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1. Introduction

Suppose that X and Y are C∞ manifolds of dimension dX and dY , respectively,
and that

C ⊂ T ∗X \ 0 × T ∗Y \ 0

is a homogeneous canonical relation. By Iµ(X,Y ; C′) we denote the class of Fourier
integral operators of order µ associated to C. Here as usual C ′ = {(x, ξ; y, η) :
(x, ξ; y,−η) ∈ C}; if σX , σY are the canonical two forms on T ∗X and T ∗Y , respec-
tively, then C is Lagrangian with respect to σx − σY and C′ contains the wavefront
sets of the kernels.

We shall be concerned with L2
α → Lq

β mapping properties of operators in Iµ(X,Y ; C′)

(here Lq
β denotes the Lq Sobolev space). These are well known in case that C

is locally the graph of a canonical transformation; this means that the projec-
tions πL : C → T ∗X, πR : C → T ∗Y are locally diffeomorphisms. In particular
dX = dY := d. Then F ∈ Iµ(X,Y, C′) maps L2

α,comp(Y ) into L2
β,loc(X) if β ≤ α−µ.

This was shown by Hörmander as a consequence of the calculus in [7]. By com-
posing F with a fractional integral operator it is easy to see that F ∈ Iµ(X,Y, C′)
maps L2

α,comp into Lq
β,loc, 2 ≤ q < ∞, if β ≤ α − µ − d/2 + d/q. More general if

dX ≤ dY and dπL has maximal rank 2dX then the same mapping properties hold
for Fourier integral operators in the class F ∈ Iµ+(dX−dY )/4(X,Y, C′).

If one of the projections πL, πR becomes singular it follows that the other is
singular as well, see [7]. However the nature of the singularities of πL and πR may
be quite different and this is reflected in the estimates one gets. Sharp L2 estimates
are known if C is a folding canonical relation; one assumes that both projections
are either nondegenerate or Whitney folds (again dX = dY = d). Then there is a
loss of 1/6 derivatives in the L2 estimates; namely F ∈ Iµ(X,Y, C′) maps L2

α,comp

into L2
β,loc if β ≤ α − µ + 1/6 (see [10], and [15] for a nonhomogeneous version).

In this paper we mainly consider the case of one-sided fold singularities; in the
case dX = dY we require that one projection (say πL) is either nondegenerate or a
Whitney fold but we do not impose any condition on the other projection. If dX ≤
dY then we require that πL is a submersion with folds. We recall the definition: Let
M and N be C∞ manifolds of dimensions m, n, respectively, where m ≥ n. Then
a C∞ map F : M → N is a submersion with fold at x0 ∈ M if rank F ′(x0) = n− 1
(and therefore dim Ker F ′(x0) = m − n + 1 and dimCoker F ′(x0) = 1) and if
the Hessian of F at x0 is nondegenerate. The Hessian is invariantly defined as a
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quadratic form on Ker F ′(x0) with values in Coker F ′(x0). One can always choose
local coordinates x in M vanishing at x0 and local coordinates y in N vanishing at
y0 such that in the new coordinates

F (x1, . . . , xm) = (x1, . . . , xn−1, Q(xn, . . . , xm))

where Q is a nondegenerate quadratic form in R
m−n+1 (see [4, ch. III.4]) and also

[9, III, p.493]). We note that the variety L where F ′ is degenerate is a smooth
surface in M of codimension m − n + 1. Another way of defining a submersion
with folds is identifying L and saying that F drops rank simply by one (at least
one n × n minor of dF vanishes of only first order) and that F |L is an immersion.
In particular F (L) is a smooth hypersurface of N . In the case m = n a submersion
with folds is simply a Whitney fold.

Theorem 1.1. Suppose that dX ≤ dY and that C ⊂ T ∗X \ 0× T ∗Y \ 0 is a homo-
geneous canonical relation such that the projection πL : C → T ∗X is a submersion
with folds. Suppose that F ∈ Iµ+(dX−dY )/4(X,Y, C′). Then F maps L2

α,comp(Y )

into L2
β,loc(X) provided that

(1) β ≤ α − µ − 1/4 if dY = dX ,
(2) β ≤ α − µ − ε, any ε > 0, if dY = dX + 1,
(3) β ≤ α − µ if dY ≥ dX + 2.

These results had been conjectured in [2], [3] where they are proved for the
special case of fibered folding canonical relations (this corresponds to an assumption
of maximal degeneracy on πR). In this case there is a composition calculus which
is not available in the general situation.

For averaging operators in R
2 and some model cases in higher dimensions the

L2 estimates are already in [17]. We remark that in the case dX = dY Theorem 1.1
is sharp without further assumption; however it can be improved if one imposes an
additional finite type condition on πR (cf. [18], [19]). It is also sharp if dY > dX ;
see [3] for an example in the case dY = dX + 1 where ε has to be positive.

Our next result concerns L2
α → Lq

β estimates.

Theorem 1.2. Suppose that dX ≤ dY and that C ⊂ T ∗X \ 0× T ∗Y \ 0 is a homo-
geneous canonical relation such that the projection πL : C → T ∗X is a submersion
with folds. Moreover suppose that the projection πX : C → X is a submersion.
Let F ∈ Iµ+(dX−dY )/4(X,Y ; C′). Then F maps L2

α,comp(Y ) into Lq
β,loc(X) provided

that β ≤ α − µ − dX( 1
2 − 1

q ) and

(1) 4 ≤ q < ∞ if dY = dX ,
(2) 2 < q < ∞ if dY = dX + 1,
(3) 2 ≤ q < ∞ if dY ≥ dX + 2.

We note that sharp L2 → L4 estimates for averaging operators in the plane are in
[17], [19]. There is always a range of q′s (4 ≤ q < ∞ if dX = dY ) where the L2

α → Lq
β

estimates are sharp and in fact the same as in the nondegenerate case. The range
[4,∞) is sharp if one does not impose additional assumptions. One considers on

R
d×R

d×R
d−1 the phase function Φ0(x, y, θ) = (x1−y1+

1
2xdy

2
d)θ1+

∑d−1
i=2 (xi−yi)θi

in the region {θ ∈ R
d−1 : |θ1| ≥ |θ| > 0}. It parametrizes the canonical relation

C0 = {(y1−xdy
2
d/2, y′′, xd, θ, y

2
dθ1/2; y, θ,−xdydθ1) : (y, θ, xd) ∈ R

d×R
d−1×R, |θ1| ≥ c|θ|, xd 6= 0}
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where we write y = (y′, yd) = (y1, y
′′, yd). This is a model case for a fibered folding

canonical relation, considered in [2] (here πL is a fold and πR is a blowdown). One
can check (arguing as in [2], [19]) that Theorem 1.2 is sharp in this case.

In order to improve Theorem 1.2 one imposes additional curvature assumptions.
Let us suppose that dX = dY and let L be the fold hypersurface. We assume that
the projection πX : L → X is a submersion. Then for each x ∈ X the image of the
projection πT ∗

x X of L to the fiber T ∗
x X is a d − 1 dimensional conic hypersurface

Γx. For the above example these hypersurfaces are hyperplanes.

Theorem 1.3. Let dX = dY = d and suppose that C is as in Theorem 1.2. Suppose
that πX : L → X is a submersion and suppose that for each x ∈ X and each
ζ ∈ Γx = πT∗

x X(L) at least ` principal curvatures do not vanish. Suppose (2` +
4)/(`+1) ≤ q < ∞ and β ≤ α−µ−d( 1

2 − 1
q ). Then F ∈ Iµ(X,Y ; C′) maps L2

α,comp

into Lq
β,loc.

The additional curvature condition on the fibers is close to the cone condition in
[12], formulated for a class of Fourier integral operators that comes up in the study
of wave equations.

We now consider averaging operators in three dimensions. Suppose that X
and Y are three dimensional manifolds and suppose that M ⊂ X × Y is a four
dimensional manifold such that the projections onto X and Y are submersions;
furthermore assume that

N ∗M ⊂ T ∗X \ 0 × T ∗Y \ 0

where N∗M is the normal bundle of M. Then Mx = {y : (x, y) ∈ M} is a curve
in Y for each x ∈ X; similarly for each y define My which is a curve in X. Let
dσx be a smooth density on Mx depending smoothly on x. Then the averaging
operator defined by

Af(x) =

∫

Mx

f(y)dσx(y)

belongs to the class I−1/2(X,Y ;N∗M) (see e.g. [6]). Therefore Theorem 1.3 and
interpolation yield

Corollary 1.4. Suppose that dim X = dimY = 3 and M is as above. Suppose
that the projection πL : N∗M → T ∗X is either nondegenerate or a Whitney fold
with fold hypersurface L, such that the projection of L onto X is a submersion.
Suppose that for each x ∈ X and at each ζ ∈ Γx = πT∗

x X(L) a principal curvature
does not vanish. Then A is bounded from Lp

comp(Y ) into Lq
comp(X) if (1/p, 1/q)

belongs to the closed triangle with corners (0, 0), (1, 1), (1/2, 1/3).

Clearly by applying this to A∗ we get a similar result involving assumptions on
πR. The typical example that demonstrates the sharpness of Corollary 1.4 is the
X-ray transform for the family of light rays in R

3 (considered in [2], [5], [11], [16]).
The light rays are parametrized by their intersection with the (x1, x2)-plane and
an angle α, and the averaging operator (taking the role of A∗) is given by

Rf(x1, x2, α) =

∫
f(x1 + s cos α, x2 + s sinα, s)χ(s) ds
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with an appropriate cutoff function χ. (N ∗M)′ is a fibered canonical relation (now
πR is a fold and πL is a blowdown) and the fold hypersurface for πR is

L = {(x1, x2, α, µ cos α, µ sinα, 0;x1 + s cos α, x2 + s sin α, s, µ cos α, µ sin α, µ)}.

The sharpness of Corollary 1.4 can be seen by testing R on characteristic functions
of balls (to get the restriction q ≤ 2p/(3 − p)) and on characteristic functions of
rectangles with dimensions 1, δ, δ2 (to get the restriction q ≤ 4p/3); see [2]. The
operator R is an example of a more general class of restricted X-ray transforms
where one averages over lines in a well-curved hypersurface of M1,d (the space of
lines in R

d). This will be taken up below.
In the case of folding canonical relations one may apply Corollary 1.4 to A and

A∗ to get

Corollary 1.5. Let M be as in Corollary 1.4 and suppose that (N ∗M)′ is a folding
canonical relation. Moreover suppose that the cones ΓL

x = πT ∗

x X(L) and the cones

ΓR
y = πT∗

y Y (L) are curved in the sense that at every point one principal curvature

does not vanish. Then A is bounded from Lp
comp(Y ) to Lq

loc(X) if (1/p, 1/q) belongs
to the closed trapezoid with corners (0, 0), (1, 1), (2/3, 1/2) and (1/2, 2/3).

In particular suppose that t 7→ γ(t) defines a curve in R
3 with nonvanishing cur-

vature κ(t) and nonvanishing torsion τ(t). Then the translation invariant operator

Af(x) =

∫
f(x − γ(t))χ(t)dt

falls under the scope of Corollary 1.5. In this case M = {(x, x+γ(t))} and (N ∗M)′

is a folding canonical relation with fold hypersurface

L = {(x, µB(t), y,−µB(t)) : x − y = γ(t), µ ∈ R};

here B(t) denotes the binormal vector. The principal curvatures of the cone
Γ = {(µB(t))} at µB(t) are 0 and −µκ(t)τ(t). So Corollary 1.5 extends Ober-
lin’s result [13] on translation invariant curves with nonvanishing curvature and
torsion (proved in full generality by Pan [14]). It is sharp as one can see by testing
A on characteristic functions of rectangles with dimensions δ, δ2, δ3.

We shall consider more general oscillatory integral and Fourier integral operators
with not necessarily homogeneous phase functions. §2 contains the main estimates
for oscillatory integral operators. In §3 we apply these results to Fourier integral
operators with general phase functions; the homogeneous case arises as a special
case if one uses Littlewood-Paley theory. In §4 we apply our theorems to obtain
new estimates for restricted X-ray transforms. Throughout the paper c, C will
denote positive constants which may assume different values in different lines.

2. Estimates for oscillatory integrals

Suppose X and Z are open sets in R
d and R

d+r, respectively. We consider
oscillatory integral operators of the form

(2.1) Tλf(x) =

∫
eiλΦ(x,z)a(x, z)f(z) dz
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where the phase function Φ ∈ C∞(X × Z) is not necessarily homogeneous and
a ∈ C∞

0 (X × Z). Let

(2.2) CΦ = {(x,Φ′
x; z,−Φ′

z)}

be the associated canonical relation.
It is well known ([8]) that the L2 → Lq operator norm of Tλ is O(λ−d/q) provided

the differentials of the projections πL : C → T ∗(X), πR : C → T ∗(Z) have maximal
rank d. This hypothesis is equivalent with the condition rank Φ′′

xz = d.
In this section we prove L2 → Lq bounds for Tλ, under the assumption that the

only singularities of the projection πL are fold singularities; no assumption on πR

is made.

Theorem 2.1. Suppose that dim X = d, dim Z = d + r and that the projection
πL : CΦ → T ∗X is a submersion with folds. Then if r = 0 we have for λ ≥ 2

‖Tλf‖q ≤ Cλ− d−1

q
− 1

4 ‖f‖2, if 2 ≤ q ≤ 4

‖Tλf‖q ≤ Cλ− d
q ‖f‖2, if 4 ≤ q ≤ ∞.

If r = 1 then

‖Tλf‖2 ≤ Cλ− d
2 (log λ)

1
2 ‖f‖2,

‖Tλf‖q ≤ Cλ− d
q ‖f‖2, 2 < q ≤ ∞.

If r ≥ 2 then

‖Tλf‖q ≤ Cλ− d
q ‖f‖2, 2 ≤ q ≤ ∞.

Phong and Stein [17] noticed that the case dim X = dim Z = 1 already follows
if one applies van der Corput’s Lemma to the kernel of TT ∗. An improvement in
higher dimension may be obtained under some additional curvature assumption.
Suppose r = 0 and denote by L the fold hypersurface for the projection πL. Again
if πX : L → X is a submersion then for each x the projection of L onto the fiber,
Σx = πT∗

x X(L), is a hypersurface in T ∗
x X.

Theorem 2.2. Suppose that dim X = dim Y = d and that the projection πL :
CΦ → T ∗X is either nondegenerate or a Whitney fold. Suppose in addition that for
each x ∈ X, for each ζ ∈ Σx at least ` principal curvatures do not vanish. Then
for λ ≥ 1

‖Tλf‖q ≤ Cλ− d−1

q
− `+1

4
+ `

2q ‖f‖2, if 2 ≤ q ≤ 2` + 4

` + 1
.

‖Tλf‖q ≤ Cλ− d
q ‖f‖2, if

2` + 4

` + 1
≤ q ≤ ∞.

We shall use a general result on nondegenerate Fourier integral operators with
not necessarily homogeneous phase functions. We consider operators of the form

(2.3) Sλf(x) =

∫∫
eiλΨ(x,y,z)b(x, y, z)dz f(y)dy
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where b ∈ C∞
0 (Rn × R

n × R
N ) and Ψ is a C∞-function defined in a neighborhood

of supp b satisfying

(2.4) det

(
Ψ′′

xy Ψ′′
xz

Ψ′′
zy Ψ′′

zz

)
6= 0.

This says that the associated canonical relation (see (3.2) below) is locally the graph
of a canonical transformation.

The following lemma is well known; it is contained in [8] for the case N = 0
which corresponds to operators of type (2.1). We sketch a proof for the reader’s
convenience.

Lemma 2.3. Suppose that Ψ satisfies (2.4). Then Sλ is a bounded operator on
L2(Rn) and the operator norm is O(|λ|−(n+N)/2), |λ| ≥ 1.

Proof. We may assume that the support of b is small. We prove that SλS∗
λ is a

bounded on L2(Rn) with norm O(λ−n−N ). The kernel Kλ of SλS∗
λ is

Kλ(v,w) =

∫∫∫
eiλ[Ψ(v,y,z+h)−Ψ(w,y,z)]b(v, y, z + h)b(w, y, z) dy dz dh.

Observe that
(
∇y[Ψ(v, y, z + h) − Ψ(w, y, z)]
∇z[Ψ(v, y, z + h) − Ψ(w, y, z)]

)
=

(
Ψ′′

yx Ψ′′
yz

Ψ′′
zx Ψ′′

zz

) ∣∣∣
(w,y,z)

(
v − w

h

)
+O(|v−w|2+|h|2).

Therefore an integration by parts shows that

Kλ(v,w) ≤ CM

∫
(1 + λ|v − w| + λ|h|)−Mdh

≤ C ′
Mλ−N (1 + λ|v − w|)−M+N

where M > N + n. It follows that

sup
v

∫
|K(v,w)|dw + sup

w

∫
|K(v,w)|dv ≤ Cλ−n−N

which implies ‖SλS∗
λ‖ = O(λ−n−N ). �

Remark 2.4. Suppose X,Y are open sets in R
n and Z is an open set in R

N .
Suppose there is a family of phase functions and symbols {(Ψν , aν)} such that the
Ψν belong to a bounded family of C∞(X ×Y ×Z) and the aν belong to a bounded
family of C∞

0 (X × Y × Z). Suppose that the determinant (2.4) is bounded away
from 0, uniformly in ν. Then the associated oscillatory integral operators Sλ are
L2-bounded with norm O(λ−(n+N)/2) uniformly in ν. This is a consequence of the
above proof. �

We now turn to the proofs of Theorem 2.1 and 2.2. We split coordinates x =
(x′, xd) ∈ R

d−1 × R and z = (z′, z′′) ∈ R
d−1 × R

r+1 and claim that without loss of
generality we can assume that (0, 0) ∈ X × Y and

det Φ′′
x′z′(0, 0) 6= 0(2.5)

det Φ′′′
xdz′′z′′(0, 0) 6= 0;(2.6)

6



moreover

Φ′′
x′z′′(0, 0) = 0(2.7)

Φ′′
xdz′(0, 0) = 0(2.8)

Φ′′′
xdz′z′′(0, 0) = 0.(2.9)

In fact if C = {u, φ′
u(u, v), v, φ′

v(u, v)} and πL is a submersion with fold at (u, v) =
(x0, y0) then assume that 0 6= a ∈ Coker φ′′

uv(x0, y0) and that {b1, . . . , br+1} is
a basis of Ker φ′′

uv(x0, y0). Set Φ(x, y) = φ(x0 + B1x, y0 + B2y) where we re-
quire that B1 ∈ GL(d, R), B2 ∈ GL(d + r, R) with the following properties. First
B1ed = a (here {e1, e2, . . . } is the standard orthonormal vectors in R

d or R
d+r).

Next B2ed−1+i = bi and for j = 1, . . . , d − 1, B2ej is orthogonal to 〈a, φ′
u〉′′vvbi,

for i = 1, . . . , r + 1. The fold condition which is the nondegeneracy of the qua-
dratic form η →

〈
〈a, φ′

u〉′′vvη, η
〉

on Ker dπL implies that B2 can be made invertible.
Clearly ed ∈ Coker Φ′′

xz(0, 0) and ed−1+i ∈ Ker Φ′′
xz(0, 0) for i = 1, . . . , r + 1; this

is (2.7), (2.8) and the fold condition implies (2.5), (2.6). Since Φ′′′
xdzjzd−1+k

∣∣
(0,0)

=

(B2ej)
t〈a, φ′

u〉′′vv

∣∣
(x0,y0)

bk we get (2.9) as well.

We shall always assume that a is supported in a ball of radius ε and center (0, 0)
and we shall choose ε small (independent of λ). Observe that

Φ′′
x′z′′ , Φ′′

xdz′ , Φ′′′
xdz′z′′ = O(ε)

in the support of a.
In order to prove our results we use an argument due to Tomas [22] according

to which for p ≤ 2

‖Tλ‖L2→Lp′ ≤ ‖TλT ∗
λ‖1/2

Lp→Lp′ .

We write

TλT ∗
λf(x′, xd) =

∫
Kxdyd

[f(·, yd)](x
′) dyd

where

Kxdyd
g(x′) =

∫
Kλ(x′, xd, y

′, yd)g(y′) dy′

with

Kλ(x′, xd, y
′, yd) =

∫
eiλ[Φ(x′,xd,z)−Φ(y′,yd,z)]a(x, z)a(y, z) dz.

The basic L2 estimate is

Proposition 2.5. For fixed xd, yd there is the estimate

‖Kxdyd
g‖L2(Rd−1) ≤ Cλ−(d−1)(1 + λ|xd − yd|)−(r+1)/2‖g‖L2(Rd−1).

Proof. Define

Txdz′′h(x′) =

∫
eiλΦ(x′,xd,z′,z′′)a(x′, xd, z

′, z′′) dz′.

Then

(2.10) Kxdyd
g =

∫
Txdz′′T ∗

ydz′′g dz′′.
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By (2.5) it follows from Lemma 2.3 (with N = 0) that Txdz′′ is bounded on L2(Rd−1)
with norm O(λ(1−d)/2), uniformly in xd. Then we see from (2.10) that Kxdyd

is
bounded on L2(Rd−1) with norm O(λ1−d). This is the desired estimate in the case
|xd − yd| ≤ Cλ−1.

Henceforth assume |xd − yd| ≥ λ−1. Note that in view of (2.5) and (2.8)

∣∣∇z′

[
Φ(x′, xd, z) − Φ(y′, yd, z)

]∣∣ ≥ c
[
|x′ − y′| − C0ε|xd − yd|

]
.

Therefore an integration by parts argument shows that

(2.11) |Kλ(x, y)| ≤ CN (1 + λ|x′ − y′|)−N if |x′ − y′| ≥ 2C0ε|xd − yd|.

Let

χε(x, y) = χ(3C0ε
−1 |x′ − y′|

|xd − yd|
)

and let
H(x′, y′) ≡ Hxdyd

(x′, y′) = χε(x, y)Kλ(x, y)

and
Rxdyd

(x′, y′) = (1 − χε(x, y))Kλ(x, y).

From (2.11) we obtain

sup
y′

∫
|Rxdyd

(x′, y′)|dx′ + sup
x′

∫
|Rxdyd

(x′, y′)|dy′ ≤ CN (1 + λ|xd − yd|)−N+d−1.

Choosing N > d + (r− 1)/2 we see that the operator with kernel Rxdyd
is bounded

on L2 with the desired bound.
In view of the support properties of the kernel H it is appropriate to intro-

duce another localization. Let β ∈ C∞
0 (Rd−1) be supported in [−1, 1]d−1 with∑

n∈Zd−1 β(· − n) ≡ 1. We split

H(x′, y′) =
∑

n∈Zd−1

Hn(x′, y′)

where
Hn(x′, y′) = β(|xd − yd|−1x′ − n)H(x′, y′).

Note that Hn(x′, y′) = 0 if |x′−n|xd−yd|| ≥ 2
√

d − 1|xd−yd| or if |y′−n|xd−yd|| ≥
C1|xd − yd| (with C1 = 2

√
d − 1 + (3C0ε)

−1). Let Hn denote the operator with

kernel Hn; then Hn(Hn′

)∗ = 0, (Hn)∗Hn′

= 0 if |n − n′| ≥ C, for suitable C, and
therefore it suffices to prove the required bound for an individual Hn. We define

rescaled operators H̃n with kernels

H̃n(u, v) = Hn(|xd − yd|(n + u), |xd − yd|(n + v)).

Then

(2.12) Hng(x′) = |xd − yd|d−1H̃n[f(|xd − yd| · +n)](
x′

|xd − yd|
− n).
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Let

Ψn,xd,yd
(u, v, z) =

Φ((u + n)|xd − yd|, xd, z) − Φ((v + n)|xd − yd|, yd, z)

|xd − yd|
.

Then Ψ = Ψn,xd,yd
is a C∞ phase function which satisfies the assumptions of

Lemma 2.3, uniformly in xd, yd and n. In fact we have

Ψ′′
uv(u, v, z) = 0

Ψ′′
uz(u, v, z) = Φ′′

x′z(u + n|xd − yd|, xd, z)

Ψ′′
zv(u, v, z) = −(Φ′′

x′z)
t(v + n|xd − yd|, yd, z)

Ψ′′
zz(u, v, z) =

Φ′′
zz((u + n)|xd − yd|, xd, z) − Φ′′

zz((v + n)|xd − yd|, yd, z)

|xd − yd|
.

In view of (2.5), (2.6) and the support properties of χε (|u− v| � |xd − yd|) we see
that |Ψ′′

z′′z′′ | ≥ c > 0. Taking also into account (2.7) and (2.9) we obtain

det

(
Ψ′′

uv Ψ′′
uz

Ψ′′
zv Ψ′′

zz

) ∣∣∣
(u,v,z)

6= 0

in the support of χε if ε is chosen sufficiently small. Observe that

H̃n(u, v) =

∫
eiλ|xd−yd|Ψn,xd,yd

(u,v,z)bn,xd,yd
(u, v, z) dz

where bn,xd,yd
is a C∞-function with bounds independent of n, xd and yd. Hence

we may apply Lemma 2.3 and it follows from Remark 2.4 that

‖H̃n‖L2→L2 ≤ C(λ|xd − yd|)−d−r/2+1/2

where C does not depend on xd, yd or n. Therefore by (2.12)

‖Hng‖2 = |xd − yd|(d−1)/2
∥∥H̃n[g(|xd − yd|(n + ·))]|xd − yd|d−1

∥∥
2

≤ Cλ−d+1(λ|xd − yd|)−(r+1)/2‖g‖2.

This is the desired estimate since we assume |xd − yd| ≥ λ−1. �

In order to complete the proof of the L2 → Lq estimates for Tλ we need an
L1 → L∞ estimate for Kxdyd

.

Proposition 2.6. Let CΦ be as in Theorem 2.1 and assume r = 0. Then

(2.13) ‖Kxdyd
g‖L∞(Rd−1) ≤ C(1 + λ|xd − yd|)−1/2‖g‖L1(Rd−1).

Suppose that CΦ satisfies the additional curvature assumption of Theorem 2.2. Then

(2.14) ‖Kxdyd
g‖L∞(Rd−1) ≤ C(1 + λ|xd − yd|)−(`+1)/2‖g‖L1(Rd−1).

Proof. We first prove (2.13). Split Kxdyd
= Hxdyd

+ Rxdyd
as in the proof of

Proposition 2.5. The appropriate inequality for the operator with kernel Rxdyd

9



follows at once from (2.11). An application of the method of stationary phase
which uses only the fold condition (2.6) (and (2.8)) yields

|Hxdyd
(u, v)| ≤ C(1 + λ|xd − yd|)−1/2

and (2.13).
If CΦ is as in Theorem 2.2 then Σx can be parametrized by z′ 7→ Φ′

x(x, z′, g(z′))
for suitable smooth g and ed is a normal vector for Σ0 at z′ = 0. The curvature
condition on Σ0 at z′ = 0 is

rank Φ′′′
xdz′z′ = `.

In order to see this one uses (2.8) and (2.9). By (2.6) and (2.9) it follows that

rank Φ′′′
xdzz = ` + 1.

In this case the application of the method of stationary phase yields

|Hxdyd
(u, v)| ≤ C(1 + λ|xd − yd|)−(`+1)/2

and therefore (2.14). �

Proof of Theorems 2.1 and 2.2. We first assume that r = 0. Using complex
interpolation we deduce from Propositions 2.5 and 2.6 that for 1 ≤ p ≤ 2

‖Kxdyd
g‖Lp′

(Rd−1) ≤ Cλ−2(d−1)/p′

(1 + λ|xd − yd|)`/p′−(`+1)/2‖g‖Lp(Rd−1)

where ` = 0 in Theorem 2.1 and 0 < ` ≤ d − 1 in Theorem 2.2. Of course
Kxdyd

= 0 if |xd − yd| ≥ 1. By the theorem on fractional integration we know that
for 0 < a < 1 the integral operator |xd − yd|a−1χ(xd − yd) (where χ is a cutoff

function) maps Lp(R) into Lp′

(R) if 2/(a+1) ≤ p ≤ 2. We want to apply this with
a − 1 = `/p′ − (` + 1)/2 which yields the limitation 2 ≤ p′ ≤ (2` + 4)/(` + 1). For
this range we obtain (using an idea by Oberlin [13])
∥∥TλT ∗

λf
∥∥

Lp′ (Rd)

≤C
(∫ [∫ ∥∥Kxdyd

[f(·, yd)]
∥∥

Lp′ (Rd−1)
dyd

]p′

dxd

)1/p′

≤Cλ−2(d−1)/p′−(`+1)/2+`/p′
(∫ 1

−1

[∫ 1

−1

‖f(·, yd)‖Lp(Rd−1)

|xd − yd|(`+1)(1/2−1/p)−1/p+1
dyd

]p′

dxd

)1/p′

≤Cλ−2(d−1)/p′−(`+1)/2+`/p′‖f‖Lp(Rd).

Consequently Tλ is bounded from L2 into Lp′

with operator norm O(λ−(d−1)/p′−(`+1)/4+`/(2p′).
This settles the case r = 0.

If dim X = d, dim Y = d + r then we replace Proposition 2.6 by the trivial
estimate ‖Kxdyd

‖L1→L∞ = O(1) and obtain

‖Kxdyd
g‖Lp′

(Rd−1) ≤ Cλ−2(d−1)/p′

(1 + λ|xd − yd|)−(r+1)/p′‖g‖Lp(Rd−1).

Let wλ,p(t) = λ−2/p′

(1 + λ|t|)−(r+1)/p′

χ(t). If r ≥ 1, p′ > 2 or if r > 1, p′ ≥ 2 then

the convolution with wλ,p defines a bounded operator from Lp(R) into Lp′

(R), with
norm independent of λ. If r = 1, p = 2 the L2 operator norm is O(log λ). This
together with the argument above settles the case dX < dY . �
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3. Application to Fourier integral operators

Let X, Y be open sets in R
dX and R

dY , respectively. We consider operators of
the form

(3.1) Sλf(x) =

∫∫
eiλΨ(x,y,z)b(x, y, z) dz f(y)dy

where b ∈ C∞
0 (RdX × R

dY × R
N ) and Ψ is a not necessarily homogeneous nonde-

generate phase function in the sense that Ψ is C∞ in a neighborhood of supp b and
the gradients ∇x,y,zΨ

′
zi

, i = 1, . . . , N are linearly independent if N > 0. We allow
N = 0 to include operators of type (2.1); in this case the nondegeneracy condition
is void. If N > 0 it implies that

(3.2) CΨ = {(x,Ψ′
x; y,−Ψ′

y) : Ψ′
z = 0}

is an immersed Lagrangian submanifold of T ∗X × T ∗Y , i.e. a canonical relation.
We shall show that L2 estimates for operators of type (2.1) can be reduced to

L2 estimates for operators of type (3.1). The same is true for L2 → Lq estimates if
one assumes that the projection πX : C → X is a submersion. We note that similar
arguments come up in the calculus for Fourier integral operators [7], [9, vol.IV], and
in fact one can develop a similar theory for operators with nonhomogeneous phase
functions of type (3.1). Since we are not attempting to develop a calculus we prefer
to give more elementary arguments using only linear canonical transformations. We
begin with some simple facts from symplectic linear algebra.

Lemma 3.1. Suppose that C ⊂ T ∗X ×T ∗Y is a canonical relation. Then for each
ρ ∈ C the subspace dπL(TρC) of TπLρT

∗X contains a Lagrangian subspace.

Proof. We have to show that V = dπL(TρC) is coisotropic with respect to the
symplectic form σX = dξ ∧ dx on T ∗X. Suppose σX((δx, δξ), (δx′, δξ′)) = 0 for
all (δx′, δξ, ) ∈ V . This implies that if t′ = (δx′, δξ′, δy′, δη′) is a tangent vector
in TρC and σ = σX − σY then σ((δx, δξ, 0, 0), t′) = 0. Therefore the span of TρC
and (δx, δξ, 0, 0) is isotropic and since TρC was already Lagrangian we see that
(δx, δξ, 0, 0) ∈ TρC and therefore (δx, δξ) ∈ V . �

Lemma 3.2. Suppose that C ⊂ T ∗X × T ∗Y is a canonical relation and suppose
that the projection πX : C → X is a submersion. Then

Cx = {(y, η) ∈ T ∗Y : (x, ξ; y, η) ∈ C for some ξ}

is an immersed Lagrangian submanifold of T ∗Y .

Proof. Since rank dπX = dX we see that N x = ({x} × T ∗
x X × T ∗Y ) ∩ C is an

isotropic dX -dimensional immersed submanifold of T ∗X × T ∗Y . We observe that
the projection of N x to T ∗Y at a point ρ has injective differential. Indeed suppose
that (0, δξ, 0, 0) ∈ TρN x. By our assumption on πX we may find dX tangent vectors

t(i) = (δxi, . . . ) (with the δxi being a basis of the tangent space to X at πX(ρ)). If
we apply σX −σY to the tangent vectors t(i) and to (0, δξ, 0, 0) we find 〈δxi, δξ〉 = 0
for i = 1, . . . , dX and therefore δξ = 0. We have shown that the intersection of the
tangent spaces of N x with (the tangent space of) 0×T ∗

x X × 0 is {0} and therefore
Cx is an immersed manifold of T ∗Y of dimension dY . σY vanishes on Cx and hence
Cx is Lagrangian. �

We now consider operators of type (3.1).
11



Lemma 3.3. Suppose that Ψ′
z(x0, y0, z0) 6= 0 and M ∈ N. Then there is a neigh-

borhood W of (x0, y0, z0) such that ‖Sλ‖Lp→Lp = O(λ−M ) for all M and 1 ≤ p ≤ ∞
provided that b is supported in W .

Proof. Let Kλ be the kernel of Sλ. Since Ψ′
z 6= 0 near (x0, y0, z0) we may use

integration by parts to see that |Kλ(x, y)| ≤ CMλ−M provided that the support of
b is contained in a small neighborhood of (x0, y0, z0). �

Proposition 3.4. Let Ψ be nondegenerate and suppose that Ψ′
z(x0, y0, z0) = 0.

Then there is a neighborhood W of (x0, y0, z0) such that if b is supported in W we
can write

(3.3) Sλ = λdX/2GλVλ + Rλ

and Gλ, Vλ, and Rλ are as follows: Gλ is an unitary operator on L2(RdX ). The
kernel of Vλ is given by

(3.4) Kλ(x, y) =

∫
eiλφ(x,y,ϑ)γ(x, y, ϑ) dϑ

where γ ∈ C∞
0 (RdX × R

dY × R
N+dX ) and φ is nondegenerate in a neighborhood of

supp γ; moreover the projection πX to X of the associated canonical relation Cφ is
a submersion. Cφ is given by

Cφ = {(x, φx; y,−φ′
y);φ′

ϑ = 0}
= {(x, ξ; y, η) : (x, ξ) = χ(w, ζ), (w, ζ; y, η) ∈ CΨ};(3.5)

here χ is a linear canonical transformation. Finally Rλ is bounded on Lp, 1 ≤ p ≤
∞ with operator norm O(λ−M ).

Proof. Let ρ0 = (x0, ξ0; y0, η0) = (x0,Ψ
′
x(x0, y0, z0); y0,−Ψ′

y(x0, y0, z0)). By Lemma
3.1 there is a Lagrangian subspace L0 of dπLTρ0

CΨ. Consider the fiber L1 =
{(0, δξ)} as a Lagrangian subspace of T(x0,ξ0)T

∗X. Then one can choose another
Lagrangian subspace L2 which is transversal to both L0 and L1 (see [9, p.289]).
Therefore L2 = {(δx,Aδx)} for some symmetric A. Let B1, B2 ∈ Sp(dX , R) be
defined by

B1 =

(
0 I
−I 0

)
, B2 =

(
I 0

−A I

)

and consider Bi(Lj) = {v ∈ T(x0,ξ0)T
∗X : B−1

i v ∈ Lj}. Then B2(L2) = {(δx, 0)}
and B1B2L0 is transversal to B1B2(L2) = L1; hence B1B2L0 = {(δx,A0δx)} for
some A0.

Next define

Fλg(x) =

∫
e−iλ[〈x,w〉+ 1

2
〈Aw,w〉]g(w) dw

Then the operator (λ/2π)dX/2Fλ is a unitary operator on L2(RdX ), by Plancherel’s
theorem.

Let χ(w, ζ) = (−Aw + ζ,−w); that is χ = B1B2 if we consider B1, B2 as acting
on T ∗X. Let

(x̃0, ξ̃0) = χ(x0, ξ0) = (−Ax0 + Ψ′
x(x0, y0, z0),−x0)

12



and let β ∈ C∞
0 (RdX ) be equal to 1 in a neighborhood U of x̃0. Let Gλ =

(λ/2π)−dX/2F−1
λ and let

Vλf(x) = (2π)dX/2β(x)FλSλf(x)

R̃λf(x) = (2π)dX/2(1 − β(x))FλSλf(x)

Then we have the decomposition (3.3) with Rλ = λdX/2GλR̃λ.
The kernel of Vλ is (3.4) with ϑ = (w, z) and

φ(x, y, (w, z)) = −〈x,w〉 − 1

2
〈Aw,w〉 + Ψ(w, y, z)

γ(x, y, (w, z)) = (2π)dX/2β(x)b(w, y, z)

Then

Cφ = {(x,−w; y,Ψ′
y(w, y, z)) : −x − Aw + Ψ′

w(w, y, z) = 0, Ψ′
z(w, y, z) = 0}.

Hence Cφ is given by (3.5) with χ = B1B2. Let ρ̃0 = (x̃0, ξ̃0, y0, η0). Then the space
dπL(Tρ̃0

Cφ) ⊂ T(x̃0,ξ̃0)
T ∗X contains the Lagrangian subspace B1B2L0 and hence

the differential of the projection πX : Cφ → X is surjective at ρ̃0. Therefore πX is
a submersion provided the support of b and β are small.

In order to complete the proof we have to show that the Lp-operator norm of

R̃λ is O(λ−M ), provided that the support of b is sufficiently close to (x0, y0, z0). In
order to see this we note that

φ′
w(x, y, (w, z)) = −x − Aw + Ψ′

w(w, y, z)

= −(x − x̃0) − x̃0 − Ax0 + Ψ′
w(x0, y0, z0) + O(|w − x0| + |y − y0| + |z − z0|)

= −(x − x̃0) + O(|w − x0| + |y − y0| + |z − z0|).

In view of Lemma 3.3 and the support properties of 1 − β we get the required

estimate for the kernel of R̃λ provided that the support of b is sufficiently close to
(x0, y0, z0). �

Proposition 3.5. Let Ψ be nondegenerate and suppose that Ψ′
z(x0, y0, z0) = 0. Let

ρ0 = (x0, ξ0; y0, η0) = (x0,Ψ
′
x(x0, y0, z0); y0,−Ψ′

y(x0, y0, z0)). Suppose that near ρ0

the projection πX : CΨ → X is a submersion. Then there is a neighborhood W of
(x0, y0, z0) such that if b is supported in W we can write

(3.6) Sλ = λ−N/2TλGλ + Rλ

where Gλ is a unitary operator on L2(RdX ) and Rλ is bounded on Lp, 1 ≤ p ≤ ∞
with operator norm O(λ−M ). Tλ is given by

(3.7) Tλf(x) =

∫
eiλΦ(x,y)bλ(x, y)f(y) dy

where bλ belongs to a bounded set of functions in C∞
0 (X × Y ). The canonical

relation (2.2) associated to Tλ can be written as

CΦ = {(x, ξ; y, η) : (y, η) = χ(w, ζ), (x, ξ;w, ζ) ∈ CΨ};
13



where χ is a linear canonical transformation.

Proof. We use exactly the same reasoning as in the proof of Proposition 3.4 (this
time working in T ∗Y ). Again we want to choose a Lagrangian subspace L0 of
dπRTρ0

C. By our assumption on πX and Lemma 3.2 we may choose L0 to be
the tangent space of the Lagrangian manifold Cx0

φ . Arguing as in the proof of
Proposition 3.4 we may write

Sλ = λdY /2VλGλ + Rλ

where the kernel of Vλ is given by (3.4) with ϑ = (w, z) ∈ R
dY × R

N and γ ∈
C∞

0 (RdX × R
dY × R

N+dY ). Moreover the projection of Cx
φ onto Y has surjective

differential at (ỹ0, η̃0) = χ(y0, η0) = (y0, φ
′
y(x0, y0, ϑ0)) for x close to x0. This means

that that the projection Cφ → X × Y has surjective differential at (x0, ξ0, ỹ0, η̃0).
Since φ is nondegenerate this implies

(3.8) det φ′′
ϑϑ(x0, y0, ϑ0) 6= 0;

cf. [7, p.137] (note that (3.8) can never happen if φ is a homogeneous phase
function). Now if the support of b is sufficiently small we may apply the method
of stationary phase with respect to the ϑ-variables (analogous to the reduction of
frequency variables in [7]) and obtain

Vλ = λ−(N+dY )/2Tλ + R′
λ;

here Tλ is as in (3.7) and R′
λ is bounded on Lp with norm O(λ−M ). The canonical

relations associated to Tλ and Vλ coincide. �

An immediate consequence of Theorems 2.1 and 2.2 and Propositions 3.4 and
3.5 is

Theorem 3.6. Let Sλ be as in (3.1) and suppose dY ≥ dX . Suppose that the
projection πL : CΨ → T ∗X is a submersion with folds. Then for λ ≥ 2

‖Sλf‖L2(X) ≤ Cλ−
N+dX

2
+ 1

4 ‖f‖L2(Y ) if dY = dX

‖Sλf‖L2(X) ≤ Cλ−
N+dX

2 (log λ)1/2‖f‖L2(Y ) if dY = dX + 1

‖Sλf‖L2(X) ≤ Cλ−
N+dX

2 ‖f‖L2(Y ) if dY ≥ dX + 2.

Suppose in addition that the projection of CΨ to X is a submersion. Then

(3.9) ‖Sλf‖Lq(X) ≤ Cλ−N
2
−

dX
q ‖f‖L2(Y )

provided that 4 ≤ q ≤ ∞ if dX = dY and 2 < q ≤ ∞ if dY ≥ dX +1. If one imposes
the additional assumption that the projection of the fold hypersurface L to X is a
submersion and that at least ` principal curvatures of the surfaces Σx = πT ∗

x XCΨ

do not vanish (here 1 ≤ ` ≤ dX − 1) then (3.9) holds for (2` + 4)/(` + 1) ≤ q ≤ ∞.

Remark. There is a more straightforward reduction to oscillatory integral operators
in the case of averaging operators, given by Af(x) =

∫
Mx

f(y)dσx(y). If Mx is

parametrized by y′′ = S(x, y′), y′ ∈ R
k, y′′ ∈ R

d−k then one is led to consider Sλ

with Ψ(x, y, z) =
∑d

i=k+1(yi − Si(x, y′))zi, z ∈ R
d−k, and by an application of a

partial Fourier transform in the y′′-variables one reduces the study of Sλ to the

study of Tλ with Φ(x, y) =
∑d

j=k+1 Sj(x, y′))yj ; see Sogge and Stein [21].
We now apply Theorem 3.6 to the homogeneous case and use the following

Lemma.
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Lemma 3.7. Let Ψ be a homogeneous nondegenerate phase function defined in
X × Y × Γ where Γ is an open cone in R

N \ 0 and suppose that Ψ′
x 6= 0, Ψ′

y 6= 0 in
Γ. Let U be an open subset of X × Y with compact closure and let Γ0 be a subcone
of Γ such that Γ0 \ 0 ⊂ Γ. Let F be the Fourier integral operator

Ff(x) =

∫∫
eiΨ(x,y,θ)a(x, y, θ) dθ f(y)dy

where a(x, y, θ) is a symbol of class Sm(X × Y × R
N ) supported in U × Γ0. Let

β ∈ C∞
0 (R) be such that β(s) > 0 if 1/

√
2 ≤ |s| ≤

√
2 and β(s) = 0 if |s| /∈ (1/2, 2).

For λ > 0 let
aλ(x, y, θ) = β(|θ|/λ)a(x, y, θ)

and let Fλ be similarly defined as F with a replaced by aλ.
Suppose that 1 < p ≤ 2 ≤ q < ∞ and that

‖Fλf‖Lq(RdX ) ≤ A‖f‖Lp(RdY )

for all f ∈ Lp(RdY ), for all λ > C0 (where C0 is a fixed positive constant). Then
F is bounded from Lp(Y ) to Lq(X).

The proof is a well known application of Littlewood Paley theory and easy es-
timates for oscillatory integrals ([7, p.177]), based on the assumptions Ψ′

x 6= 0,
Ψ′

y 6= 0. For details of this standard argument see [19].

Proof of Theorems 1.1-3. By conjugating F with pseudodifferential operators
(I − ∆)γ/2 and standard calculations we see that the estimates involving Sobolev
spaces follow from the L2 or L2 → Lq estimates. It suffices to consider Fλ as in
Lemma 3.7. A change of variable shows that Fλ = λm+NSλ where Sλ is as in
Theorem 3.6. Now the asserted estimates follow easily from Theorem 3.6.

4. Application to restricted X-ray transforms

We now show how the previous results can be applied to obtain local estimates
for restricted X-ray transforms on d-dimensional Riemannian or semi-Riemannian
manifolds. We shall be interested in hypersurfaces in the (2d − 2)-dimensional
space M of geodesics in (M,g). Recall the following description of M (cf. [1],
[3]). For (x, ξ) ∈ T ∗M\0, let ξ] ∈ TxM be the corresponding tangent vector
(so that g(ξ], v) = 〈ξ, v〉 for all v ∈ TxM .) To (x, ξ) we associate the geodesic
s → γx,ξ(s) = expx(sξ]). There are two redundancies in this parametrization of all
geodesics: dilation in ξ and translation along the geodesic flow; we take these into
account by noting the (locally defined) action of R+ × R on T ∗M\0,

U(ρ,r) · (x, ξ) = exp(rHg)(x, ρξ),

where Hg is the Hamiltonian vector field of the metric g(x, ξ). If ∼ is the resulting
equivalence relation, and (x′, ξ′) ∼ (x, ξ), then γx′,ξ′ = γx,ξ as sets. Thus, the
(locally defined) space of unparametrized geodesics is M = (T ∗M\0)/ ∼, which is
(2d − 2)-dimensional.

We consider a hypersurface C ⊂ M with the property that for each y ∈ M
the family of all geodesics in C passing through y form a d− 2-dimensional smooth
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submanifold Cy of M1,d. C can be locally specified by a defining function f(x, ξ) on
T ∗M , homogeneous of some degree and and invariant under the Hamiltonian flow:
f(expsHg(x, ξ)) = f(x, ξ). We may locally make a smooth choice of representative,
C 3 γ → (x, ξ); in the Riemannian case it is customary to normalize g(x, ξ) = 1,
but in the semi-Riemannian case this is not possible if there are null-geodesics in
C. In any case for suitable cutoff-functions χ1 ∈ C∞

0 (C), χ2 ∈ C∞
0 (M) with small

support the restricted X-ray transform,

RCφ(γ) = χ1(γ)

∫
χ2φ(expx(sξ]))ds γ ∈ C,

is well defined. RC is a generalized Radon transform in the sense of [6]. The
Schwartz kernel of RC is supported on the point-geodesic relation

ZC = {(γ, y) ∈ C × M : y ∈ γ}.

ZC is a smooth, (2d− 2)-dimensional submanifold of C×M ; away from the critical
points of πM : ZC → M , KRC

(γ, y) is a smooth density on ZC, and thus RC is a
Fourier integral operator, RC ∈ I−(d−1)/4(C,M ;N∗ZC). It is assumed henceforth
that we have localized away from any critical points.

We are going to impose a curvature assumption on C. For each y ∈ M let cy

be the cone in TyM consisting of all lines tangent at y to a geodesic in Cy. Then
cy = {ξ] : f(y, ξ) = 0}. Following [3] we say that C is well-curved if each cone cy

has d−2 nonvanishing principal curvatures. In terms of the defining function f the
well-curvedness of C means that for all (x, ξ) with f(x, ξ) = 0 we have

(4.1) rank d2
ξξf(x, ξ)

∣∣∣
dξf⊥

= d − 2.

Proposition 4.1. If M has no conjugate points and C ⊂ M is a well-curved
hypersurface then π : N ∗ZC → T ∗M is a submersion with folds. If L ⊂ N ∗ZC is
the fold surface, then the projection L → M is a submersion and for each y ∈ M ,
Γy = π(L) ∩ T ∗

y M\0 is an immersed conic hypersurface with d − 2 nonvanishing
principal curvatures.

Corollary 4.2. If C ⊂ M1,d is as in Proposition 4.1, then RC : L2
α,comp(M) →

L2
α+s0,loc(C) with s0 = 1/4 if d=3, s0 = 1/2 − ε if d = 4 (any ε > 0) and s0 = 1/2

if d ≥ 5. Furthermore RC : Lp
comp(M) → Lq

loc(C) is bounded, provided 1 ≤ p ≤ 2d
d+1

and q ≤ dp−p
d−p .

Proof. Given Proposition 4.1, the first part follows immediately from Theorem 1.1
(by duality), and the second part follows from Theorem 1.2 if d ≥ 4 and Theorem
1.3 if d = 3, and an interpolation with the easy L1 → L1 estimate. �

Remarks.
1) The first part of Corollary 4.2 was conjectured in [3] and proved for admissible

C ⊂ M1,d (the manifold of lines in R
d). In this case the projection C → T ∗C has

maximal degeneracy.
2) Corollary 4.2 applies in particular when (M,g) is a non-Riemannian, semi-

Riemannian manifold and C is the hypersurface of null geodesics in M . In this
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case we take f(x, ξ) to be the metric function g(x, ξ); since this is a nonsingular
quadratic form in ξ, it clearly satisfies the criterion of Proposition 4.1.

3) As shown in [2], [3] the L2 estimates are sharp. The Lp → Lq estimates are
sharp for p ≤ 2d/(d + 1) as one can see by testing R on characteristic functions of
balls of small radius. However for p > 2d/(d + 1) the sharp Lp → Lq estimates are
not known except for d = 3.

Proof of Proposition 4.1. It is convenient to work not with C, ZC and C =

(N∗ZC)′, but rather C̃, Z̃ = Z �

C
and C̃, where

C̃ = {(x, ξ) ∈ T ∗M\0 : f(x, ξ) = 0}
Z̃ = {(x, ξ; y) ∈ C̃ × M : y ∈ γx,ξ}
C̃ = (N∗

C̃)′ ⊂ T ∗
C̃ \ 0 × T ∗M \ 0.

As described above, C̃ has two redundant variables, since C = C̃/ ∼, where ∼ is

the equivalence relation induced by the action U(ρ,r). The projection C̃ → C is a

submersion (with two-dimensional fibers), and so is the projection Z̃ → ZC. Letting

π̃M and π̃T∗M be the projections from Z̃ and C̃ into M and T ∗M , respectively, we

have that π̃M ◦ U(ρ,r) = π̃M on Z̃ and so π̃T ∗M ◦ dU(ρ,r) = π̃T∗M on C̃. Thus, to
show that the projection πT ∗M : C → T ∗M is a submersion with folds, it suffices

to show that π̃T∗M is a submersion off a codimension d − 2 submanifold L̃ ⊂ C̃ ;

that π̃T∗M drops rank simply at L̃ (i.e., some 2d × 2d minor of dπ̃T ∗M vanishes to

first order at L̃); and π̃T ∗M | �

L is a submersion, with Ker(dπ̃T∗M )∩T L̃ equaling the

tangent space of the fibers of C̃ → C.

Now parametrize Z̃ by

Z̃ = {(x, ξ; expx(sξ])) : (x, ξ) ∈ C̃, s ∈ Ix,ξ},

where Ix,ξ ⊂ R is an open interval depending on (x, ξ). From [3; eqn. (2.15)], we

have that C̃ is parametrized by (x, ξ) ∈ C̃, s ∈ Ix,ξ, and η ∈ ξ⊥ ⊂ T ∗
x M , with

π̃T∗M (x, ξ, s, η) = (expx(sξ]), (Dvexp)∗
−1

(η)),

where Dvexp is the derivative of the exponential map in the tangent vector variable.
We now calculate the kernel of dπ̃T ∗M at ρ = (x, ξ, s, η). Note first that for a tangent

vector (δx, δξ, δs, δη) ∈ TρC̃, we have

(4.2) 〈η, δξ]〉 + 〈ξ], δη〉 = 0

since 〈ξ, η〉 = 0. Via the metric, we convert the defining function for C̃ to a function
on TM , which we denote by f ] (since this involves a fiberwise linear change of
variables, it does not affect the criterion of Proposition 4.1). Since we assume that
f ] is invariant under the geodesic flow, i.e.

f ](expx(sξ]),Dvexp∗
x(sξ])) = f ](x, ξ])

we obtain by differentiation

(4.3) 〈dξ]f ] + Dvexp∗Dxexp−1∗dxf ], ξ]〉 = 0
17



Since f ](x, ξ]) = 0 on C̃, we have

(4.4) 〈dxf ], δx〉 + 〈dξ]f ], δξ]〉 = 0.

Now, if the tangent vector also belongs to Ker(dπ̃T ∗M ), then

(4.5) Dxexp(δx) + sDvexp(δξ]) + Dvexp(ξ]δs) = 0

and
(4.6)

−(Dvexp)∗
−1

(D2
vxexp)∗(Dvexp)∗

−1

(η, δx) + s(Dxexp)−1(D2
vvexp)(Dxexp)−1(η, δξ])

+(Dvexp)∗
−1

(D2
vvexp)∗(Dvexp)∗

−1

(η, ξ])δs + (Dvexp)∗
−1

(δη) = 0.

Solving for δx in (4.5) and substituting in (4.4), we obtain

(4.7) 〈dξ]f ] − sDvexp∗Dxexp−1∗dxf ], δξ]〉 − 〈Dvexp∗Dxexp−1∗dxf ], ξ]〉δs = 0.

For η ∧ (dξ]f ] − sDvexp∗Dxexp−1∗dxf ]) 6= 0, the system of equations (4.2), (4.7),
(4.5), (4.6) has rank 2d + 2 (acting on the full tangent space T(x,ξ,s,η)(T

∗M × R ×
T ∗

x M), dπ̃T∗M has a (d − 1)-dimensional kernel, and thus π̃T ∗M is a submersion

there. Now let L̃ be the submanifold of C̃ given by the equation

η ∧ (dξ]f ] − sDvexp∗Dxexp−1∗dxf ]) = 0.

Since f ] is homogeneous of some degree Euler’s relation yields 〈ξ], dξ]f ]〉 = 0 on C̃

and from (4.3) we see that dξ]f ] − sDvexp∗Dxexp−1∗dxf ] belongs to ξ]⊥. Since

also η ∈ ξ]⊥ it follows that L̃ ⊂ C̃ is a submanifold of codimension d − 2. Using

(4.1) one checks that dπ̃T ∗M drops rank simply at L̃.
It remains to show that dπ̃T ∗M |T �

L has a two-dimensional kernel (which must

equal the tangent space of the fiber of C̃ → C since that is two-dimensional and in
the kernel.) Again, since L̃ is defined by a collineation, we have a redundant family

of defining functions: for each C∞-section Ω of
∧2

TM we have

hΩ(x, ξ, s, η) := Ω(η ∧ (dξ]f ] − sDvexp∗Dxexp−1∗dxf ])) = 0.

Then, at L̃ and s = 0 (which we can always assume : given x, we can pick all the
representatives of the geodesics through x to be of the form γx,ξ), the derivative of
hΩ is given by

dhΩ(δx, δξ], δs, δη) = d2
ξ]xf ](η Ω, δx) + d2

ξ]ξ]f
](η Ω, δξ])

− (Ω(η ∧ Dvexp∗Dxexp−1∗dxf ]))δs − 〈dξ]f ] Ω, δη〉;

As Ωx ranges over
∧2

TxM , v = η Ω ranges over η⊥ = (dξ]f ])⊥ (this last equality

holds since η ∧ dξ]f ] = 0 at L̃.) Using (4.3), (4.4), the equation dhΩ = 0 (all
evaluated at ρ = (x, ξ, 0, η)) and the Hg invariance of f , one sees after a short

calculation that Ker(dπ̃T∗M ) ∩ TρL̃ is given by the system of equations

(4.8) d2
ξ]ξ]f

](v, δξ]) = l(δs), all v ∈ (dξ]f ])⊥,
18



where l is a linear mapping. Since d2
ξξf has rank d − 2 on dξf

⊥, d2
ξ]ξ]f

] has rank

d−2 on (dξ]f ])⊥, and thus (4.8) has a two-dimensional space of solutions, finishing
the proof that πT∗M is a submersion with folds.

It is clear from the definition of L that the projection L → M is a submersion.
Finally, each cone Γy0

= πT ∗M (L) ∩ T ∗
y0

M is parametrized by

{ξ] : f ](y0, ξ
]) = 0} → {(y0, dξ]f ](y0, ξ

])},

and thus has d − 2 nonvanishing principal curvatures. �

References

1. A. Greenleaf and G. Uhlmann, Nonlocal inversion formulas for the X-ray transform, Duke

Math. J. 58 (1989), 205–240.

2. , Composition of some singular Fourier integral operators and estimates for the X-ray

transform, I, Ann. Inst. Fourier (Grenoble) 40 (1990), 443–466.

3. , Composition of some singular Fourier integral operators and estimates for the X-ray

transform, II, Duke Math. J. 64 (1991), 413–419.
4. M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Springer-Verlag,

1973.

5. V. Guillemin, Cosmology in (2 + 1) dimensions, cyclic models and deformations of M2,1,
Ann. of Math. Stud. 121, Princeton Univ. Press, 1989.

6. V. Guillemin and S. Sternberg, Geometric asymptotics, Amer. Math. Soc. Surveys, vol. 14,

Providence, RI, 1977.
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