3.8) ‖Mk,`
E f‖p . N(E, 2`−k)1/p2

−k(2n−1) min( 1
p
, 1
p′ )2

`min( 1
p
, 1
p′ )‖f‖p.

(ii) For 2 ≤ q ≤ ∞,

(3.9) ‖Mk,`
E f‖q . N(E, 2`−k)1/q2

k(2− 2n+3
q

)
2
`( 3
q
−1)‖f‖q′ .

(iii) If dimME = β, then for every ε > 0

‖Mk,`
E f‖p .ε 2

(k−`)β+ε
p 2
−k(2n−1) min( 1

p
, 1
p′ )2

`min( 1
p
, 1
p′ )‖f‖p, 1 ≤ p ≤ ∞

and

‖Mk,`
E f‖q .ε 2

(k−`)β+ε
q 2

k(2− 2n+3
q

)
2
`( 3
q
−1)‖f‖q′ , 2 ≤ q ≤ ∞.

Proof. The fundamental theorem of calculus implies the pointwise bound

Mk,`
E f(x) ≤ sup

t∈Zk−`

(
|Ak,`t f(x)|+

∫ 2−k+`

0
|∂sAk,`t+sf(x)| ds

)
,
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where Zk−` consists of the left endpoints of a minimal collection of intervals
of length 2−k+` that covers E. With this in hand, parts (i) and (ii) follow
directly from Proposition 3.1. Part (iii) is immediate since

N(E, 2−k+`) .ε 2(k−`)(β+ε)

when dimME = β. �

For ` ≥ 0, we introduce the operator

(3.10) M`
E :=

∑
k≥3`

Mk,`
E .

Proposition 3.3. Let n ≥ 2, β ∈ (0, 1] and assume that

sup
δ>0

χEM,β(δ) ≡ sup
δ>0

δβN(E, δ) ≤ A1 <∞.

Let Q2,β = ( 2n−1
2n−1+β ,

2n−1
2n−1+β ) and Q3,β = (2n+1−β

2n+3−β ,
2

2n+3−β ).

(i) If (1/p, 1/q) is one of the points Q2,β, Q3,β then there is α(p, q) > 0
such that

‖M`
Ef‖Lq,∞ . A

1/q
1 2−`α(p,q)‖f‖Lp,1

and ME : Lp,1 → Lq,∞ is bounded.

(ii) If (1/p, 1/q) belongs to the open line segment connecting Q2,β and
Q3,β then

‖MEf‖Lq,r . A1/q
1 ‖f‖Lp,r

for all r > 0, in particular ME is bounded from Lp to Lq.

Proof. We observe that part (ii) follows from part (i) by real interpolation
(note that the line connecting Q2,β and Q3,β has a positive finite slope).

We have, for 1 ≤ p ≤ 2,

‖Mk,`
E f‖p . 2

−k(2n−1− 2n−1+β
p

)
2
`(1− 1+β

p
)‖f‖p,

by Proposition 3.2 (i). By Bourgain’s restricted weak type interpolation
trick (see [4], or the appendix of [5]), applied to M`

E defined in (3.10), we
get ∥∥∥M`

Ef
∥∥∥
Lpcr,∞

. 2
`(1− 1+β

pcr
)‖f‖Lpcr,1 , pcr = 2n−1+β

2n−1

and we have 1 − 1+β
pcr

= −β 2n−2
2n−1+β so that we can sum in ` ≥ 0 if n ≥ 2.

The asserted restricted weak type inequality for Q2,β follows.

To prove the estimate for Q3,β we note that for 2 ≤ q ≤ ∞ we get from
Proposition 3.2 (ii)

‖Mk,`
E f‖q . A1/q

1 2
k(2− 2n+3−β

q
)
2
`( 3−β

q
−1)‖f‖q′

and again by the restricted weak type interpolation result,

‖M`
Ef‖q . 2

`( 3−β
qcr
−1)‖f‖q′ , qcr = 2n+3−β

2 .
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We have 3−β
qcr
−1 = 3−β−2n

3−β+2n which is negative for n ≥ 2. Summing in ` yields

the desired result on ME . �

Finally, we state the main estimate at the vertex

(3.11) Q4,γ = ( 1
p4
, 1
q4

) = ( n(2n+1)
2n2+3n+2γ

, 2n
2n2+3n+2γ

).

Proposition 3.4. Let n ≥ 1, γ ∈ (0, 1) and assume that

sup
δ>0

χEA,γ(δ) ≡ sup
δ>0

sup
|I|>δ

(δ/|I|)γN(E ∩ I, δ) ≤ A2 <∞ .

Let p4, q4 as in (3.11). Then

(3.12) ‖M`
Ef‖q4,∞ .b A

1/q4
2 2−`b‖f‖p4,1, for b < n(2n−3)+2γ(n−1)

2n2+3n+2γ
.

If in addition n ≥ 2 then also

(3.13) ‖MEf‖Lq4,∞ . A1/q4
2 ‖f‖Lp4,1 .

The assertion for ME follows from (3.12) after summing in `. Inequality
(3.12) will be proven in the next section as a consequence of Proposition 4.1
below.

4. Estimates at Q4,γ

After a decomposition of E into a finite number of subsets we may assume
that

(4.1) diam(E) < ε,

with ε as in (2.1). Given a non-negative integer m, let Im(E) denote the set
of all dyadic intervals of the form (ν2−m, (ν + 1)2−m) (with ν ∈ Z) which
intersect E. Then one observes that #Im(E) . N(E, 2−m). Thus, for any
interval I of length at least 2−m, we have

#Im(E ∩ I) . χEA,γ(2−m) |I|γ2mγ .

Further, let Zm(E) denote the set of left endpoints of intervals Iν ∈ Im(E),
endowed with the counting measure. The main result of this section is the
following Stein-Tomas type estimate for Ak,`.

Proposition 4.1. Let n ≥ 1 and q5 = 2(n+γ)
n . Suppose

sup
δ>0

χEA,γ(δ) ≤ A2 <∞ ,

where χEA,γ(δ) is as defined in (1.4b). Then for any b1 >
n(1−γ)
2(n+γ) , we have

(4.2) ‖Ak,`‖L2(R2n+1)→Lq5,∞(R2n+1×Zk−`) .b1 2
−k( 2n+1

q5
−1)

2`b1 .
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Proof that Proposition 4.1 implies Proposition 3.4. By the fundamental the-
orem of calculus,

Mk,`
E f(x) ≤ sup

t∈Zk−`

(
|Ak,`t f(x)|+

∫ 2`−k

0
|∂sAk,`t+sf(x)| ds

)
.

Thus, taking an Lq5,∞ norm on both sides and using Proposition 4.1, we
conclude that

‖Mk,`
E f‖Lq5,∞ ≤ ‖Ak,`f‖Lq5,∞(R2n+1×Zk−`)

+

∫ 2`−k

0
‖∂sAk,`t+sf(x)‖Lq5,∞(R2n+1×Zk−`) ds

. 2
−k( 2n+1

q5
−1)

2
`n
2

(
1−γ
n+γ

)
2`ε‖f‖2.(4.3)

We can now use Bourgain’s trick to interpolate between the above es-

timate and the case q = ∞ of (3.9), with ϑ = 4(n+γ)
2n2+3n+2γ

∈ (0, 1), a =
n(2n−3)+2γ(n−1)

2n2+3n+2γ
and small ε > 0. Observe that a > 0 if n ≥ 2. Note that

(1− ϑ)(1, 0, 2,−1) + ϑ(1
2 ,

1
q5
, 1− 2n+1

q5
, n(1−γ)

2(n+γ) + ε) = ( 1
p4
, 1
q4
, 0,−a+ ϑε)

which implies the desired estimate (3.12). �

Outline of the proof of Proposition 4.1. We can use a partial scaled Fourier
transform

Fk(y
′, θ2n, θ̄) =

∫
R2

f(y′, y2n, ȳ)e−i2
k(y2nθ2n+ȳθ̄)dy2ndȳ

to write

Ak,`f(x, t) = 22k

∫
ei2

k(θ2nS2n(x,t,y′)+θ̄S̄(x,t,y′))a`(x, t, y
′, θ)Fk(y

′, θ2n, θ̄)dy
′dθ.

By Plancherel’s theorem

(4.4) ‖Fk‖2 = 2−k2π‖f‖2.
Note that a` is supported on a set where |y′| is small and |θ| ≈ 1. We
make a finite decomposition of the symbol a` =

∑
i a`,i where each a`,i is

supported on a set of diameter O(ε). It will be convenient to rename the
variables (y′, θ) = (w′, w2n, w̄) and replace Fk(y

′, θ2n, θ̄) by a general function
w → f(w). We are therefore led to consider the oscillatory integral operator
T k,` defined by

T k,`f(x, t) :=

∫
Rd
ei2

kΦ(x,t,w)b`(x, t, w)f(w)dw,

with the phase function

(4.5) Φ(x, t, w) = w2nS
2n(x, t, w′) + w̄S̄(x, t, w′),

and symbol b` which is a placeholder for one of the a`,i. Thus we have

b`(x, t, w) = χ1(x, t, w′)ζ1(2w̄)u`(x,w2n, w̄)
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with u` as in (2.9). b` is smooth and supported in a set of diameter O(ε)
where |w′| . ε, |x′| . ε, |x2n − t| . ε, |x̄| . ε, |(w2n, w̄)| ∼ 1 and where
|t− t◦| . ε for some fixed t◦, and finally the size of

(4.6) σ(x,w2n, w̄) = w2n + w̄ xᵀJe2n

(i.e. σ as in (2.8)) is about 2−`.

In view of (4.4) we see that (4.2) follows from

(4.7) ‖T k,`‖L2(R2n+1)→Lq5,∞(R2n+1×Zk−`) . 2
−k 2n+1

q5 2`b1 .

We remark that for 2` . ε−1 the estimate follows by the consideration in
[24], indeed then we can apply a theorem about oscillatory integrals with
Carleson-Sjölin conditions (see [28], [17]). However in view of the properties
of the amplitude function b` for large ` these theorems are no longer directly
applicable. In what follows we shall only treat the case for large `.

In order to show (4.7) it will be convenient to work with a subset of Zk−`
with some additional separation condition. Given small ν such that

(4.8) 0 < ν < 1
2

(
b1 − n(1−γ)

2(n+γ)

)
we replace Zk−` with an arbitrary subset Zsep

k−` satisfying the separation
condition

(4.9) t, t̆ ∈ Zsep
k−`, t 6= t̆ =⇒ |t− t̆| > 2`−k2`ν .

It is clear that Zk−` can be written as a disjoint family of sets Zk−`,i, for

i = 1, . . . , N with N ≤ 21+`ν , where each Zk−`,i satisfies the condition (4.9).
By Minkowski’s inequality it is therefore enough to prove

(4.10) ‖T k,`‖L2(R2n+1)→Lq5,∞(R2n+1×Zsep
k−`)
. 2

−k 2n+1
q5 2

`
n(1−γ)+νγ

2(n+γ)

for any subset Zsep
k−` of Zk−` satisfying (4.9). In what follows we fix such a

subset Zsep
k−`. We define the operator Sk,` acting on functions g : R2n+1 ×

Zsep
k−` → C by

Sk,`g(x, t) =
∑

t′∈Zsep
k−`

T k,`t (T k,`t′ )∗[g(·, t′)](x),

where T k,`t f(x) = T k,`f(x, t). By a TT ∗ argument, (4.10) is a consequence
of the following estimate

(4.11) ‖Sk,`g‖Lq5,∞(R2n+1×Zsep
k−`)
. 2

−2k 2n+1
q5 2

`
n(1−γ)+νγ

n+γ ‖g‖
Lq
′
5,1(R2n+1×Zsep

k−`)
.

For j > 0 and t ∈ Zsep
k−`, we define

Zjk−`(t) = {t′ ∈ Zsep
k−` : 2(1+ν)`−k+j ≤ |t− t′| ≤ 2(1+ν)`−k+j+1},
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and for j = 0 we set Z0
k−`(t) = {t}.Note that Zjk−`(t) is empty, if j > k−`+4.

Let
Sk,`j g(x, t) =

∑
t′∈Zjk−`(t)

T k,`t (T k,`t′ )∗[g(·, t′)](x)

and observe that
Sk,` =

∑
j≥0

Sk,`j .

We claim that Sk,`j satisfies for 2 ≤ q ≤ ∞ the estimates

(4.12) ‖Sk,`j g‖Lq(R2n+1×Zsep
k−`)

. 2
−k 4n+2

q 2
`((n−ν+1) 2

q
−(n−ν))

2
j(

2(n+γ)
q
−n)‖g‖Lq′ (R2n+1×Zsep

k−`)
,

which follow by interpolation from

(4.13) ‖Sk,`j g‖L2(R2n+1×Zsep
k−`)
. 2−k(2n+1)2`2jγ‖g‖L2(R2n+1×Zsep

k−`)

and

(4.14) ‖Sk,`j g‖L∞(R2n+1×Zsep
k−`)
. 2−`(n−ν)2−jn‖g‖L1(R2n+1×Zsep

k−`)
.

Clearly, if q > q5 = 2(n+γ)
n we can sum in j in (4.12) to get

(4.15) ‖Sk,`g‖Lq(R2n+1×Zsep
k−`)

.q 2
−k 4n+2

q 2
`((n−ν+1) 2

q
−(n−ν))‖g‖Lq′ (R2n+1×Zsep

k−`)
, q > q5.

Moreover for q = q5 we can apply Bourgain’s interpolation trick to obtain
the restricted weak type inequality (4.11).

To prove (4.13) we estimate

‖Sk,`j g‖L2(R2n+1×Zsep
k−`)

=
( ∑
t∈Zsep

k−`

∫ ∣∣∣ ∑
t′∈Zjk−`(t)

T k,`t (T k,`t′ )∗[g(·, t′)](x)
∣∣∣2 dx)1/2

≤
( ∑
t∈Zsep

k−`

#Zjk−`(t)
∫ ∑

t′∈Zjk−`(t)

|T k,`t (T k,`t′ )∗[g(·, t′)](x)|2 dx
)1/2

.
( ∑
t∈Zsep

k−`

#Zjk−`(t)
∑

t′∈Zjk−`(t)

‖T k,`t ‖2L2→L2‖(T k,`t′ )∗‖2L2→L2‖g(·, t′)‖22
)1/2

. A22−k(2n+1)2`2jγ‖g‖L2(R2n+1×Zsep
k−`)

.

Here we have used the fact that

‖T k,`t ‖L2→L2 . 2−k‖Ak,`t ‖L2→L2 . 2
`
2 2−k(n+ 1

2
)

and that #Zjk−`(t
′) . A22jγ for all t′ ∈ Zjk−`. This takes care of (4.13).
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Inequality (4.14) is a direct consequence of the following kernel estimate,
which shall be proved in §5.

Proposition 4.2. Let k > 0 and 0 ≤ ` ≤ [k/3]. Let Kk,`
t,t̆

denote the kernel

of T k,`t (T k,`
t̆

)∗, which is given by

(4.16) Kk,`
t,t̆

(x, x̆) =

∫
R2n+1

ei2
k(Φ(x,t,w)−Φ(x̆,t̆,w))b`(x, t, w)b`(x̆, t̆, w) dw.

Let ν > 0 and

(4.17) 2`−k2ν` ≤ |t− t̆| ≤ 1.

Then for 0 ≤ ` ≤ [k3 ], we have

|Kk,`
t,t̆

(x, x̆)| .ν 2`ν(1 + 2k|t− t̆|)−n.

Remark 4.3. One can run the above arguments also for n = 1. A favorable
L2 → Lq bound for Ak,` follows if q > 2(1 + γ) because then the j-sum of
the terms in (4.12) converges for the case n = 1 of (4.15). The exponent of
2` in (4.15) is now positive for all ν > 0 when q < 4, and we have to allow
the range ` ≤ k/3. Thus we get a positive result when −6

q + 1
3(4
q − 1) < −2

which is the case for q < 14/5. This restricts the range of allowable γ to
2(1+γ) < 14/5, i.e. γ < 2/5. As a result one obtains that ME maps L2(H1)
to Lq(H1) if dimqAE < 2/5 and q < 14/5. We know from considerations in
[12, 24] that this result is not sharp; this point will be addressed elsewhere.

5. Proof of Proposition 4.2

In order to estimate the oscillatory integral (4.16) using stationary phase
arguments we expand the phase Φ(x, t, w)− Φ(x̆, t̆, w) as

(x− x̆)ᵀ∇xΦ(x̆, t̆, w) + (t− t̆)∂tΦ(x̆, t̆, w) +O(|(x− x̆, t− t̆)|2)

and thus, for stationary phase calculations it is natural to consider the cur-
vature property of the surface

Σx,t = {∇x,tΦ(x, t, w)}

where w is close to a reference point w◦ with (w′)◦ = 0. These consider-
ations are similar to those in the proof of Stein’s result on Carleson-Sjölin
type oscillatory integral operators (see [28, 29] and also [18]). A potential
difficulty here is that for large ` and small |x − x̆| + |t − t̆| the amplitudes
do not a priori seem to satisfy the appropriate derivative bounds for an ap-
plication of the stationary phase method. However, a closer examination of
the curvature properties of Σx,t and their interplay with the geometry of the
fold surface {σ = 0} will reveal that this is not a significant obstacle in our
specific situation.
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5.1. Curvature of Σx,t. We analyze the w-derivatives of

(5.1) Ξ(x, t, w) := ∇x,tΦ(x, t, w) = w2n∇x,tS2n(x, t, w′) + w̄∇x,tS̄(x, t, w′),

for a fixed (x, t). These calculation will be the basis for a stationary phase
estimate in §5.2. We will only consider the case of large ` i.e. when

(5.2) σ ≡ σ(x,w2n, w̄) = w2n + w̄xᵀJe2n

is small (|σ| . 2−`) since the other cases have already been discussed in [24].
We need some modifications because of the lack of good differentiability
properties of the amplitudes for large `.

For the sake of completeness, we include the calculation of the curvature
matrix below, and then establish the invertibility of this minor. Using (5.1),
the expressions for S2n, S̄, and the skew-symmetry of J we calculate that
Ξ(x, t, w) is equal to

w2n


−∇g(x

′−w′
t )

1
0

g∗(
x′−w′
t )

+ w̄


PJP ᵀw′ − tg(x

′−w′
t )PJe2n − (xᵀJe2n)∇g(x

′−w′
t )

eᵀ2nJP
ᵀw′

1

g∗(
x′−w′
t )xᵀJe2n


where

(5.3a) g∗(x
′) = 〈x′,∇g(x′)〉 − g(x′),

with

(5.3b) g∗(0) = −1, ∇g∗(0) = 0, g′′∗(0) = −I2n−1.

The oscillatory integral operator f 7→ T kf(·, t) :=
∑

` T
k,`f(·, t) is an

operator with a folding canonical relation (i.e. two-sided fold singularities),
and the fold surface is parametrized by σ = 0 (see [24, Remark 3.2], [19]
and the discussion after (2.7) in the analogous setting of Fourier integral
operators, for more details).

We compute, for j = 1, . . . , 2n − 1, the partial derivatives (recalling the
expression for σ from (5.2)),

Ξwj =


t−1σ∂j∇g(x

′−w′
t ) + w̄PJ(ej + ∂jg(x

′−w′
t )e2n)

w̄eᵀ2nJej
0

−t−1σ∂jg∗(
x′−w′
t )

 ,

Ξw2n =


−∇g(x

′−w′
t )

1
0

g∗(
x′−w′
t )

 ,
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and, with w̄ ≡ w2n+1,

Ξw2n+1 =


PJP ᵀw′ − tg(x

′−w′
t )PJe2n − xᵀJe2n∇g(x

′−w′
t )

eᵀ2nJP
ᵀw′

1

g∗(
x′−w′
t )xᵀJe2n

 .

For x′ = w′, using the properties of g, h in (2.3), (5.3b) we get

Ξwj

∣∣∣
x′=w′

= (−t−1σ + w̄J)ej ,

Ξw2n

∣∣∣
x′=w′

=


~02n−1

1
0
−1

 , Ξw2n+1

∣∣∣
x′=w′

=


PJP ᵀw′ − tPJe2n

eᵀ2nJP
ᵀw′

1
−xᵀJe2n

 .

Using the defining equations of a unit normal vector N ,

〈N,Ξwi〉 = 0, i = 1, . . . , 2n+ 1

at the north pole (x′ = w′), we get

0 = 〈N,Ξwj 〉
∣∣∣
x′=w′

= −t−1σαj + w̄αᵀJej , j ≤ 2n− 1.(5.4a)

0 = 〈N,Ξw2n〉
∣∣∣
x′=w′

= α2n − α2n+2,(5.4b)

and

(5.4c) 0 = 〈N,Ξw2n+1〉
∣∣∣
x′=w′

=

α′ᵀ(PJP ᵀw′ − tPJe2n) + α2ne
ᵀ
2nJP

ᵀw′ + α2n+1 − α2n+2x
ᵀJe2n,

where Nᵀ = (α′ᵀ, α2n, ᾱ). Equation (5.4c) above expresses α2n+1 in terms
of α and α2n+2 and turns out to be not really relevant to our calculations.
Since |N | = 1 we have |α| ≈ 1.

The second derivative vectors are given by

Ξwjwk =


−t−2σ∂jk∇g(x

′−w′
t )− w̄t−1PJe2n∂

2
jkg(x

′−w′
t )

0
0

t−2σ∂2
jkg∗(

x′−w′
t )

 ,

for 1 ≤ j, k ≤ 2n− 1, and

Ξwjwk = 0, if 2n ≤ j, k ≤ 2n+ 1.

Moreover, for j = 1, . . . , 2n− 1,

Ξwjw2n =


t−1∂j∇g(x

′−w′
t )

0
0

−t−1∂jg∗(
x′−w′
t )

 ,
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and,

Ξwjw2n+1 =


PJej + PJe2n∂jg(x

′−w′
t ) + t−1xᵀJe2n∂j∇g(x

′−w′
t )

eᵀ2nJej
0

−t−1xᵀJe2n∂jg∗(
x′−w′
t )

 .

We evaluate at x′ = w′, using g′′(0) = g′′∗(0) = −I2n−1, g′′′(0) = 0, and see
that the components of the curvature matrix CN at x′ = w′ are given by

〈N,Ξwjwj 〉
∣∣∣
x′=w′

= t−1(α′)ᵀPJe2nw̄ − t−2α2n+2σ,

〈N,Ξwjwk〉
∣∣∣
x′=w′

= 0, if j 6= k,

for 1 ≤ j, k ≤ 2n− 1. Moreover for 1 ≤ j ≤ 2n− 1,

〈N,Ξwjw2n〉
∣∣∣
x′=w′

= −t−1αj ,

〈N,Ξwjw2n+1〉
∣∣∣
x′=w′

= αᵀJej − t−1αjx
ᵀJe2n,

and

〈N,Ξwjwk〉
∣∣∣
x′=w′

= 0, j, k ∈ {2n, 2n+ 1}.

Thus, the curvature matrix CN at x′ = w′ with entries 〈N,Ξwiwj 〉, 1 ≤ i, j ≤
2n+ 1 (with w2n+1 ≡ w̄) is

CN =

(
cI2n−1 PA
AᵀP ᵀ 0

) ∣∣∣
x′=w′

,

where the scalar c and the 2n× 2 matrix A are given by

c = αᵀJe2n
t w̄ − α2n+2σ

t2
(5.5)

A =
(
−1
tα Jα− xᵀJe2n

t α
)

(and PA is the (2n− 1)× 2 matrix obtained by deleting the last row of A).
Using [24, Lemma 3.1] and the fact that |α| ≈ 1, it can be checked that |c|
is uniformly bounded away from zero, which implies that the rank of the
curvature matrix is 2n (indeed by (5.4a) we have PJα = 0 when x′ = w′

and σ = 0, hence rank(PA) = 1).

As a consequence of the above we obtain for the restricted matrices

det
(
D2
ww〈Ξ, N〉

) ∣∣∣
x′=w′

= −c2n−2 |α′|2

t2
6= 0(5.6)

det
(
D2
w′w′〈Ξ, N〉

) ∣∣∣
x′=w′

= c2n−1 6= 0(5.7)

with c as in (5.5).
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5.2. Proof of Proposition 4.2, continued. Recall that

Kk,`
t,t̆

(x, x̆) =

∫
ei2

k(Φ(x,t,w)−Φ(x̆,t̆,w))b`(x, t, w)b`(x̆, t̆, w) dw.

For ease of notation, we set

X = (x, t), X̆ = (x̆, t̆),

and

B`(X, X̆, w) = b`(x, t, w)b`(x̆, t̆, w).

Recall that the amplitude B` is supported in the set where

(5.8) |(w2n, w̄)| ∼ 1, |w′| ≤ ε, |x′| ≤ ε, |x̆′| ≤ ε, |x̄| ≤ ε, |¯̆x| ≤ ε,

|x2n − t| ≤ ε, |x̆2n − t̆| ≤ ε, |t− t̆| ≤ ε
and

|w2n + w̄ xᵀJe2n| ≈ 2−` ≈ |w2n + w̄ x̆ᵀJe2n|.
We fix a reference point (X◦, w◦) where

X◦ = (0′, x◦2n, x̄
◦, t◦), w◦ = (0′, 0, w̄◦)

(so that σ becomes 0 at (X◦, w◦), and let N◦ be one of the unit normals to
ΣX◦ at w = w◦, i.e. we have

(5.9) 〈N◦, ∂wj∇XΦ(X◦, w◦)〉 = 0, for 1 ≤ j ≤ 2n+ 1.

Then B` is supported in a ball of radius O(ε) centered at (X◦, X̆◦, w◦).

For a unit vector ~u define

Ψ(X, X̆, ~u, w) =

∫ 1

0
~u · ∇XΦ(X̆ + s(X − X̆), w) ds.

Then we can express the phase function corresponding to the kernel Kk,`
t,t̆

as

(5.10) 2k(Φ(X, y)−Φ(X̆, y)) = λΨ(X, X̆, X−X̆
|X−X̆|

, w), with λ = 2k|X − X̆|.

Define for all ~u ∈ S2n+1

Iλ,`(X, X̆, ~u) =

∫
eiλΨ(X,X̆,~u,w)B`(X, X̆, w)dw

and note that Ψ is a smooth phase, in all arguments.

Lemma 5.1. Let ν > 0. For ε in (5.8) sufficiently small the following holds,
for 2` > ε−1, λ > ε−1.

(i) For min{|~u−N◦|, |~u+N◦|} ≥ ε3/4 we have

|Iλ,`(X, X̆, ~u)| ≤ CM,ε2
−`(λ2−`)−M .

(ii) For min{|~u−N◦|, |~u+N◦|} ≤ ε1/2 and 2` ≤ λ
1

2(1+ν) we have

|Iλ,`(X, X̆, ~u)| .ε λ−n.
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(iii) For min{|~u−N◦|, |~u+N◦|} ≤ ε1/2, we have

|Iλ,`(X, X̆, ~u)| .ε 2−`λ−
2n−1

2 .

If in particular 2` ≥ λ
1

2(1+ν) then

|Iλ,`(X, X̆, ~u)| .ε 2`νλ−n.

Remark. The conclusions in part (ii), (iii) also hold for ν = 0 but in (ii)
require a stationary phase estimate for amplitudes χλ satisfying endpoint
Calderón-Vaillancourt bounds, i.e. ∂αw(χλ(w)) = O(λ|α|/2). For our applica-
tion it suffices to take ν > 0.

We first show that Lemma 5.1 implies Proposition 4.2. We take X 6= X̆

and ~u = X−X̆
|X−X̆|

, and λ = 2k|X − X̆|. Assume min | X−X̆
|X−X̆|

±N0| ≥ ε3/4. We

have |t− t̆| ≥ 2`−k2ν` and get from part (i) of Lemma 5.1 the estimate, for
N � n,

|Iλ,`| . 2−`(λ2−`)−N .N 2`(n−1)(2k|X − X̆|)−n(2k−`|X − X̆|)n−N )

. (2k|X − X̆|)−n2`(n−1−ν(N−n)).

The bound |Iλ,`| . (2k|X − X̆|)−n follows if we choose N large enough.

If min | X−X̆
|X−X̆|

± N0| ≤ ε3/4 the appropriate bound is in part (ii) of the

lemma, and the bound in Proposition 4.2 is now established for the range

2` ≤ (2k|X − X̆|)
1

2(1+ν) , i.e. |X − X̆| ≥ 22`(1+ν)−k.

Next assume t 6= t̆, |X − X̆| ≤ 22`(1+ν)−k, by the assumed t-variation we

also have the lower bound and |X−X̆| ≥ 2`(1+ν)−k which is needed to apply

part (i) of Lemma 5.1 for min | X−X̆
|X−X̆|

± N0| ≥ ε3/4. In the opposite range

we apply part (iii) of the lemma. Note that the assumption 2` ≥ λ
1

2(1+ν)

is now equivalent to the required |X − X̆| ≥ 22`(1+ν)−k. We also note that

∂αw′(B`(X, X̆, w)) = O(1).

This finishes the proof of Proposition 4.2 once Lemma 5.1 is verified.

5.3. Proof of Lemma 5.1. Let V be the linear space perpendicular to N◦;

then ∇2
(X,w)Φ is invertible as a map from R2n+1 to V . Hence∣∣∇w〈~u,∇x,tΦ(X◦, w)〉w=w◦

∣∣ ≥ c|~u− 〈~u,N◦〉N◦| & ε3/4,
and by expanding ∇wΨ(X, X̆, ~u, w) about (X◦, X◦, ~u, w◦) we get

∇wΨ(X, X̆, ~u, w)−∇w〈~u,∇x,tΦ(X◦, w)〉
∣∣
w=w◦

= O(ε).

This implies that for |~u−N◦| ≥ ε3/4 and ε small∣∣∇wΨ(X, X̆, ~u, w)
∣∣ & ε3/4
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for (X, X̆, w) in the support of B`. Since the higher w-derivatives of Ψ are
bounded and since

(5.11) ∂α(w2n,w̄)

[
B`(x, t, w)] = O(2`|α|)

an integration by parts yields the bound Iλ,` = O(2−`(λ2−`)N ) as asserted.

We now turn to (ii) and apply a stationary phase argument with respect
to the w-variables. By our curvature calculations the (2n × 2n) Hessian

matrix D2
ww

(
〈N◦,∇XΦ(X◦, w, w̄)〉

)
w=w◦

is invertible, for |u − N◦| ≤ ε1/2

we get a matrix norm estimate∥∥D2
ww(〈N◦,∇XΦ(X◦, w)〉)w=w◦ −D2

wwΨ(X,~u,w)
∥∥ . ε1/4

and hence (given that ε is small) we see that D2
wwΨ(X,~u,w) is invertible,

with uniformly bounded inverse. Note that by our assumption on ` and
λ we have ∂αwB`(X, X̆, w) = O(λ|α|/(2+2ν)) and so for ν > 0 a standard
application of the stationary phase method in the w variables gives the
estimate |Iλ,`| = O(λ−n).

For (iii) we argue similarly but in view of the unfavorable differentiabil-
ity properties of B` with respect to w2n we are freezing both the w2n and
w̄ variables. We now have that the (2n − 1) × (2n − 1) Hessian matrix
D2
w′w′

(
〈N◦,∇XΦ(X◦, w′, w2n, w̄)〉

)
w=w◦

is the identity matrix and by a per-

turbation argument as above we see that D2
w′w′Ψ(X,~u,w) is invertible. Since

σ does not depend on w′ we have uniform upper bounds for the w′-derivatives
of the amplitude. We can therefore apply the method of stationary phase
in the w′-variables and since the (w2n, w̄)-integral is extended over a set

of measure O(2−`) we obtain the asserted estimate |Iλ,`| = O(2−`λ−
2n−1

2 ).

The second estimate in (iii) is immediate since the inequality 2` ≥ λ
1

2(1+ν)

is equivalent with 2−`λ−
2n−1

2 ≤ 2`νλ−n. �

6. Necessary Conditions

In this section we prove the sharpness of Theorem 1.1 for Assouad regular
sets E. Regarding the line connecting Q1 and Q2,β this is just the necessary
condition p ≤ q imposed by translation invariance and noncompactness of
the group Hn. The necessary conditions for the segments Q2,β, Q3,β and

Q1Q4,γ are quite similar to the consideration in the Euclidean case. However

the example for the segment Q3,βQ4,γ is substantially different from a Knapp
type example for co-dimension two surfaces in the Euclidean case (see also
[24] for a simplified version for the full maximal operator); this indicates a
new phenomenon on the Heisenberg group.

Given δ ∈ (0, 1), let Iδ(E) denote the set of all dyadic intervals of the
form [νδ, (ν + 1)δ) (with ν ∈ Z) which intersect E, and let Zδ(E) denote a
subset of E which contains exactly one t ∈ E ∩ I for every I ∈ Iδ(E). Let
β = dimME, and γ = dimqAE, respectively.
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6.1. The line connecting Q2,β and Q3,β. For any ε > 0 there exists a set

∆ε = {δj : j = 1, 2, . . . } with limj→∞ δj = 0 such that N(E, δ) ≥ δ−β+ε for
δ ∈ ∆ε. For δ ∈ ∆ε let fδ be the characteristic function of B10δ, the ball of
radius 10δ centered at the origin. Then

‖fδ‖p ≈ δ(2n+1)/p.

For 1 ≤ t ≤ 2 we consider the sets

Rδ,t := {(x, x̄) : ||x| − t| ≤ δ/20, |x̄| ≤ δ/20}.
Then |Rδ,t| & δ2. Let Σx,t = {ω ∈ S2n−1 : |x − tω| ≤ δ/4} which has
spherical measure ≈ δ2n−1.

If x ∈ Rδ,t and ω ∈ Σx,t then |x− tω| ≤ δ and using the skew symmetry
of J we get

|x̄− txᵀJω| ≤ |x̄|+ |xᵀJ(tω − x)| ≤ 3δ.

Thus, for x ∈ Rδ,t,

fδ ∗ µt(x, x̄) =

∫
S2n−1

fδ(x− tω, x̄− txᵀJω) dµ(ω) & δ2n−1.

Passing to the maximal operator, we set

Rδ = ∪t∈Zδ(E)Rδ,t.

We have |Rδ| & δ2N(E, δ) & δ2+ε−β. Further, for x ∈ Rδ, there exists a
unique t(x) ∈ Zδ(E) such that |fδ ∗ µt(x)(x)| ≥ δ2n−1.

This yields the inequality

δ2n−1δ(2+ε−β)/q . δ(2n+1)/p.

We set δ = δj and let j → ∞, and since ε > 0 was arbitrary we obtain the
necessary condition

(6.1) 2−β
q + 2n− 1 ≥ 2n+1

p ,

that is, (1/p, 1/q) lies on or above the line connecting Q2,β and Q3,β.

6.2. The line connecting Q1 and Q4,γ. For this line we just use the coun-
terexample for the individual averaging operators, bounding the maximal
function from below by an averaging operator. Given t ∈ [1, 2], let gδ,t be
the characteristic function of the set {(y, ȳ) : ||y|−t| ≤ 10δ, |ȳ| ≤ 10δ}. Thus

‖gδ,t‖p . δ2/p.

Let x = (x, x̄) be such that |x| ≤ δ and |x̄| ≤ δ. For any ω ∈ S2n−1, we
have that t|xᵀJω| . 2δ. Thus∣∣|x− tω| − t∣∣ ≤ 2δ,∣∣x̄− txᵀJω∣∣ ≤ |x̄|+ t|xᵀJω| ≤ 10δ

implying that |gδ,t ∗ σt(x)| & 1. This yields the inequality δ(2n+1)/q ≤ δ2/p

which leads to the necessary condition

(6.2) 1
q ≥

2
2n+1 ·

1
p ,
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that is, (1/p, 1/q) lies on or above the line connecting Q1 and Q4,γ .

6.3. The line connecting Q3,β and Q4,γ. Here we assume β > 0 (and there-
fore γ > 0) since Q3,0 = Q4,0. By a change of variables, we can assume
that

J = 1
2

(
0 In
−In 0

)
,

with In being the n× n identity matrix.

Let ε > 0. By the definition of quasi-Assouad regularity there exists
a sequence {δj}∞j=1 of positive numbers with limj→∞ δj = 0 and intervals

Ij ⊂ [1, 2] of length δθj with θ = 1− β/γ such that

(6.3) N(E ∩ Ij , δj) ≥ (δj/|Ij |)ε−γ = δ
(1−θ)(ε−γ)
j .

We let Pε denote the set of pairs (δj , Ij) and fix (δ, I) ∈ Pε. Set

(6.4) ς = δ(1−θ)/2.

Let a be the right end point of the interval I and let f be the characteristic
function of the set

{(z, z̄) : |z′l| . ς, |z′r| . ς, ||zn| − a| . δ, ||z2n| − a| . δ, |z̄| . δ1−θ},

where z = (zl, zr) ∈ Rn × Rn and zl = (z′l, zn) ∈ Rn−1 × R, zr = (z′r, z2n) ∈
Rn−1 × R. Then

(6.5) ‖f‖p . (ς2n−2δ3−θ)1/p ≈ (δn(1−θ)+2)1/p.

For each t ∈ [1, 2], t < a we define the set

Rtδ := {(x, x̄) : |x′l| . δς−1, |x′r| . δς−1, |x̄| . δ1+θ, ||(xn, x2n)|+ t− a| . δ}.

Clearly meas(Rtδ) ≈ (δς−1)2n−2δ2+θ. Note that there is a constant C ≥ 1

such that Rtδ and Rt
′
δ are disjoint if |t − t′| ≥ Cδ. We choose a covering of

E ∩ I by a collection J of pairwise disjoint intervals, each of length δ and
intersecting E ∩ I. Let J̃ = {Iν}Nν=1 be a maximal 2Cδ-separated subset of

intervals in J . For each Iν pick tν ∈ Iν ∩E. Then Rtνδ and R
tν′
δ are disjoint

if ν 6= ν ′. Also

(6.6) N = #J̃ & N(E ∩ I, δ).

We now prove the lower bound

(6.7) MEf(x, x̄) & δn(1−θ), for (x, x̄) ∈ Rtνδ .

To see (6.7), we need the lower bound

(6.8) |f ∗ µt(x, x̄)| & δn(1−θ) for (x, x̄) ∈ Rtδ.

To this end observe that, given (x, x̄) ∈ Rtδ and for ω ∈ S2n−1 such that

|ω′l| . ς, |ω′r| . ς, |(ωn, ω2n)− (xn,x2n)
|(xn,x2n)| | . δ

1−θ,
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we have

|x′l + tω′l| . ς, |x′r + tω′r| . ς
and

|x̄+ txᵀJω| . |x̄|+ t
2 |x
′
lω
′
r − x′rω′l|+ t

2 |xnω2n − x2nωn|

. δ1+θ + δ +
∣∣∣xn(ω2n − x2n

|(xn,x2n)|

)
− x2n

(
ωn − xn

|(xn,x2n)|

)∣∣∣
. δ1−θ + |xn|δ1−θ + |x2n|δ1−θ . δ1−θ.

Also for i = n, 2n, we compute

|xi + tωi|2 = |xi|2 + t2|ωi|2 + 2txiωi

≤ |xn|2 + |x2n|2 + 2t|(xn, x2n)|+ 2t(xiωi − |(xn, x2n)|)
≤ (|(xn, x2n)|+ t)2 + 2t|(xn, x2n)|

(
xi

|(xn,x2n)|ωi − 1
)

≤ (|(xn, x2n)|+ t)2 + 2t|(xn, x2n)|(|ωi| − 1)

≤ (|(xn, x2n)|+ t)2 + 2t|(xn, x2n)|(|(ωn, ω2n)| − 1)

= (|(xn, x2n)|+ t)2 + 2t|(xn, x2n)|(
√

1− |ω′l|2 − |ω′r|2 − 1).

As ||(xn, x2n)|+ t− a| . δ, we obtain

|(|(xn, x2n)|+ t)2 − a2| . δ,

|2t(xn, x2n)|
√

1− |ω′l|2 − |ω′r|2 − 1| . (|t− a|+ δ)(|ω′l|2 + |ω′r|2)

. (|I|+ δ)ς2 . δ,

where we use |I| = δθ = δς−2. This implies

||xi + tωi|2 − a2| . δ

and hence ||xi − tωi| − a| . δ. Thus, for (x, x̄) ∈ Rtδ, we have

f ∗ µt(x, x̄) =

∫
S2n−1

f(x+ tω, x̄+ txᵀJω) dµ(ω) & ς(2n−2)δ(1−θ) = δn(1−θ)

and (6.8) is proved. Hence (6.7) follows.

The lower bound (6.7) implies

‖MEf‖q ≥
( N∑
ν=1

δn(1−θ)qmeas(Rtνδ )
)1/q

& δn(1−θ)N(E ∩ I, δ)1/q((δς−1)2n−2δ2+θ)1/q

& δn(1−θ)δ
1
q

((1+θ)n+(1−θ)(ε−γ)+1)
.

Thus we obtain the necessary condition for Lp → Lq boundedness

δn(1−θ)δ
1
q

((1+θ)n+(1−θ)(ε−γ)+1) . δ
1
p

(n(1−θ)+2))
.
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for all (δ, I) ≡ (δj , Ij) ∈ Pε. Taking the limit as j →∞ and using that ε > 0
can be chosen arbitrarily small we obtain the necessary condition

n(1− θ) + (1+θ)n−γ(1−θ)+1
q ≥ n(1−θ)+2

p

which using θ = 1− β/γ is rewritten as

(6.9) nβ
γ + 1

q

(
(2− β

γ )n+ 1− β
)
≤ 1

p

(nβ
γ + 2

)
.

In the preceding inequality we get equality for the points Q3,β, Q4,γ in (1.3)
and thus (6.9) expresses that (1/p, 1/q) has to lie on or above the line passing
to Q3,β and Q4,γ .
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J. Amer. Math. Soc. 6 (1993), no. 1, 65–130.

[19] Detlef Müller and Andreas Seeger, Singular spherical maximal operators on a class
of two step nilpotent Lie groups, Israel J. Math. 141 (2004), 315–340.

[20] E. K. Narayanan and S. Thangavelu, An optimal theorem for the spherical maximal
operator on the Heisenberg group, Israel J. Math. 144 (2004), 211–219.

[21] Amos Nevo and Sundaram Thangavelu, Pointwise ergodic theorems for radial aver-
ages on the Heisenberg group, Adv. Math. 127 (1997), no. 2, 307–334.

[22] Duong H. Phong and Elias M. Stein, Radon transforms and torsion, Internat. Math.
Res. Notices (1991), no. 4, 49–60.

[23] Joris Roos and Andreas Seeger, Spherical maximal functions and fractal dimensions
of dilation sets, arXiv:2004.00984, to appear in Amer. J. Math., 2020.

[24] Joris Roos, Andreas Seeger, and Rajula Srivastava, Lebesgue space estimates for
spherical maximal functions on Heisenberg groups, Int. Math. Res. Not. IMRN 2022
(2022), 19222–19257.

[25] Wilhelm Schlag and Christopher D. Sogge, Local smoothing estimates related to the
circular maximal theorem, Math. Res. Lett. 4 (1997), no. 1, 1–15.

[26] Andreas Seeger, Stephen Wainger, and James Wright, Pointwise convergence of spher-
ical means, Math. Proc. Cambridge Philos. Soc. 118 (1995), no. 1, 115–124.
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