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1. Introdution

Let � be a smooth onvex hypersurfae in R

d

, d � 3, and denote surfae measure on � by d�.

Let � be a ompatly supported C

1

funtion and let

e

� = supp � \ �:

For t > 0 de�ne the onvolution operator A

t

by

(1.1) A

t

f(x) =

Z

f(x� ty

0

)�(y

0

)d�(y

0

)

and an assoiated maximal funtion

(1.2) Mf(x) = sup

t>0

jA

t

f(x)j:

The main issues in this paper are the L

p

boundedness of the maximal operator M and the

regularity properties of the averaging operator A � A

1

.

Stein [22℄ showed that if � is a (d� 1)-dimensional sphere in R

d

, d � 3, then M is bounded on

L

p

(R

d

) for p > d=(d � 1) and unbounded for p � d=(d � 1). Greenleaf [11℄ proved similar results

under the onditions on the deay of the Fourier transform



d�. In partiular if � is a hypersurfae

and the Gaussian urvature of � does not vanish, one obtains the same result as for the sphere. The

two dimensional version of Stein's result was proved by Bourgain [1℄.

If the Gaussian urvature is allowed to vanish one would like to determine the best possible

value of p

0

suh that L

p

boundedness holds for p > p

0

. Cowling and Maueri [7℄ showed that there

are surfaes where p

0

2 (2;1) and Sogge and Stein [21℄ showed that suh p

0

< 1 exists if the

Gaussian urvature is assumed to vanish of only �nite order. The extension of Bourgain's result to

plane urves of �nite type was obtained in [12℄ using saling; this method does not readily apply in

higher dimensions.

In this paper we onsider a onvex surfae � of �nite line type in R

d

, d � 3, i.e. it is assumed

that eah tangent line has �nite order of ontat. Bruna, Nagel and Wainger [2℄ expressed the deay

of the Fourier transform



d� using the aps

B(x; Æ) = fy 2 � : dist(y;H

x

(�)) < Æg;

here H

x

(�) denotes the tangent plane at x 2 � (onsidered as an aÆne subspae of R

d

passing

through x). The estimate is

j



d�(�)j � C

�

jB(x

+

; j�j

�1

)j+ jB(x

�

; j�j

�1

)j

�
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where x

�

are the points on � for whih � is a normal vetor and jBj denotes the surfae measure

of B. The behavior of the maximal operator M is not just determined by the size of the balls of

given height Æ, but also by the number of balls of height Æ and �xed diameter � Æ

(d�1)=2

. Taking

this into aount Nagel, Wainger and the third author [18℄ proved maximal theorems on R

d

, d � 3,

using the quantity

(1.3) �

r

(Æ) = (

Z

e

�

jB(x; Æ)j

r�1

d�(x))

1=r

for r > 1. Note that if sup

x

jB(x; Æ)j = O(Æ

a

) then �

r

(Æ) = O(Æ

a(1�1=r)

); however if a < (d � 1)=2

then �

r

(Æ) tends to be signi�antly smaller. The �rst theorem in [18℄ addresses the ase p > 2.

Suppose that

(1.4)

Z

1

0

Æ

�1=p

�

p

p�2

(Æ)

dÆ

Æ

� A <1 and p > 2

then M is bounded on L

p

(R

d

).

Another theorem was proved by the �rst two authors in [14℄ and [13℄, ompletely settling the

ase p > 2. Namely let d(y;H

x

(�)) be the distane of y 2 � to the tangent plane H

x

(�) through x;

then the maximal operator M is bounded on L

p

(R

d

), for p > 2, if

(1.5) d(�; H

x

(�))

�1=p

2 L

1

(

e

�)

for every x 2

e

�; onversely, the ondition (1.5) at points with �(x) 6= 0 is neessary for L

p

bounded-

ness. In x4 we shall use a variant of the argument in [14℄ to show that the suÆieny of (1.5) atually

follows from the suÆieny of (1.4). It follows a posteriori that for p > 2 the L

p

boundedness ofM,

the �niteness of the integral (1.4) and the ondition (1.5) are equivalent if � is losed and � � 1.

We remark that the hypothesis (1:4) implies L

p

boundedness for a lass of onvex hypersurfaes,

with the L

p

bounds depending only on A and ertain admissible onstants (for the de�nition of

admissibility see x2). On the other hand, for a single onvex body the assumption (1.5) is often

easier to verify.

The analogue of (1.4) for p < 2 is the ondition

(1.6)

Z

1

0

[log(1 + Æ

�1

)℄

1

p

�

1

2

Æ

�

1

p

�

p

2�p

(Æ)

dÆ

Æ

<1;

if p < 2 and (1.6) is satis�ed thenM is bounded on L

p

(R

d

). This statement is (impliitly) ontained

in [18℄ (f. Theorem 2.5 below). Note that if the urvature does not vanish then jB(x; Æ)j � Æ

(d�1)=2

and �

p

2�p

(Æ) � Æ

(d�1)(1�1=p)

so the integral (1.6) onverges if and only if p > d=(d � 1), whih is

Stein's maximal theorem. The nonvanishing of the urvature is not neessary; as one an see by

heking (1.6) for surfaes of the form

(1.7) x

d

= �+

d�1

X

i=1

jx

i

j

a

i

; 2 � a

1

� � � � � a

d�1

;

where the a

i

are even integers. In this ase L

p

boundedness holds for p > d=(d � 1) if a

i

� d for

i = 1; : : : ; d � 1. In x2 a related result will be dedued from (1.6) in x2; namely L

p

boundedness

holds if the Gaussian urvature belongs to L



(

e

�) for all  < 1=(d� 2).

It is not presently known whether for p < 2 the ondition (1.6) always gives the orret range of

L

p

boundedness up to endpoints. Moreover it is not known preisely how (1.7) relates to the notions

2



of type and multitype. One purpose of this paper is to prove some partial results in this diretion

and obtain a fairly omplete piture in three dimensions.

In order to formulate our results we now review the de�nitions of type and multitype. For

onvex hypersurfaes in R

d

a natural notion of multitype has been impliitly introdued by Shulz

[20℄. Various related and more general notions of multitype had been previously formulated in

omplex analysis, see in partiular Catlin's paper [3℄; later Yu [26℄ has given a simple formulation

of Catlin's multitype ondition for onvex domains in C

n

, building on the results in [20℄.

We �rst onsider a smooth real valued funtion � de�ned in a neighborhood of the origin in an

n-dimensional vetor spae E

n

so that �(0) = r�(0) = 0. We say that a vetor v in E

n

has ontat

of order m+ 1 if

�(sv) = O(s

m+1

) if s! 0:

Let

(1.8) S

m

= fv 2 E

n

: v has ontat of order m+ 1.g

It is shown in [20℄ that S

m

is a linear subspae of E

n

and that there are even integers m

1

; : : : ;m

k

so that m

1

< � � � < m

k

, 1 � k � n and m

0

:= m

1

� 1 � 1 and

0 = S

m

k

( � � � ( S

m

0

:= E

n

;

and the sequene is maximal, i.e.

S

m

= S

m

k

if m

k�1

< m � m

k

:

The largest number m

k

is the type of � at 0. Let dimS

m

i

= n

i

, so that n

0

= n and n

k

= 0.

For i = 1; : : : ; n let

a

i

= m

j

if n� n

j�1

< i � n� n

j

; j = 1; : : : ; k;

the n-tuple a = (a

1

; : : : ; a

n

) is then alled the multitype of � at 0. Clearly this de�nition is indepen-

dent of the linear oordinate system on E

n

.

Now let � be a onvex hypersurfae in R

d

and let P 2 �. Then near P the surfae is a graph

over its tangent plane at P . For a suitable hoie of the unit normal vetor n

P

at P the surfae an

be parametrized by

(1.9)

T

P

�! R

v 7! P + v +�(v)n

P

where � is a onvex funtion vanishing of seond order at the origin. We say that � is of multitype

a = (a

1

; : : : ; a

d�1

) at P if � has multitype a at the origin. This notion is invariant under aÆne

transformations in R

d

. Moreover, if � is given as a graph w

n

= 	(w

0

) then it is easy to see that the

multitype at P = (w

0

;	(w

0

)) is equal to the multitype of the funtion

y

0

7! 	(w

0

+ y

0

)�	(w

0

)� hy

0

;r

w

0

	(w

0

)i:

Calulations in [18℄ on examples of the form (1.7) suggest the following

Conjeture: Let � be a onvex surfae in R

d�1

, let P 2 � and let a = (a

1

; : : : ; a

d�1

) be the

multitype at P . De�ne �

k

by

(1.10) �

k

=

d�1

X

j=k

1

a

j

; k = 1; : : : ; d� 1; �

d

= 0:

3



We onjeture that M is bounded on L

p

(R

d

) if the support of � is ontained in a suÆiently small

neighborhood of P and if

(1.11) p > max

k=1;:::;d

k

k � 1 + �

k

:

Note that among the numbers (1.11) only the one orresponding to k = 1 an be � 2 so that

the ondition for L

p

boundedness for p > 2 redues to

(1.12) p >

d�1

X

j=1

1

a

i

:

As observed in [14℄ the ondition (1.12) is equivalent to the integrability ondition (1.5) for x = P

so that the equivalene of (1.5) and (1.4) mentioned above amounts to the equivalene of (1.12)

and (1.4). More generally, one may also onjeture that L

p

boundedness holds if for every l 2

f0; 1; : : : ; d � 1g and for every l-plane E through P the funtion x 7! [dist(x;E)℄

�1

belongs to

L

(d�l)=p

(here the 0-plane through P is just fPg).

In the present paper we shall onentrate on the simplest ase, d = 3.

Theorem 1.1. Let � be a smooth onvex hypersurfae of �nite line type in R

3

. Let P 2 �, let

a = (a

1

; a

2

) be the multitype at P and let K(x) be the Gaussian urvature at x.

Let M be the maximal operator as de�ned in (1.2). There is a neighborhood U of P in � so that

the following statements hold if � is supported in U .

(i) Suppose that a

1

> 2. Then M is bounded if and only if p > (

1

a

1

+

1

a

2

)

�1

.

(ii) Suppose that a

1

= 2, 0 <  < 1 and K

�

2 L

1

(U). ThenM is bounded if p >

2a

2

(1�)+2+4

a

2

(1�)+2+2

.

(iii) If a

1

= 2 then M is bounded for p > maxf

3

2

;

2a

2

a

2

+1

g.

We note that (i) is already ontained in [14℄, but we shall give a di�erent proof in x4 by deduing

it from (1.4). Also note that (i) and (iii) together verify the above onjeture in three dimensions;

however there are ases where (ii) gives a better result (see x4). Statement (iii) follows from statement

(ii) by using

Theorem 1.2. Let � be a smooth onvex hypersurfae of �nite line type � m in R

3

, and let K be

the Gaussian urvature funtion on �. If  < (m� 2)

�1

then K

�

is loally integrable on �.

We now disuss the regularity properties of the averaging operator A = A

1

. A positive and

apparently quite preise result for Besov spaes

1

B

p

�;q

and Sobolev spaes L

p

�

an be formulated in

terms of the balls B(x; Æ), using a ondition similar to (1.4), (1.6).

Theorem 1.3. Suppose � � R

d

is onvex, smooth and of �nite line type. Suppose that 1 � p � 2

and suppose that

(1.13) sup

Æ>0

Æ

1

q

�

1

p

��

�

Z

e

�

jB(x; Æ)j

2q(p�1)

p+q�pq

d�(x)

�

1

p

+

1

q

�1

<1

holds for some (p; q) with p � q. Then A maps the Besov spae B

p

�;r

boundedly to B

q

�+�;r

.

1

Reall that kfk

B

p

�;r

� (

P

1

k=0

[2

k�

kL

k

fk

p

℄

r

)

1=r

with suitable Littlewood-Paley uto�s L

k

loalizing frequenies

to annuli j�j � 2

k

if k > 0.

4



Moreover, if 1 < p � 2, p � q < 1, then A is bounded from L

p

(R

d

) to L

q

�

(R

d

) if q � 2 and

bounded from L

p

(R

d

) to L

q�"

�

(R

d

) if p � q � 2.

Clearly the seond assertion about Sobolev estimates is a onsequene of the �rst assertion for

Besov spaes, by standard embedding theorems (i.e. Littlewood-Paley inequalities).

Again one an try to relate the ondition (1.13) to the multitype. Consider the model example

(1.7) where a

1

� � � � � a

d�1

are even integers, �

k

as in (1.10). We note that for this example

a omplete desription of the L

p

! L

q

estimates for A has been given by Ferreyra, Godoy and

Uriuolo [10℄ (without the restrition that the a

i

are even integers), see also the paper by Sang Hyuk

Lee [16℄. Both proofs relied on a method introdued by Christ [5℄.

A alulation for the model example shows that (1.13) is satis�ed when

(1.14) � � min

1�k�d

�

�

k

+ k � 1�

k + �

k

p

+

�

k

+ 1

q

℄;

see x3. For � = 0 this beomes

1

q

�

�

k

+k

�

k

+1

1

p

�

�

k

+k�1

�

k

+1

; this is the ondition given in [10℄. Conerning

the ase p = q one obtains (for the model example) that A is bounded from B

p

�;r

to B

p

�+�;r

and

from B

p

0

�;r

to B

p

0

�+�;r

provided that � � �

k+1

+ k=p, if a

k

� p � a

k+1

.

To formulate a onjeture for L

p

�

! L

q

�+�

regularity (or related Besov-type estimates) in the

general ase one simply replaes (a

1

; : : : ; a

d�1

) in the model example by the multitype at P and

assumes that � has small support near P . Then (1.14) should imply the L

p

! L

q

�

boundedness

for the averaging operator, if p < q, and 1 < p � 2. Clearly by duality the boundedness region is

symmetri with respet to the diagonal 1=p+1=q = 1, so it suÆes to onsider the ase p � 2. One

expets that at least for the ase p = q boundedness may fail at the verties of the boundedness

region, see [6℄ for ounterexamples in two dimensions. We note that omplete L

p

! L

q

results in

two dimensions are in [19℄, [5℄.

In three dimensions we prove the onjeture up to ertain endpoint results.

Theorem 1.4. Let � be a smooth ompat onvex hypersurfae of �nite line type in R

3

, let P 2 �

and let a = (a

1

; a

2

) be the multitype of � at P . Let �

1

= a

�1

1

+ a

�1

2

, �

2

= a

�1

2

and let T (P ) be the

set of all (

1

p

;

1

q

; �) with p � q satisfying the onditions

� � �

1

�

1 + �

1

p

+

1 + �

1

q

(1.15.1)

� < �

2

+ 1�

2 + �

2

p

+

1 + �

2

q

(1.15.2)

� � 2�

3

p

+

1

q

(1.15.3)

and

� � �

1

+

1 + �

1

q

�

1 + �

1

p

(1.16.1)

� < �

2

+

2 + �

2

q

�

1 + �

2

p

(1.16.2)

� �

3

q

�

1

p

(1.16.3)

Then there is a neighborhood U of P suh that A is bounded from B

p

�;r

(R

3

) to B

q

�+�;r

(R

3

) if supp � 2

U and (1=p; 1=q; �) belongs to T (P ).

5



Moreover A is bounded from L

p

�

(R

3

) to L

q

�+�

(R

3

) if (1=p; 1=q; �) belongs to the interior of T (P ).

Remark 1.5. If p � 2 � q and the B

p

0;r

! B

q

�;r

estimate holds for a given p, q with p � 2 � q then

the L

p

�

! L

q

�+�

estimate follows; this yields partial endpoint results for the Sobolev estimates.

Remark 1.6. (i) A natural onjeture for L

p

! L

q

estimates is given in terms of distanes to

tangent lines and planes. Let �

j

(p; q) = 1=p � j=q and �

l

(d; p; q) = d � l � 1 + �

d�l

=(1 � �

1

).

Suppose that for l = 0; 1; : : : ; d�1 and for all l-planes E through P the funtions x 7! [dist(x;E)℄

�1

belong to L

�

(�) for � = �

l

(d; p; q). One may onjeture that A maps L

p

(R

d

) to L

q

(R

d

) (provided,

of ourse, that � is supported in a suÆiently small neighborhood of P ).

If d = 3 then the desription of multitype together with estimates in x3 an be used to show

that the above onditions are equivalent with the onditions given in Theorem 1.4.

(ii) It is easy to see that the ondition for l = d�1 in (i) is neessary, by testingA on harateristi

funtions of ylinders with base B(P; Æ) and height Æ.

(iii) Analogously, one an formulate a onjeture for the L

p

boundedness of the maximal operator

in terms of distanes to tangent planes and lines. The onjeture is that M maps L

p

(R

d

) to L

p

(R

d

)

if for l = 0; : : : ; d � 1 and for all l-planes E through P the funtions x 7! [dist(x;E)℄

�1

belong to

L

d�l

p

(�).

The paper is organized as follows. In x2 we shall derive estimates for operators assoiated to

ertain lasses of onvex funtions, emphasizing uniformity of these estimates. In x3 we shall disuss

various properties of the multitype and the assoiated saling; in partiular we prove versions of

Theorem 1.2. The proofs of Theorems 1.1 and 1.4 are ontained in x4, and some examples are

onsidered in x5.

2. Operators assoiated to onvex funtions of �nite line type

In this setion we ollet fats whih are either immediate onsequenes of estimates for lasses

of onvex funtions of �nite type in [2℄, [9℄ or [18℄, or an be obtained by modi�ations of arguments

in those papers.

Let B

T

� R

n

denote the open ball of radius T entered at 0. In what follows it is always assumed

that T � 1. For 0 < b � M , N 2 Z

+

, 2 � m < N , let S

n

T

(b;M;m;N) be the lass of all C

N

(B

T

)

funtions g with the property that for all x 2 B

T

(2.1)

g(0) = rg(0) = 0

d

2

(dt)

2

g(x+ t�)

�

�

t=0

� 0 for all � 2 S

n

max

2�j�m

�

�

�

�

d

dt

�

j

g(x+ t�)

�

�

t=0

�

�

�

� b for all � 2 S

n

max

j�j�N

�

�

�

�

�

�x

�

�

g(x)

�

�

�

�M

Next let a = (a

1

; a

2

; : : : ; a

n

) an n-tuple with even integers so that 2 � a

1

� � � � � a

n

. We de�ne

S

n

T

(b;M; a; N) to be the lass of all funtions in S

n

T

(b;M; a

n

; N) with the property that

(2.2) max

2�j�a

i

�

�

�

�

�

�x

i

�

j

g(x)

�

�

�

� b:

We also set

(2.3) �

k

=

n

X

j=k

1

a

j

; k = 1; : : : ; n; and �

n+1

= 0:

6



We note that if � is onvex and of �nite line type and if P 2 � is of multitype a then there is a

neighborhood of P in � where � an be parametrized by (1.9) and so that � ÆL 2 S

d�1

T

(b;M; a; N)

for a rotation L and suitable onstants T; b;M .

Constants in estimates whih will depend only on the parameters n, b, M , m or a, N are alled

admissible. All onstants in this setion will be admissible, but statements involving the multitype

in x3 and x4 below will ontain \nonadmissible" onstants.

Notie that if � 2 S

n

2T

(b;M;m;N) the funtions

w 7! �(y + w) � �(y)� hw;r�(y)i

belong to the lass S

n

T

(b; 3M;m;N) for all jyj � T . A similar remark applies to the lass

S

n

2T

(b;M; a; N).

We now reall an important inequality from [2℄ (see also variants in [9℄, [18℄). Let jwj � T and

let

P

w;y

(s) =

m

X

j=2

1

j!

hw;ri

j

�(y)

s

j

j!

+M

s

m+1

(m+ 1)!

e

P

w;y

(s) =

m

X

j=2

1

j!

jhw;ri

j

�(y)j

s

j

j!

+M

s

m+1

(m+ 1)!

Then there exists an admissible onstants C

1

, so that for jyj � T , jwj � T , 0 � s � 1,

(2.4) C

�1

1

e

P

w;y

(s) � �(y + sw)� �(y)� hw;r�(y)i � C

1

P

w;y

(s):

Notie that by (2.4) there exists an admissible onstant 

0

> 0 so that for all

(2.5) Æ � 

0

T

m

=: Æ

0

the sets

(2.6) B(x; Æ) = fy : jyj � T ; j�(y)� �(x) � hr�(x); y � xij � Æg

are ontained in fjxj � 2Tg. If � = graph(�) then these sets are omparable to projetions of the

balls B(y; Æ) de�ned in the introdution.

Proposition 2.1. Let � 2 S

d�1

2

n

T

(b;M; a; N), m = a

n

, N � m+ 1. There are admissible onstants

C

1

; : : : ; C

5

, �

1

� 1, C

0

> 

�1

0

, so that the following statements hold.

(i) Let 1 � l � n and let E be an l-plane through the origin. Let Æ � C

�1

0

T

m

, �

1

�

� � C

�1

1

Æ

�1=m

. Then for all jwj � T the set B(w; �Æ) is ontained in fjwj � 2Tg. Moreover

if V

E

(x;w

0

; �Æ) is the l-dimensional volume of the ross setions (x + E) \ B(w

0

; �Æ), then for

w

1

; w

2

2 B(w

0

; Æ) one has

(2.7)

C

�1

2

�

�

�

1

�

l=m

V

E

(w

1

; w

0

; �

1

Æ) � V

E

(w

1

; w

0

; �Æ) � C

3

V

E

(w

2

; w

0

; �Æ) � C

2

C

3

�

�

�

1

�

l=2

V

E

(w

2

; w

0

�

1

Æ):

(ii) Let Æ � C

�1

0

T

m

, and let B(x; Æ) be as in (2.6), �

k

as in (2.3). Then for jxj � T ,

(2.8) jB(x; Æ)j � C

4

Æ

�

1

:

7



(iii) For k = 1; : : : ; n let

(2.9) K

k

(x) = det

0

B

�

�

x

1

x

1

: : : �

x

1

x

k

.

.

.

.

.

.

�

x

k

x

1

: : : �

x

k

x

k

1

C

A

:

Then for Æ � C

�1

0

T

m

(2.10) jB(x; Æ)j � C

5

Æ

k

2

+�

k+1

�

sup

y2B(x;Æ)

jK

k

(y)j

�

�1=2

:

Proof. The hain of inequalities (2.7) is an easy onsequene of [18, Corollary 2.6℄ whih in turn was

based on (2.4). Inequality (2.8) is proved by indution over the dimension. It is true for n = 1 by

(2.4). Let n > 1. Then again by (2.4) one sees that the set

(2.11) J (Æ) = fx

n

: there is x

0

2 R

n�1

so that (x

0

; x

n

) 2 B(x; Æ)g

is ontained in an interval of length � CÆ

1=a

n

. The funtions y

0

7! �(y; y

n

) belong to

S

n�1

2

n�1

T

(b;M; a

0

; N), with a

0

= (a

1

; : : : ; a

n�1

). By the indution hypothesis the n � 1-dimensional

slies through B(x; Æ) at height y

n

2 I have volume � CÆ

1=a

1

+:::1=a

n�1

. The assertion follows by

integrating over J (Æ).

We now turn to the estimate (2.10), and onsider �rst the ase k = n. In [9℄ it is shown for

arbitrary polynomials of degree � q + 1 that

(2.12) max

juj�n

j detP

00

(u)j � C

n;q

max

juj�1

jP (u)j

n

where C

n;q

is an absolute onstant. Now by estimates for funtions in S

n

2T

(b;M;m;N) ([2, x3℄) there

are onstants 

0

, C

0

and a polynomial P

Æ;x

of degree � m, vanishing of seond order at x, so that

(2.13) fy : P

Æ;x

(y) � 

0

Æg � B(x; Æ) � fy : P

Æ;x

(y) � C

0

Æg;

here the onstants 

0

, C

0

do not depend on x and Æ. Following [9℄ we apply a result of John to

wit there is a translation �

�x

and a symmetri positive de�nite linear transformation T so that

B(1) � T (�

�x

B(x; Æ) � B(n) where B(1) and B(n) denote the balls of radii 1 and n, entered at

the origin. By (2.13)

detT

�1

max

juj�n

j detP

00

Æ;x

(x

0

+ T

�1

u)j

1=2

� C

n;m

max

juj�1

jP

Æ;x

(x

0

+ T

�1

u)j

n=2

and sine detT

�1

is omparable with the measure of B(x; Æ) the assertion follows for k = n.

To show (2.10) we argue by indution on n, the ase k = n is already taken are of. Let n > k.

Pik z 2 B(x; Æ) so that K

k

(z) � 2min

y2B(x;Æ)

K

k

(y). Let V

x

(y

n

; Æ) be the n � 1 dimensional slie

of B(x; Æ) at height y

n

. Then by the indution hypothesis

jV

x

(z

n

; �

1

Æ)j � CÆ

k=2+

P

n�1

i=k+1

a

�1

i

�

max

z

0

:(z

0

;z

n

)2B(x;�

1

Æ)

K

k

((z

0

; z

n

)

�

�1=2

� CÆ

k=2+

P

n�1

i=k+1

a

�1

i

�

max

z:z2B(x;Æ)

K

k

(z)

�

�1=2

;

in this formula the sum in the exponent is not present when k = n� 1. By (2.7)

V

x

(y

n

; Æ) � V

x

(y

n

; �

1

Æ) � CV

x

(z

n

; �

1

Æ)
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and integrating over y

n

2 J(Æ) yields another fator of Æ

1=a

n

, as in the proof of (2.8). �

We now let n = d � 1 and onsider the regularity properties of the following integral operator

ating on funtions in R

d

,

(2.14) A

t

f(x) =

Z

f(x

0

� y

0

; x

d

� t(�(y

0

) + 

d

))�(y

0

)dy

0

:

Here � 2 S

d�1

r

(b;M;m;N), and the smooth uto� funtion � is supported in fx

0

: jx

0

j � Tg,

T < 2

�d+1

r. We shall not try to minimize smoothness and therefore always assume that N is large;

by \large" we mean N � 10dm, whih is assumed in the remainder of this setion.

Our �rst result is an estimate for A

1

after a loalization in frequeny spae. Let Æ > 0 be small,

and let � 2 C

1

0

(R

d

) be supported in f� : 1=2 < j�j � 2g. De�ne L

Æ

by

(2.15)

d

L

Æ

f(�) = �(Æ�)

b

f(�):

Proposition 2.2.

Suppose that 1 � p � 2 and 1=r = 1=p+ 1=q � 1. Then

(2.16) kL

Æ

A

1

fk

q

� CÆ

1

q

�

1

p

�

Z

jwj�T

jB(w; Æ)j

r(1�

1

p

+

1

q

)�1

dw

�

1=r

kfk

p

for all f 2 L

p

(R

d

).

Proof. The proof follows a pattern of [18℄ and we shall be brief. Observe A

1

f = d� � f where d� is

a smooth density on �. We split d� =

P

j

d�

j

where eah d�

j

is supported in a ap B

j

of height

� Æ and the aps (or \balls") have �nite overlap. This splitting is done by using a partition of

unity subordinated to the B

j

, see [2℄ for the metri properties of the aps and [18℄ for the neessary

quantitative bounds for the partition of unity.

For sequenes  = f

j

g onsider the bilinear operator

T

Æ

[; f ℄ =

X

j



j

L

Æ

[d�

j

� f ℄:

The inequality (2.16) follows by hoosing  = (1; 1; 1; : : : ) from from the following more general

estimate, valid for p � 2:

(2.17) kT

Æ

[; f ℄k

q

� CÆ

1

q

�

1

p

�

X

j

[j

j

j jB

j

j

1�

1

p

+

1

q

℄

r

�

1=r

kfk

p

;

1

r

=

1

p

+

1

q

� 1:

Indeed (2.17) is lear for p = 1 = q, and also for p = 1, q =1 (where r =1). The nontrivial part

is the ase p = 2 = q (again then r =1); but this estimate is a onsequene of Theorem 2.2 in [18℄.

The general ase follows by interpolation. �

The next result is an immediate onsequene, and also proves Theorem 1.3.

Corollary 2.3. Suppose that 1 � p � 2 and suppose that

(2.18) sup

Æ>0

Æ

1

q

�

1

p

��

�

Z

fjwj�Tg

jB(w; Æ)j

2q(p�1)

p+q�pq

dw

�

1

p

+

1

q

�1

� A <1

9



holds for some (p; q) with p � q. Then A maps the Besov spae B

p

�;r

(R

d

) boundedly to B

q

�+�;r

(R

d

)

Remark 2.4. For the model example (1.7), i.e. x

d

= 

d

�

P

d�1

j=1

jx

j

j

a

j

one has

Z

jB(w; Æ)j

�

dw � C max

1�k�d

Æ

(1+�)�

k

+

(k�1)�

2

;

see [18, formula (5.2)℄. From this the sharp estimates for the maximal operator have been dedued

in [18℄; moreover Corollary 2.3 implies that the averaging operator maps B

p

�;r

to B

q

�+�;r

if p � 2

and (1.14) is satis�ed. Conerning L

p

! L

q

estimates this the endpoint estimates in [10℄, but only

in the ase p � 2 � q.

In order to prove the maximal Theorem 1.1 we shall rely on the following result impliitly in

[18℄.

Theorem 2.5. Let A

t

f be as in (2.14) and de�ne the assoiated maximal funtion by Mf(x) =

sup

t>0

jA

t

f(x)j. Suppose that

�

p

2�p

(Æ) = (

Z

e

�

jB(w; Æ)j

2p�2

2�p

dw)

2�p

p

;

and the inequality

Z

1

0

[log(1 + Æ

�1

)℄

1

p

�

1

2

Æ

�1=p

�

p

2�p

(Æ)

dÆ

Æ

� A <1

holds. Then M is bounded on L

p

; the operator norm is dominated by CAk�k where C is admissible

and k�k is a suitable Sobolev norm of �.

Proof. Let H

Æ;t

(x) = t

n

L

Æ

[d�℄(tx) where L

Æ

is as in the proof of Proposition 2.2. By [18, (4.4)℄





sup

t>0

jH

Æ;t

� f





p

� C[log Æ

�1

℄

1

p

�

1

2

Æ

�1=p

�

p

2�p

(Æ)

for small Æ and the statement of the theorem follows by introduing a dyadi deomposition for large

frequenies and summing the estimates for the operators orresponding to the piees. �

A onsequene of Theorem 2.5 and Proposition 2.1 is

Proposition 2.6. Let � 2 S

d�1

2T

(b;M; a; N), N > m+1 and let B(w; Æ) be de�ned as in (2.6). Let

k 2 f1; : : : ; d� 1g, � > 0 and � > 1=2. Suppose that

(2.20) jB(w; Æ)j � CÆ

�

(in partiular we an hoose � = �

1

if �

1

> 1=2) and

(2.21)

Z

K

k

(x)

��

d�(x) � A:

Then the following statements hold.

(i) M is L

p

bounded for p >

1+2�

2�

.

(ii) If � �

1

k�1+2�

k+1

then M is L

p

bounded for p >

k+1+2�

k+1

k+2�

k+1

.

(iii) If � <

1

k�1+2�

k+1

then M is L

p

bounded for p > p

0

(�; �; k) =

1+2��2�(k+2�

k+1

�2�)

2���(k+2�

k+1

�2�)

:

Proof. First note that the restrition � > 1=2 implies that

k+1+2�

k+1

k+2�

k+1

< 2 and p

0

(�; �; k) < 2 if

� <

1

k�1+2�

k+1

. Therefore it suÆes to hek the ondition (1.6). (i) follows immediately from

Theorem 2.5; however this speial ase follows already from Greenleaf's paper [11℄.

10



We may therefore assume that (k + 1 + 2�

k+1

)=(k + 2�

k+1

) < p � (2� + 1)=2�. Let

� = 1 + � �

�

p� 1

� =

(p� 1)(k + 2�

k+1

)� 1

(p� 1)(k + 2�

k+1

� 2�)

:

Note that � > 0 sine (k+1+ 2�

k+1

)=(k+2�

k+1

) < p and � � 1 sine p � (2�+1)=2�. Moreover a

omputation shows that the inequality � < � is equivalent with

(2.22) 1 + 2� � 2�(k + 2�

k+1

� 2�) < p

�

2� � �(k + 2�

k+1

� 2�)

�

:

If � �

1

k�1+2�

k+1

then (2.22) holds for all p 2 (

k+1+2�

k+1

k+2�

k+1

; 2) and if � <

1

k�1+2�

k+1

then (2.22) is

satis�ed preisely for p > p

0

(�; �; k). In either ase it is therefore possible to hoose 0 < � < 1 suh

that � � � < �. We now estimate using Proposition 2.1

�

Z

jwj�T

jB(w; Æ)j

p

2�p

�1

dw

�

2�p

p

=

�

Z

jwj�T

jB(w; Æ)j

2p�2

2�p

(1��)+

2p�2

2�p

�

dw

�

2�p

p

�

�

(A

1

Æ

�

)

2p�2

2�p

�

(A

2

Æ

k

2

+�

k+1

)

2p�2

2�p

(1��)

Z

jwj�T

[K

k

(w)℄

�

1

2

2p�2

2�p

(1��)

dw

�

2�p

p

� CÆ

(2��+(k+2�

k+1

)(1��))

p�1

p

�

Z

jwj�T

[K

k

(w)℄

�

p�1

2�p

(1��)

dw

�

2�p

p

:

The integral is �nite if

p�1

2�p

(1 � �) � �; a short omputation shows that this is equivalent to the

ondition � � � hene satis�ed in view of our hoie of �. Now aording to Theorem 2.5 the L

p

boundedness holds if (2�� + (k + 2�

k+1

)(1� �))

p�1

p

>

1

p

and another omputation shows that this

is preisely the restrition � < �. �

As an easy onsequene we obtain

Theorem 2.7. Let � � R

d

, d � 3, be a onvex hypersurfae of �nite line type and let K(x) the

Gaussian urvature. Suppose that

Z

e

�

[K(x)℄

��

d�(x) <1 for all � <

1

d� 2

:

Then the maximal operator in (1.2) is bounded on L

p

(R

d

), for p > d=(d� 1).

Proof. After loalization we may assume that the averaging operator is of the form (2.14). Note

that jB(x; Æ)j � jB(y; Æ)j if y 2 B(x; Æ). Therefore by Proposition 2.1

jB(x; Æ)j

1+2�

.

Z

jB(y; Æ)j

2�

d�(y) . Æ

(d�1)�

Z

jK(y)j

��

d�(y)

Therefore jB(x; Æ)j . Æ

�

�

with �

�

=

(d�1)�

1+2�

and �

�

> 1=2 if � > (2d � 4)

�1

. The assertion follows

from an appliation of Proposition 2.6 with k = d � 1, � = �

�

, the ritial exponent in ase (ii) is

then p = �

�1

�

and for � = 1� " we see that �

�1

�

= d=(d� 1) +O("). �
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3. Auxiliary Results

Aording to a result of Shulz [20℄ one an deompose a onvex funtion at a given point into

a main term, whih after an aÆne hange of variable exhibits some homogeneity, and a remainder

term. We �rst need the following

De�nition. De�ne the dilations A

s

by

(3.1) A

s

x = (s

1

a

1

x

1

; : : : ; s

1

a

n

x

n

):

We say that a smooth funtion Q : R

n

! R is mixed homogeneous of degree (a

1

; a

2

; : : : ; a

n

), a

j

> 0,

if

(3.2) Q(A

s

x) = sQ(x); s > 0:

The following Proposition summarizes and extends a result of [20℄; the fat (3.5) below was

already applied in the proof of Theorem 10 in [14℄.

Proposition 3.1. Let � 2 S

n

T

(b;M;m; 3N + 2), where N > m. Suppose that a

1

� � � � � a

n

� m

and a = (a

1

; a

2

; : : : ; a

n

) is the multitype of � at 0. Then the following statements hold.

There is a rotation L on R

n

so that

(3.3) �(Lx) = Q(x) +R(x); jxj � T

where Q is a onvex mixed homogeneous polynomial of degree (a

1

; : : : ; a

n

), the a

i

are even positive

integers with a

1

� � � � � a

n

, the graph of Q is of �nite line type � a

n

� m and (a

1

; : : : ; a

n

) is

the multitype at 0 of the graph of � (onsidered as a subset of R

n+1

.) If a

j

< a

j+1

then the linear

subspae S

a

j

onsisting of all v suh that (hv;ri)

j

[� Æ L℄(0) = 0 for j < a

j+1

is the image of

spanfe

j+1

; : : : ; e

n

g under L

�1

. Moreover

(3.4) Q(x) > 0 if x 6= 0

and

(3.5) jQ(x)j � C

1

jxjjrQ(x)j � C

2

jxj

2

X

i;j

�

�

�

�

2

Q

�x

i

�x

j

(x)

�

�

�

:

The remainder term R satis�es

(3.6)

�

�

�

s

�1

�

j�j

�x

�

�

R(A

s

x)

�

�

�

�

� C

M;N

s

1=m

for jxj � T and all multiindies � = (�

1

; : : : ; �

d�1

) with j�j � N ; A

s

is as in (3.1).

If a

1

= � � � = a

k

= 2 for some k, then the rotation L an be hosen so that

(3.7) Q(x) = 

1

x

2

1

+ � � �+ 

k

x

2

k

+

e

Q(x

k+1

; : : : ; x

n

)

where

e

Q is mixed homogeneous of degree (a

k+1

; : : : ; a

n

); i.e.

e

Q(s

1

a

k+1

x

k+1

; : : : ; s

1

a

n

x

n

) =

s

e

Q(x

k+1

; : : : x

n

) for all x 2 R

n

.

Remark. We note that if � belongs to S

n

T

(b;M; a; 3N + 1) then Q belongs to a family

S

n

T

(

e

b; CM;m; 3N +1), with

e

b > 0, but unfortunately there is no good lower bound for

e

b in terms of

b.

12



Proof of Proposition 3.1. The deomposition (3.3) was obtained by Shulz [20℄ and the onstrution

involved the subspaes S

m

i

mentioned in the introdution. The polynomial Q was obtained as a

Taylor-polynomial

P





x



of � ÆL where eah multiindex  satis�es

P

n

i=1



i

=a

i

= 1; the onvexity

and (3.4) is veri�ed in [20℄. As observed in [14℄, (3.5) is a onsequene of Euler's homogeneity

relation Q(x) =

P

x

i

a

�1

i

Q

x

i

(x). To see (3.6), �x �, and use Taylor's formula to write

R(x) = P

2N

(x) +R

2N

(x)

where P

2N

(x) is a linear ombination of monomials G

�

(x) := x

�

with j�j � 2N and

P

n

k=1

�

k

�

k

> 1.

If �

i

� �

i

, i = 1; : : : ; n it follows immediately that

�

j�j

�x

�

h

s

�1

G

�

(A

s

x)

i

= 

�;�

x

���

s

�1+

P

n

k=1

�

k

�

k

whih is � Cs

1=m

sine �

k

assume only integer values and m

�1

� a

�1

n

. Thus

�

�

�

�

j�j

�x

�

h

s

�1

P

2N

(A

s

x)

i

�

�

�

� C

M;N

s

1=m

:

Finally, the remainder R

2N

(x) satis�es j�

�

R

2N

(x)j � C

N

jxj

2N+1�j�j

, for j�j � N . Therefore

�

�

�

�

j�j

�x

�

h

s

�1

R(A

s

x)

i

�

�

�

� Cjxj

N+1

s

�1

max s

(N+1)=a

i

� C

0

jsj

1=m

by the de�nition of N . This �nishes the proof of (3.6).

We now turn to proving (3.7) and disuss �rst the ase k = 1. Split x = (x

1

; x

0

) with x

0

=

(x

2

; : : : ; x

d�1

). Then Q an be deomposed as

Q(x) = 

1

x

2

1

+ x

1

A(x

0

) +B(x

0

);

where B is mixed homogeneous of degree (a

2

; : : : ; a

d�1

), and A is mixed homogeneous of degree

(a

2

=2; : : : ; a

n

=2). In order to prove that A = 0 it suÆes to show that the partial derivatives A

x

i

x

j

vanish for all i; j � 2. To see this we use homogeneity. De�ne

Æ

s

x

0

= (s

1=a

2

x

2

; : : : ; s

1=a

n

x

n

)

and observe that

(3.8)

B

x

i

x

j

(Æ

s

x

0

) = s

1�1=a

i

�1=a

j

B

x

i

x

j

(x

0

)

A

x

i

x

j

(Æ

s

x

0

) = s

1=2�1=a

i

�1=a

j

A

x

j

x

j

(x

0

)

for s > 0.

By the onvexity of Q we have

(3.9) h�;r

2

Q(x)�i � 0

for all x near 0 and all �. With � = e

j

, j = 2; : : : ; n this yields

(3.10) 0 � B

x

j

x

j

(x

0

) + x

1

A

x

j

x

j

(x

0

):

Suppose now that A

x

j

x

j

(~x

0

) 6= 0; then G

j

= B

x

j

x

j

=A

x

j

x

j

satis�es G

j

(Æ

s

x

0

) = s

1=2

G

j

(x

0

) for x

0

near ~x

0

. Using this homogeneity property we see from (3.10) that if A

x

j

x

j

is not identially zero, then

13



e

t

j

r

2

Q(x)e

j

hanges sign arbitrarily lose to the origin, a ontradition. Therefore A

x

j

x

j

vanishes

identially, for j = 2; : : : ; n.

Next we show that A

x

i

x

j

= 0 for i 6= j. We apply (3.9) with � = �

i

e

i

+ �

j

e

j

. Sine A

x

j

x

j

= 0,

(3.10) beomes

(3.11) 0 � B

x

i

x

i

(x

0

)�

2

2

+ 2B

x

i

x

j

(x

0

)�

i

�

j

+B

x

j

x

j

(x

0

)�

2

j

+ 2x

1

A

x

i

x

j

(x

0

)�

i

�

j

:

Assume that A

x

i

x

j

(~x

0

) 6= 0; by homogeneity we have then A

x

i

x

j

(Æ

s

x

0

) 6= 0 for x

0

near ~x

0

. By (3.8)

and (3.11) it follows that

0 � x

1

+

h�;r

2

B(Æ

s

x

0

)�i

h�;r

2

A(Æ

s

x

0

)�i

= x

1

+

B

x

i

x

i

(x

0

)�

2

2

s

1=2�1=a

i

+1=a

j

+ 2B

x

i

x

j

(x

0

)�

i

�

j

s

1=2

+B

x

j

x

j

(x

0

)�

2

j

s

1=2+1=a

i

�1=a

j

2A

x

i

x

j

(x

0

)�

i

�

j

and this expression tends to x

1

as s! 0 sine ja

�1

i

� a

�1

j

j � 1=2. Thus for eah s suÆiently small,

we an �nd a value of x

1

, suh that the right side of (3.11) vanishes. We see that the expression

hanges sign arbitrarily lose to the origin, a ontradition. Hene A

x

i

x

j

also vanishes.

We now turn to the ase k > 1. Split x = (x

0

; x

00

) with x

0

= (x

1

; : : : ; x

k

); then

Q(x) = Q

0

(x

0

) +

k

X

i=1

x

i

A

i

(x

00

) +B(x

00

):

where Q

0

(x

0

) is a positive de�nite quadrati form on R

k

, the funtions A

i

are mixed homogeneous

of degree (a

k+1

=2; : : : ; a

n

=2) and B is mixed homogeneous of degree (a

k+1

; : : : ; a

n

). By performing

a rotation in the x

0

variables we an assume that Q

0

(x

0

) =

P

k

i=1



i

x

2

i

. Then we an apply the ase

k = 1 already proved to the funtions (x

i

; x

00

) 7! Q(x

i

e

i

; x

00

) and dedue that A

i

= 0. �

Lemma 3.2. Suppose that � 2 S

n

2T

(b;M;m;N), N > 4m, a

2

> 2, and suppose that

�

2

�

�x

2

1

(0) 6= 0;

�

a

2

�

�x

a

2

2

(0) 6= 0;

�

j

�

�x

j

2

(0) = 0 if j < a

2

:

Let K

2

[�℄ = �

x

1

x

1

�

x

2

x

2

� (�

x

1

x

2

)

2

. Then

(3.12)

�

a

2

�2

K

2

[�℄

�x

a

2

�2

2

(0) 6= 0:

Moreover there is � > 0, Æ > 0 and C



(all depending on �) so that

(3.13) sup

x

1

;x

3

;:::;x

n

2[�Æ;Æ℄

Z

Æ

�Æ

�

K

2

[	℄(x)

�

�

dx

2

< C



; if  < (m� 2)

�1

;

for all 	 2 S

n

r

(b=2; 2M;m;N) with k��	k

C

N

(jxj�r)

� � .

Proof. We de�ne �(y

1

; y

2

) = �(y

1

; y

2

; 0). Then (1; 0; :::) is an eigenvetor of the Hessian of � and

we an apply Proposition 2.1 to �, without performing a rotation. Thus

�(y) =



1

2

y

2

1

+ 

2

y

a

2

2

+R(y)

14



where 

1

> 0, 

2

> 0 and R satis�es (3.6). Now

K

2

(y) = 

1



2

a

2

(a

2

� 1)y

a

2

�2

2

+E(y)

where the error E(y) is given by

E = (

1

+R

y

1

y

1

)R

y

2

y

2

+ 

2

a

2

(a

2

� 1)R

y

1

y

1

y

a

2

�1

2

�R

2

y

1

y

2

Expanding R we see that

(3.14) R(y) =

X

�



�

y

�

+R

a

2

+1

(y);

here we sum over multiindies � so that j�j � m and �

1

=2 + �

2

=a

2

> 1. All derivatives of order

� a

2

of R

a

2

+1

vanish for y = 0.

In order to show (3.12) we shall show that �

a

2

�2

y

2

E(0) = 0. To see this let G

�

(y) = y

�

. We have

to verify that

�

a

2

G

�

�y

a

2

2

= O(y)

�

2+`

G

�

�y

2

1

�y

`

2

�

a

2

�`

G

�

0

�y

a

2

�`

2

= O(y); ` � a

2

� 2

�

2

G

�

�y

2

1

= O(y)

�

`+1

G

�

�y

1

�y

`

2

= O(y); 1 � ` �

a

2

2

whenever � or �

0

our in the sum (3.14). Considering the term

�

2+`

G

�

�y

2

1

�y

`

2

�

a

2

�`

G

�

0

�y

a

2

�`

2

it is learly O(y)

unless �

1

= 2, �

2

= `, �

0

1

= 0, �

0

2

= a

2

� ` and �

j

= �

0

j

= 0 for j � 3. But this implies that

a

2

� ` = a

2

, hene G

�

(y) = y

2

1

, but y

2

1

is not an admissible term in (3.14). We argue similarly for

eah of the other terms and (3.12) is proved.

To see the seond assertion we use a result related to van der Corput's lemma whih is due to

M. Christ [4℄ (alternatively one may use the Malgrange preparation theorem). It states that for any

k 2 Z

+

there is a onstant A

k

suh that for any interval I � R, any f 2 C

k

(I) and any  > 0

(3.15)

�

�

�

ft 2 I : jf(t)j � g

�

�

�

� A

k



1=k

inf

s2I

jD

k

f(s)j

�1=k

:

By ontinuity we know that

�

a

2

�2

K

2

�x

a

2

�2

2

(x) 6= 0 for small x and we an apply (3.15) with k = a

2

� 2 to

obtain (3.13) �

Proposition 3.3. Let n = 2, � 2 S

2

T

(b;M;m;N) for large N and suppose that (a

1

; a

2

) is the

multitype at 0; moreover assume

(3.16)

�

j

�

�x

j

i

(0) = 0 for j < a

i

;

�

a

i

�

�x

a

i

i

(0) 6= 0;

15



for i = 1; 2. Let �(x) = x

a

1

1

+ x

a

2

2

and let




`

= fx : 2

�`�1

� �(x) � 2

`

g:

Let � = 1=a

1

+ 1=a

2

. There is `

0

> 0 so that for ` > `

0

(3.17)

Z




`

j det�

00

(x)j

�

d�(x) � C



2

`(2�2���)

; for  <

1

a

2

� 2

:

Moreover [det�

00

℄

�

is integrable over a neighborhood of the origin.

Proof. In view of assumption (3.16) we may deompose � = Q+R where Q is mixed homogeneous

of degree (a

1

; a

2

), in fat Q(x) � 

1

�(x) � 

2

Q(x) for small x, by the homogeneity and positivity of

Q and �. The funtion Q is of type � a

2

near 0 and by homogeneity onsiderations it is easy to see

that Q is of type � a

2

everywhere. Moreover, by (3.5) the rank of Q in 


1

is at least 1.

Let � = fx 2 
 : det�

00

(x) = 0g and �x x

0

2 �. Then there is a rotation L

x

0

so that

 (y) = Q(x

0

+L

x

0

y) satis�es the assumption of Lemma 3.2 and therefore we an integrate [detQ

00

℄

�

over a small neighborhood of x

0

; moreover the bound persists for small C

N

perturbations ofQ. Using

ompatness arguments we see that there is � > 0 so that

(3.18)

Z




1

[det	

00

℄

�

dx � C



if k	�Qk

C

N

(


1

)

� " and  < 1=(a

2

� 2).

Let, for large `

�

`

(y) = 2

`

�(2

�`=a

1

y

1

; 2

�`=a

2

y

2

):

Then

(3.19) �

`

= Q+R

`

and all derivatives of R

`

tend to 0 uniformly in fy : �(y) � 1g. Therefore there is `

0

, 2

�`

0

� 1 so

that (3.18) applies for 	 = �

`

, ` > `

0

, with a bound independent of `. Sine

(3.20) det�

00

`

(y) = 2

2`(1��)

det�

00

(2

�`=a

1

y

1

; 2

�`=a

2

y

2

)

we obtain for ` > `

0

Z




`

j det�

00

(y)j

�

dy =

Z




1

2

�`�

j det �

00

(2

�`a

1

y

1

; 2

�`a

2

y

2

)j

�

dy

= 2

�`�

2

2`(1��)

Z




1

j det�

00

`

(y)j

�

dy:(3.21)

If  < (a

2

� 2)

�1

we an dominate the integrals by a onstant independent of ` and the estimate

(3.17) is proved.

Sine a

1

� a

2

we see that �� +2(1� �) �

2

a

2

((a

2

� 2)� 1) < 0 and therefore we an sum the

estimates (3.21) to obtain the integrability of [det�

00

℄

�

near the origin. �

Proof of Theorem 1.2. Immediate from Proposition 3.3 �

We now examine the size of the balls in (2.6) near a point of given multitype.

16



Proposition 3.4. Let � 2 S

n

T

(b;M;m;N), where N is large, and let a = (a

1

; a

2

; : : : ; a

n

) be the

multitype of � at 0. We assume that (3.16) holds for i = 1; : : : ; n.

Let � =

P

n

j=1

1

a

j

, let �(y) =

P

n

i=1

y

a

i

i

and 


`

= fx : 2

�`�1

� �(x) � 2

`

g: Then there are

onstants C

1

, C

2

so that for C

1

Æ � 2

�`

� C

2

, y 2 


`

(3.22) jB(y; Æ)j � C

�

Æ

�

2

`(���)

if � �

1

2

+

1

a

n

:

Proof. Deompose � = Q+R as in (3.3). By our assumptions this holds with the rotation L being

the identity. By the metri properties of the balls B(y; Æ) (in partiular the triangle inequality for

the pseudo-distane assoiated to these balls [2℄) it follows that there are onstants C

1

> 1, C

2

> 1

so that

B(y; Æ) � fx : C

�1

1

Q(x) � Q(y) � C

1

Q(x)g if Q(y) � C

2

Æ:

Now let Q(y) � C

2

Æ and set �

`

(w) = 2

`

�(A

2

�`
w); note that �

`

= Q + R

`

where R

`

tends to

zero in the C

1

topology. Let ` be large so that 2

�`�1

� Q(y) � 2

�`

. Then one omputes that with

W = fy

0

: C

�1

1

=2 � Q(y

0

) � C

1

g and Y

`

= A

2

`y 2W

fA

2

`z : z 2 B(y; Æ)g = fw : �

`

(w) � �

`

(Y

`

)� hw � Y

`

;r�

`

(Y

`

)i � 2

`

Æg :=W

`;y;Æ

and W

`;y;Æ

is ontained in W . By Proposition 3.1 there is C

2

> 0 and `

0

> 0 suh that for any

y 2 W there is a unit vetor � with h�;ri

2

�

`

(y) � C, for all ` > `

0

. Moreover �

`

is of line type

� a

n

, with uniform bounds for ` > `

0

, sine this is the ase for Q. This implies that

jW

`;y;Æ

j � C(2

`

Æ)

�

for 0 � � � 1=2+1=a

n

. Sine the Jaobian of the hange of variable z ! A

2

`

z

is 2

`�

we obtain that

jB(y; Æ)j � CÆ

�

2

��`+�`

and sine Q(y) � �(y) the assertion follows. �

Remark. Let � � 1=2 + 1=a

n

. The estimate jB(y; Æ)j � CÆ

�

[�(y)℄

���

, for small y, is an easy

onsequene of Proposition 3.4.

4. Estimates involving the multitype

We shall �rst give a di�erent proof of the following Theorem proved by the �rst two authors in

[14℄.

Theorem 4.1. Let M be as in (1.2). Suppose that (a

1

; a

2

; : : : ; a

d

) is the multitype at P and that

� =

P

d�1

j=1

1

a

j

�

1

2

. Then there is a neighborhood U of x

0

so that M is bounded on L

p

(R

d

) if

p > �

�1

, provided that supp � � U .

Proof. We may assume that our averages are of the form (2.14) and P = (0; 

d

). Sine �

�1

� 2 we

just have to verify (1.4). We now use Proposition 3.4, with � = � in the �rst term below and � < �

in the seond, and obtain

�

p

p�2

(Æ) �

�

Z

�(w)�C

1

Æ

jB(w; Æ)j

2

p�2

dw

�

p�2

p

+

X

C

1

Æ�2

�`

�1

�

Z

�(w)�2

�`

jB(w; Æ)j

2

p�2

dw

�

p�2

p

� C

�

Æ

�

+

X

C

1

Æ�2

�`

�1

(Æ

�

2

`(���)

)

2

p

Æ

�

p�2

p

�

� C

0

Æ

�

:

17



This implies (1.4) sine � > 1=p. �

Proof of Theorem 1.1. If a

1

> 2 then � � 1=4 + 1=a

2

� 1=2 and the assertion (i) follows from

Theorem 4.1 (the neessity of the ondition had also been shown in [13℄). Now let a

1

= 2. Assertion

(ii) follows from Proposition 2.6 (with k = 2, �

3

= 0, � = 1=2 + 1=a

2

), and by Proposition 3.3 the

hypothesis of (ii) is satis�ed with � < (a

2

� 2)

�1

; this shows assertion (iii). �

Proof of Theorem 1.4. It is suÆient to assume that A is of the form (2.14) so that the multitype

at 0 is a = (a

1

; a

2

) and � is supported near the origin; moreover we may assume that (3.16) holds

for i = 1; 2:

We have boundedness for the ases p = 1 = q trivially. Sine jB(y; Æ)j � CÆ

�

for small y and Æ

it follows from Theorem 1.3 that A maps B

p

�;r

to B

p

0

�+�

if 1 � p � 2, � � �� and

1

p

�

1

2

�

�+�

2(�+1)

.

This is the asserted estimate for 1=p+1=q = 1. We remark that this result is well known and follows

just from the assumption that



d�(�) = O(j�j

��

), see e.g [23, p. 371℄ and also the original referenes

[25℄, [17℄.

We shall now onsider the ase 1=p + 1=q < 1 and prove boundedness under the onditions

(1.15.1-3); boundedness for 1=p + 1=q > 1 under the onditions (1.16.1-3) follows then by duality.

We shall verify the ondition (1.13) by estimating the volume of the balls B(w; Æ) using Proposition

2.1 and then apply either Proposition 3.3 or Proposition 3.4 or both.

In what follows de�ne r and � by

1

r

=

1

p

+

1

q

� 1

� =

2q(p� 1)

p+ q � pq

so that �=r = 2=p

0

. First observe that by Proposition 2.1

(4.1) Æ

���

1

p

+

1

q

�

Z

�(w)�C

2

Æ

jB(w; Æ)j

�

dw

�

1

r

� CÆ

�(

�+1

r

)���

1

p

+

1

q

= CÆ

��+��

�+1

p

+

�+1

q

whih is bounded uniformly in Æ, by 1.15.1. Here we assume that C

2

is as in the statement of

Proposition 3.4.

We use Proposition 2.1 to estimate B(w; Æ) and our onlusion follows if we an verify the

estimate

(4.2)

�

Z

C

2

Æ��(w)�

�

Æ

p

det�

00

(w)

�

�(1��)

jB(w; Æ)j

��

dw

�

1=r

� CÆ

�+

1

p

�

1

q

for suitable � 2 [0; 1℄ and small .

In the present relevant ase 1=p+ 1=q > 1 we distinguish three subases

(a

2

� 1)(1�

1

p

)�

1

q

� 0 and

a

1

� 1

p

+

1

q

< a

1

� 1;(4.3.1)

(a

2

� 1)(1�

1

p

)�

1

q

� 0 and

a

1

� 1

p

+

1

q

� a

1

� 1;(4.3.2)

(a

2

� 1)(1�

1

p

)�

1

q

< 0:(4.3.3)

We begin by assuming that the third estimate (4.3.3) holds. Here we hek (4.2) with � = 0; by

Proposition 3.3 the desired estimate holds if

� >

1

a

2

� 2

(4.4)

�

r

� �+

1

p

�

1

q

:(4.5)
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It is easily heked that (4.4) is equivalent to (4.3.3) whih is presently assumed and (4.5) is equivalent

to the assumption (1.15.3).

Next we assume that the inequalities (4.3.2) hold. In order to arry out the integration in (4.2)

we have to assume that �(1� �) < (a

2

� 1)

�1

whih is equivalent to saying that � is larger than the

ritial value

(4.6) �

r

=

1

a

2

� 2

�

a

2

� 1�

p

(p� 1)q

�

:

Under the onditions (a

2

� 1)(1 �

1

p

) �

1

q

� 0 (i.e. in (4.3.1) and (4.3.2)) we have that �

r

� 0;

moreover one an hek that the assumption 1=p + 1=q > 1 is equivalent with �

r

< 1. We may

therefore hoose � = �

r

+ " < 1 where � is small.

Let 


`

= fw : 2

�`�1

� �(y) � 2

�`

g. By Propositions 3.3 and 3.4 we estimate

Æ

���

1

p

+

1

q

�

Z




`

�

Æ

p

det�

00

(w)

�

�(1��)

jB(w; Æ)j

��

dw

�

1=r

� CÆ

���

1

p

+

1

q

+

�(1��)

r

+(

1

2

+

1

a

2

)�

�

r

2

`

r

(��+�(1��)(1��)+(

1

2

+

1

a

2

��)��)

(4.7)

Now one omputes

1

r

�

� � + �(1� �)(1� �) + (

1

2

+

1

a

2

� �)��

�

=

a

1

� 1

a

1

�

1

p

(

a

1

� 1

a

1

)�

1

a

1

q

�

"

p

0

a

2

� 2

a

2

so that (4.3.2) implies the sum

P

`>0

2

`(::: )

in (4.7) onverges. Moreover

���

1

p

+

1

q

+

�(1� �)

r

+ (

1

2

+

1

a

2

)�

�

r

= e�� "(

a

2

� 2

a

2

p

0

)� �

where

e� = 2�

3

p

+

1

q

� �

r

a

2

� 2

a

2

p

0

=

a

2

+ 1

a

2

� (2 +

1

a

2

)

1

p

+ (1 +

1

a

2

)

1

q

:

Therefore if (4.3.2) is satis�ed we an hoose " = � � �

r

so small that the exponent of Æ in (4.7)

beomes nonnegative. This settles the estimate in ase (4.3.2).

Finally assume that (4.3.1) holds, and again hoose � = �

r

+". The assumption

a

1

�1

p

+

1

q

< a

1

�1

implies that the terms 2

`(::: )

in (4.7) form an inreasing geometri progression if " > 0 is hosen

small enough. We ompute

Æ

���

1

p

+

1

q

X

2

�`

�C

2

Æ

�

Z




`

�

Æ

p

det�

00

(w)

�

�(1��)

jB(w; Æ)j

��

dw

�

1=r

� CÆ

���

1

p

+

1

q

+

�(1��)

r

+(

1

2

+

1

a

2

)�

�

r

Æ

�(�

�

r

+

�

r

(1��)(1��)+(

1

2

+

1

a

2

��)

�

r

�)

= CÆ

���

1

p

+

1

q

+�

�+1

r

= CÆ

��+��

�+1

p

+

�+1

q

:

We have proved the asserted estimate in the remaining ase (4.3.1). �
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5. Some Examples

As pointed out before Theorems 1.1 and 1.4 are sharp for the surfaes given as a graph x

3

=

x

a

1

1

+ x

a

2

2

. We now disuss a lass examples for whih the multitype does not suÆe to get the best

possible results. In order to prove improved L

p

! L

q

�

results we shall diretly apply Theorem 2.5.

Maximal operators. Let � � R

3

be the graph of

(5.1) �(x) = x

2

1

+ x

4

2

+ x

2

1

x

2

2

� 

2

over the set jx

1

j+ jx

2

j � 1=4 and onsider the averages (2.14), with � supported where jx

1

j+ jx

2

j �

1=8. The Hessian

det�

00

= 4x

2

1

+ 24x

2

2

(1 + x

2

2

)� 16x

2

1

x

2

2

is nonnegative in the support of � and sine trae(�

00

) � 1 we see that �

00

has two positive eigenvalues

away from 0. Therefore � is onvex, of multi-type (2; 4) at 0 and of type 2 at (x

1

; x

2

) 6= 0 near 0. The

suÆient ondition for L

p

boundedness whih only depends on the multitype yields boundedness for

p > 8=5, by Theorem 1.1 (iii). However j det�

00

j

�1+"

is integrable near 0, for all " > 0, and therefore

we obtain L

p

boundedness for p > 3=2, whih the best possible result.

More generally we onsider

(5.2) �(x) = x

2

1

+ x

M

2

+ x

a

1

x

b

2

� 

2

where a and b are positive even integers with a=2 + b=M > 1. The graph of � is onvex near the

origin and the multitype at (0; 0) is (2;M). Therefore, if the uto� funtion � has small support

one eratinly obtains boundedness for p > 2(M + 1)=(M + 2). One omputes

det�

00

(x) = x

M�2

2

+ dx

a

1

x

b�2

2

+ o(x

M�2

2

+ x

a

1

x

b�2

2

)

with ; d > 0. Then for small "

Z

jxj�"

[det�

00

℄

�

dx <1

if

 < 

r

= min

�

1

b� 2

;

1

M � 2

+

M � b

a(M � 2)

	

Note that 

r

> (M � 2)

�1

if b < M . In this ase part (ii) of Theorem 1.1 gives us L

p

boundedness

for p > p

0

where the ritial exponent p

0

is less than 2(M + 1)=(M + 2).

L

p

! L

q

-estimates. Consider again the example (5.1). Let Q

0

= (6=5; 1=2), Q

�

0

= (1=2; 1=6), and

R = (5=7; 2=7). Then the result of Theorem 1.4 implies L

p

! L

q

boundedness in the interior of the

onvex hull of the points (0; 0), (1; 1), Q

0

, Q

�

0

and R.

Let ` be the line 2�3=p+1=q = 0 and let � be the lower edge of the boundary of the boundedness

region whih ontains the point (1; 1). All points on ` with absissae 1=p 2 [5=6; 1℄ belong to �. We

shall show that this segment is in fat longer and thereby obtain a larger boundedness region. We

use the estimate (2.10) with k = 2 and �

k+1

= 0. L

p

to L

q

boundedness (p � q, p � 2) holds by

Theorem 1.3 if

Æ

1

q

�

1

p

+

2q(p�1)

p+q�pq

(

1

p

+

1

q

�1)

�

Z

e

�

j det�

00

j

�

q(p�1)

p+q�pq

dx

�

1

p

+

1

q

�1

<1

and the exponent of Æ is positive. The last requirement is equivalent to the restrition 2�3=p+1=q >

0. Sine j det�

00

j

�

is integrable for  < 1 we obtain boundedness if the restrition

q(p�1)

p+q�pq

< 1

is satis�ed. A omputation shows that all points on ` with absissae 1=p 2 [4=5; 1℄ belong to
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�. Therefore if (1=p; 1=q) belongs to the interior of the pentagon with verties (1; 1), (4=5; 2=5),

(5=7; 2=7), (3=5; 1=5) and (0; 0) then the averaging operator maps L

p

to L

q

. Similar onsiderations

yield improved L

p

! L

q

�

estimates.

We remark that the preeding L

p

! L

q

estimates for the example in (5.1) ould also be obtained

by a saling argument in the spirit of [15℄; one uses isotropi dilations sine the urvature vanishes at

an isolated point. The resaled operators an be embedded in analyti families and the estimations

are variants of those in [17℄.
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