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1. Introduction

Let X and Y be C

1

manifolds of dimension d,

C � (T

�

Xn0)� (T

�

Y n0)

a homogeneous canonical relation (Lagrangian with respect to the symplectic form !

T

�

X

� !

T

�

Y

)

and let I

m

(C;X; Y ) denote them

th

order Fourier integral operators from E

0

(Y ) toD

0

(X) associated

to C. A basic problem is to �nd the mapping properties of A 2 I

m

(C;X; Y ) relative to the scale

of Sobolev spaces L

2

�

.

If the natural projections �

L

: C ! T

�

X and �

R

: C ! T

�

Y have nonsingular di�eren-

tials, then C is a local canonical graph and A maps L

2

�;comp

(Y ) boundedly to L

2

��m;loc

(X), see

H�ormander [13]. If one of the projections is singular at a point c

0

2 C , the other must be as well

[13], and one has dim(ker(d�

L

(c

0

))) = dim(ker(d�

R

(c

0

))) := �. Otherwise the nature of the singu-

larities of �

L

and �

R

can be quite di�erent, and the general result A : L

2

�;comp

(Y )! L

2

��m�

�

2

;loc

(X)

[13] may be improved upon. In this paper we only consider cases where � = 1.

The simplest singularity that can occur is a Whitney fold (S

1;0

in the Thom-Boardman descrip-

tion of singularities [1], [6].) Canonical relations C for which both �

L

and �

R

are (at most) folds

arise naturally in scattering theory and were shown by Melrose and Taylor [17] to be microlocally

conjugate to a single normal form, from which it follows that there is a loss of 1=6 derivative;

namely operators in I

m

(C) map L

2

�;comp

(Y ) to L

2

��m�

1

6

;loc

(X); estimates on L

p

�

are treated in

Smith and Sogge [29]. On the other hand, canonical relations for which one projection is a fold,

but with the other possibly being more degenerate, arise naturally in integral geometry [9,10,11,12]

and scattering theory [3]. Under an assumption of maximal degeneracy on the other projection,

it was shown in [10] that there is a loss of 1=4 derivative, and in [7] the authors extended this to

all one-sided folds, with no assumption of the other projection. Estimates for one- and two-sided

folds and higher singularities in a two-dimensional setting are obtained in articles by Phong and

Stein [23, 24, 25, 26] and one of the authors [27, 28].

In the present work we consider Fourier integral operators for which one of the projections �

L

,

�

R

has a Whitney cusp. These S

1

2

;0

= S

1;1;0

singularities are, after the folds, the simplest stable

singularities of mappings between manifolds of the same dimension. Our main result is

Theorem 1.1. Let C � (T

�

Xn0) � (T

�

Y n0) be a homogeneous canonical relation, so that the

only singularities of the projection �

L

: C ! T

�

X are Whitney folds or Whitney cusps. Let

A 2 I

m

(C;X; Y ). Then A maps L

2

�;comp

(Y ) boundedly to L

2

��m�1=3;loc

(X).

By a duality argument the same conclusion can be obtained if the only singularities of �

R

:

C ! T

�

Y are folds or cusps.
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In x5 we shall state and prove more general estimates for oscillatory integrals with not ne-

cessarily homogeneous phases. The statement of Theorem 1.1 is sharp as one makes assumptions

on one of the projections �

L

, �

R

. The estimates tend to be better if one makes simultaneous

assumptions on both �

L

and �

R

.

Our main application concerns the X-ray transform in R

d

, in particular when d = 4. Let M

1;d

be the (2d� 2)-dimensional manifold of a�ne lines in R

d

and R

1;d

: C

1

0

(R

d

)! C

1

0

(M

1;d

) be the

X-ray transform,

R

1;d

f() =

Z



f((t))d�(t);

here d�(t) denotes arclength measure.

For a line complex C � M

1;d

, i.e. i.e., a smooth d-dimensional submanifold of M

1;d

, the

restricted X-ray transform is de�ned by

(1.1) R

C

f = R

1;d

f j

C

:

We shall assume that f is supported in some open subset 
 � R

d

: Associated with C is the

point-line incidence relation,

(1.2) Z

C

=

�

(; y) 2 C� 
 : y 2 

	

:

We assume that the projection �

R

d
: Z

C

! R

d

is a submersion above 
. Then for each y 2 
 the

set �

�1

R

d

(y) =: Z

y

� Z

C

is a smooth curve, which can be identi�ed with C

y

= f 2 C : y 2 g,

which itself can be identi�ed with a smooth curve in the d � 1 dimensional manifold G

y

1;d

of all

lines through y (or its double cover S

d�1

).

De�nition 1.2. A line complex C � M

1;d

is well-curved over 
 � R

d

if �

R

d
: Z

C

! R

d

is a

submersion above 
 and each C

y

, y 2 
 is a nondegenerate curve; i.e. if  2 C

y

and s! �(s) 2 C

y

is any smooth regular parametrization of C

y

near  with �(0) = , then the vectors _�(0), ��(0), ...,

�

(d�1)

(0) in T



G

y

1;d

are linearly independent.

Clearly the de�nition is independent of the particular parametrization. Similar notions of

well-curvedness are used in [9], [7].

In this paper we are concerned with the restricted X-ray transform in R

4

. IfN

�

Z

C

� T

�

C�T

�




is the conormal bundle to Z

C

then we show in x5 that the projection �

R

to T

�


 exhibits at most

S

1;1;0

singularities, if d = 4. Since R

C

is a Fourier integral operator of order �1=2 part (a) of the

following theorem will be an immediate consequence of Theorem 1.1. Similar statements can be

made for microlocalized versions of the restricted X-ray transform in higher dimensions if one stays

away from S

1

r

singularities of �

R

with r > 2, but we omit these.

Theorem 1.3. Suppose that the line complex C � M

1;4

is well curved over 
 � R

4

. Then

a) R

C

: L

2

s;comp

(
)! L

2

s+

1

6

;loc

(C), for all s 2 R.

b) R

C

: L

p

comp

(
)! L

q

loc

(C) for (

1

p

;

1

q

) 2 hullf(0; 0); (1; 1); (

7

12

;

1

2

)g.

It turns out that the L

p

! L

q

estimates of Theorem 1.3 are sharp for p � 12=7. Consider the

translation invariant complex of lines with parametrizations (v; t) = (v

1

+v

4

t; v

2

+v

2

4

t; v

3

+v

3

4

t; t),

t 2 R. It is not hard to see (cf. x5) that R

C

cannot be bounded from L

p

to L

q

if (1=p; 1=q) belongs

2



to the complement of the triangle T with corners (0; 0), (1; 1), (

7

10

;

3

5

). Part (b) of the Theorem

establishes the boundedness for a subtriangle with vertex (7=12; 1=2) on the lower edge of T .

The L

p

! L

2

estimates of Theorem 1.3 will not hold for general F 2 I

�1=2

(X; Y ;C) with

one-sided cusp singularities. It is important that �

R

satis�es an additional transversality condition

with respect to the �bration in T

�

Y , namely �

R

being a strong cusp as de�ned in De�nition 2.5

below; moreover the projections of the cusp surface to the �bers in T

�

Y satisfy a suitable curvature

assumption.

In x2, we recall some basic terminology from singularity theory, including the de�nition of a

cusp, and more generally of S

1

r

;0

or Morin singularities. We shall also introduce the notion of a

strong cusp, and discuss curvature assumptions for the image of the cusp surface.

In x3, following the outlines of [7], we prove decay estimates in � for oscillatory integral

operators (with not necessarily homogeneous phases) having one-sided strong simple cusps, which

then imply theorems on Radon transforms and Fourier integral operators. In [7], estimates for one-

sided folds followed from those for (two-sided, of course) canonical graphs in one lower dimension;

here, estimates for one-sided cusps follow from those for two-sided folds in one lower dimension. It

is essential for this approach to assume the strong cusp condition. We shall also prove L

2

! L

q

estimates for such operators, under various curvature assumptions on the cusp surface.

In x4 we shall use a canonical transformation to prove that a cusp need not be a strong cusp

for the L

2

estimates to hold, thereby proving Theorem 1.1 and corresponding results for oscillatory

integral operators.

In x5 we show that the restriction of the X-ray transform in R

d

to a generic line complex

C �M

1;d

is a Fourier integral operator for which �

R

exhibits strong S

1

d�2

;0

singularities. In x6 we

give conditions on vector �elds X; Y; Z and W in R

4

such that the family of curves t 7! (x; t) =

exp

x

(tX + t

2

Y + t

3

Z + t

4

W ) is associated with a strong right- or left-cusp, obtaining a formula

analogous to the one found by Phong and Stein [24] for Whitney folds in R

3

.

Notation: Given two quantities A

1

and A

2

we write A

1

. A

2

or A

2

& A

1

if there is a positive

constant c, such that A

1

� cA

2

.

2. Morin singularities and oscillatory integrals

Let P 2 R

n

and let f : R

n

! R

n

be a germ of a C

1

map at P . We say that f drops rank simply

at P if rank df

P

= n�1 and if det df vanishes of order 1 at P (i.e. d(detdf)

P

6= 0). By the implicit

function theorem the variety S

1

(f) = fx : rank df = n � 1g is (the germ of) a hypersurface. We

shall say that f has an S

1

singularity at P with singularity manifold S

1

(f). Given di�eomorphisms

�

1

, �

2

, with �

1

(Q) = P it is clear that �

2

� f � �

1

drops rank simply by 1 at Q if and only if f

does at P . Therefore the notion extends to manifolds.

Next let S be a hypersurface in a manifold V and let v be a vector �eld de�ned on S with

values in TV (so that v

P

2 T

P

V for P 2 S). We say that v is transversal to S at P 2 S if

v

P

=2 T

P

S. We say that v is simply tangent to S at P if there is a one-form ! annihilating vectors

tangent to S so that h!; vi

�

�

S

vanishes of �rst order at P . Notice that this condition does not

depend on the particular choice of !. Also let a be a smooth function nonvanishing at P ; then v

is simply tangent to S if and only if av is simply tangent to S. Next let P ! `(P ) � T

P

(V ) be

a smooth �eld of lines de�ned on S. Let v be a nonvanishing vector �eld so that `(P ) = Rv

P

. If

v

P

=2 T

P

S then ` is de�ned to be transversal to S at P . The line ` is de�ned to be simply tangent

to S at P if v is simply tangent to S at P . Both notions do not depend on the particular choice

of v.

Next consider F : V ! W where dim V = k � 2 and dimW = n � k and assume that

3



rank dF � k�1. Suppose that S is a hypersurface in V such that rank dF = k�1 on S. Suppose

that ker dF is simply tangent to S at P 2 S. Then there is a neighborhood U of P in S such that

the variety fQ 2 U : rank dF

�

�

�

T

Q

S

= k � 2g is a smooth hypersurface in S.

De�nition 2.1. Let 1 � r � n. For k = 1; : : : ; r let S

k

be a submanifold of dimension n � k in

V so that S

1

� S

2

� � � � � S

r

; we also set S

0

:= V .

(a) We say that f has an S

1

r

singularity in V , with a descending sequence of singularity

manifolds (S

1

; : : : ;S

r

) if the following conditions hold.

(i) For P 2 V , either df

P

is bijective or f drops rank simply at P .

(ii) For 1 � i � r, rank d(f

�

�

S

i�1

)

Q

= n� i+ 1 for all Q 2 S

i�1

nS

i

.

(iii) For 2 � i � r � 1, ker d(f

�

�

S

i�1

) is simply tangent to S

i

at points in S

i+1

.

(b) Let P 2 V . Let 1 � r � n. We say that f has an S

1

r

singularity at P , if there is a

neighborhood U of P and submanifolds S

k

of dimension n�k in U so that P 2 S

r

� S

r�1

� � � � �

S

1

and so that f : U ! W has an S

1

r

singularity in U , with singularity manifolds (S

1

; : : : ;S

r

).

The singularity manifolds S

k

are uniquely determined by f (and the choice of the open set V )

and denoted by S

1

k

(f) in singularity theory, suppressing the dependence on V .

De�nition 2.2. Let P 2 V and 1 � r � n. We say that f has a S

1

r

;0

singularity at P , if f has

an S

1

r

singularity at P and if ker df

P

\ T

P

(S

1

r

(f)) = f0g.

An S

1;0

(or S

1

1

;0

) singularity is a Whitney fold; an S

1;1;0

(or S

1

2

;0

) singularity is referred to as

a Whitney or simple cusp.

Remarks 2.3.

1. Suppose that f has an S

1

r

singularity at P . Then

kerdf

P

= ker d(f j

S

i

)

P

if P 2 S

1

i+1

(f)

while ker d(f j

S

1

i

(f)) = f0g at points in S

1

i

(f) n S

1

i+1

(f). If ker df is simply tangent to S

1

r

(f) at

some point P 2 S

1

r

(f), then by the implicit function theorem there is a neighborhood U

r

of P and

a hypersurface S

r+1

in S

1

r

(f) \ U

r

(of dimension n � r � 1) so that rank d(f

S

1

r

(f)

)

P

= n � r if

P 2 S

1

r

(f)nS

r+1

, and rank d(f j

S

1

r

(f)

)

P

= n�r�1 if P 2 S

r+1

; this then de�nes the singularity

manifold S

1

r+1

(f), and f has an S

1

r+1

singularity at P .

2. It is straightforward to check invariance under changes of variables. If f has an S

1

r

singu-

larity at P , with singularity manifolds S

1

� � � � � S

r

and �

1

, �

2

are germs of di�eomorphisms,

�

1

(Q) = P , �

2

de�ned near f(P ) then �

2

� f � �

1

has an S

1

r

singularity at P , with singularity

manifolds �

�1

1

(S

1

) � � � � � �

�1

1

(S

r

).

3. It is not hard to verify the occurence of S

1

r

singularities when the map is given in special

coordinates. Following Morin [18], we say that coordinates t = (t

0

; t

n

) on V , vanishing at P and

y = (y

0

; y

n

) on W , vanishing at f(P ), are adapted coordinates if

(2.1) f

�

y

j

= t

j

; 1 � j � n � 1; df

�

(dy

n

)j

P

= 0;

in other words

(2.2) f(t) = (t

0

; h(t))

4



for some smooth h : R

n

! R with h(0) = 0.

By changes of variables in source and target each map of rank � d� 1 can be put in the form

(2.2).

4. f has an S

1

r

singularity at P if and only if there is an adapted coordinate system vanishing

at P with h as in (2.2) such that

(2.3)

@

k

h

@t

k

n

(0) = 0; 1 � k � r

and if

(2.4) rank [d

t

(

@h

@t

n

); :::; d

t

(

@

r

h

@t

r

n

)](t

0

) = r:

The singularity manifolds are given by

S

1

k

(f) = fx :

@

j

h

@t

j

n

(0) = 0; 1 � j � kg;

for k = 1; : : : ; r.

This is a straightforward consequence of De�nition 2.1.

5. f has an S

1

r

;0

singularity if and only if there is an adapted coordinate system with h as in

(2.2) such that (2.3), (2.4) hold and moreover

(2.5)

@

r+1

h

@t

r+1

n

(0) 6= 0:

Equivalently, f has an S

1

r

;0

singularity if and only if (2.3), (2.5) hold and (if r > 1)

(2.6) rank [d

t

0

(

@h

@t

n

); :::; d

t

0

(

@

r�1

h

@t

r�1

n

)](0) = r � 1:

6. Let �

!

r

� J

r+1

(V;W ) be the Thom-Boardman class with Boardman symbol !

r

=

(1; 1; : : : ; 1; 0), with r ones. Morin[18] states that for j

r+1

f 2 (�

!

r

)

P

it is necessary and su�-

cient that there exist adapted coordinates t on V near P , y on W near f(P ) such that (2.3) and

(2.5) hold. If this is the case then j

r+1

f intersects �

!

r

transversally at P if and only if (2.4) holds.

Therefore the de�nition of S

1

r

;0

singularities above is equivalent with the standard description

in singularity theory (cf. Boardman [1], Levine [15], Morin [18], [19]). Conditions (2.3, 2.5) and

(2.4) are independent of the choice of adapted coordinate systems. It is shown in [18] that there

exist adapted coordinate systems, vanishing at P; f(P ) such that h is given by the normal form

h(t) = t

1

t

n

+ t

2

t

2

n

+ :::+ t

r�1

t

r�1

n

+ t

r+1

n

:

In order to verify that a given map has Morin singularities we shall use the following lemma,

proved by changing coordinates to adapted coordinates. In what follows we split coordinates as

x = (x

0

; x

n

).

Lemma 2.4. Suppose that f : R

n

! R

n

is a smooth function de�ned near 0 and f(0) = 0 and

rank df

0

� n � 1. Suppose that for i; j = 1; : : :n� 1,

5



@

s

f

i

@x

s

n

�

�

�

0

= 0; s = 1; : : : ; r(2.6)

@

s

f

i

@x

j

@x

s�1

n

�

�

�

0

= 0; s = 2; : : : ; r:(2.7)

Then

(a) f has an S

1

r

singularity at 0 if and only if

@

s

f

n

@x

s

n

�

�

�

0

= 0, s = 1; : : : ; r, and the set

n

d

�

@

s

f

n

@x

s

n

�

�

�

�

0

; s = 1; : : : ; r

o

is linearly independent.

(b) f has an S

1

r

;0

singularity at 0 if and only if

@

s

f

n

@x

s

n

�

�

0

= 0, s = 1; : : : ; r,

@

r+1

f

n

@x

r+1

n

�

�

0

6= 0, and the

set

�

d

x

0

�

@

s

f

n

@x

s

n

�

�

�

0

; s = 1; : : : ; r� 1

	

is linearly independent.

Proof. Let A be the (n� 1)� (n� 1) matrix A given by A

ij

=

@f

i

@x

j

for i; j = 1; : : : n� 1; then A

is invertible. Let b 2 R

n�1

with b

i

=

@f

i

@x

n

.

We introduce adapted coordinates t

i

(x) = f

i

(x), i = 1; : : : ; n � 1 and t

n

= x

n

so that with

F (t(x)) = f(x), F

i

(t) = t

i

for i = 1; : : : ; n� 1. An elementary calculation yields

Dx

Dt

=

�

A

�1

�A

�1

b

0 1

�

:

In particular

@

@t

n

=

@

@x

n

�

n�1

X

i=1

(A

�1

b)

i

@

@x

i

@

@t

j

=

n�1

X

i=1

(A

�1

)

ij

@

@x

i

; j = 1; : : : ; n� 1:

Let a = A

�1

b. Then

@

s

@x

n

a(0) = 0, for s = 0; : : : ; r� 1. This follows from a routine calculation

using @

x

n

A

�1

= �A

�1

@

x

n

AA

�1

, and the assumption (2.6). Thus, if h(t) = f

n

(x) then

@

k

h

@t

k

n

�

�

�

0

=

�

@

@x

n

�

n�1

X

i=1

a

i

@

@x

i

�

k

f

n

�

�

�

0

=

@

k

f

n

(@x

n

)

k

�

�

�

0

:

By a similar calculation using the assumption (2.7)

@

@t

j

@

k�1

h

@t

k

n

�

�

�

0

=

n�1

X

�=1

(A

�1

)

�j

@

@x

�

�

@

@x

n

�

n�1

X

i=1

a

i

@

@x

i

�

k�1

f

n

�

�

0

=

n�1

X

�=1

(A

�1

)

�j

@

@x

�

@

k�1

f

n

(@x

n

)

k�1

:

for k = 2; : : : ; r. These formulas together with the description of Morin singularities in Remarks

2.3.4 and 2.3.5 imply the statements of the Lemma. �

We will now formulate a strengthened version of the cusp condition when the range space W

is itself a �ber bundle over a base, B ; the example of relevance for oscillatory integral operators

will be W = T

�

X , the cotangent bundle of a C

1

manifold, over B = X .

Assume that

�

B

W ! B is a �ber bundle, with dim (B) = q � n�r, so that the �bers W

b

= �

�1

B

b

are n � q dimensional manifolds.
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De�nition 2.5. Let b = �

B

(f(P )) and let W

b

= �

�1

B

b be the �ber through f(P ). f has a strong

S

1

r

;0

singularity at P , denoted by S

+

1

r

;0

, if

(a) f intersectsW

b

transversally, so that there is a neighborhood U of P such that the preimages

f

�1

W

b

\ U are smooth manifolds of dimension n � q,

and if

(b) f

�

�

f

�1

(W

b

)\U

has an S

1

r

;0

singularity at P .

Remarks 2.6.

1. f has an S

+

1

r

;0

singularity at P if and only if there exist adapted coordinate systems

for f of the form t = ((t

0

; t

00

); t

n

) on V , y = ((y

0

; y

00

); y

n

) on W , vanishing at P , f(P ), with

t

0

; y

0

2 R

q

, t

00

; y

00

2 R

n�q�1

, so that (i) (2.1) holds and furthermore, y

0

= �

�

B

x for some local

coordinates x on B, ii) (2.3) and (2.5) hold; and, if r > 1, iii) the rank of the di�erential of the

map R

n�q�1

3 t

00

! (

@�

@t

n

; :::;

@

r�1

�

@t

r�1

n

) 2 R

r�1

at 0 is equal to r � 1.

2. Clearly, for f : V ! W any cusp of order r, we may take the trivial �ber bundle �

B

:W !

fpointg, so that q = 0, and then the Morin singularity is strong. However, we will be interested in

the nontrivial case q > 0, and in particular n = 2d; q = d; r � d� 2.

3. The notion of an S

+

1

r

;0

singularity is invariant under di�eomorphisms of V and �ber-

preserving di�eomorphisms of W .

4. The property of being an S

+

1

r

;0

map is stable under perturbations in the C

r+1

topology.

Conditions for canonical relations associated to oscillatory integral operators. Let X

and Z be manifolds of dimension d and let !

T

�

X

; !

T

�

Z

be the canonical two-forms on T

�

X; T

�

Z,

respectively. Let

C � T

�

X � T

�

Z

a submanifold, Lagrangian with respect to !

T

�

X

� !

T

�

Z

, i.e. a symplectic relation.

In the study of oscillatory and Fourier integral operators one is led to consider the geometry

of the projections �

L

: C ! T

�

X , �

R

: C ! T

�

Z. T

�

X is of course �ber bundle over X , with

projection �

X

: T

�

X ! X and Lagrangian �bers. Taking V = C;W = T

�

X;B = X; n = 2d,

and q = d, we thus have a well-de�ned notion of C having a left S

+

1

r

;0

singularity at c

0

2 C. If

x

0

2 X , �

X

c

0

= x

0

and U is a (su�ciently small) neighborhood of c

0

then we can restrict �

L

to

�

�1

X

fx

0

g \ U and de�ne

�

L;x

0
= �

L

�

�

�

�1

X

(fx

0

g)\U

with target space T

�

x

0

X ; the map �

L;x

0
is then assumed to have an S

1

r

;0

singularity at c

0

.

Similarly, we speak of C having a right S

+

1

r

;0

singularity if �

R

: C 7! T

�

Z has an S

+

1

r

;0

singularity

with respect to the �bration T

�

Z

�

Z

! Z, and de�ne similarly the restrictions �

R;z

0
= �

R

�

�

�

�1

Z

(fz

0

g)\U

.

We shall study oscillatory integral operators acting on functions de�ned in R

d

given by

(2.8) T

�

f(x) =

Z

e

i��(x;z)

a(x; z)f(z)dz;

here a 2 C

1

0

(R

d

�R

d

) and � is a smooth real-valued phase function de�ned in a neighborhood of

supp a. The object of interest is the behavior of the L

p

! L

q

operator norm as �!1.

The symplectic (or canonical) relation associated to the phase � is given by

(2.9) C

�

= f(x;�

0

x

(x; z); z;��

0

z

(x; z)) : (x; z) 2 X � Zg:
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Note that, since C

�

is given as a graph over X � Z, the transversality condition (a) in De�nition

2.5 is always satis�ed for both �

L

and �

R

. The L

p

! L

q

bounds of T

�

depend on the geometry of

C

�

, in particular on the projections �

L

: C ! T

�

X , �

R

: C ! T

�

Y , but also on the projections

�

X

, �

Z

to X and Z and other geometric information.

We wish to give reformulations of the assumption that one of the projections, say �

L

, has a

(possibly strong) S

1

r

;0

singularity at a point c

0

2 C. >From Remark 2.6 (3) above, it follows that

the class of strong left cusps is invariant under Di�(X)� Can(T

�

X) (di�eomorphisms in X and

canonical transformations in T

�

X).

In proving estimates on T

�

one establishes estimates under the assumption that the amplitude

a is supported in a small neighborhood of a point P

0

= (x

0

; y

0

). This assumption can then be

removed by compactness arguments.

We now �x P

0

= (x

0

; z

0

), so that c

0

= (x

0

;�

0

x

(x

0

; z

0

); z

0

;��

0

z

(x

0

; z

0

)). Clearly the operator

norm of T

�

does not change by adding smooth terms depending only on x or only on z to �.

Moreover the behavior of the operator norm in � does not change under changes of variables in X

and Z. In particular we may assume that x

0

= 0, z

0

= 0 and that

(2.10) �(0; z) = �(x; 0) = 0:

Throughout the paper we shall always assume that

rank d�

L

= rank d�

R

� d� 1;

which is the case for the Morin singularities and equivalent with rank �

00

xz

(x; z) � d� 1. We split

variables as x = (x

0

; x

d

), z = (z

0

; z

d

): By a linear transformation in the x variables we may assume

that

(2.11) �

00

x

d

z

0

(0; 0) = 0

and consequently

det �

00

x

0

z

0

(0; 0) 6= 0:

In view of Lemma 2.4 it will be advantageous to have �

00

x

0

z

d

vanish at x = 0.

Lemma 2.7. Suppose that rank (�

0

)

00

xz

� d� 1 and �

0

satis�es (2.11). Then there is a smooth

G with G(0) = 0, det(DG(0)) 6= 0 so that for z near 0 the phase function �(x; z) = �

0

(x;G(z))

satis�es (2.11),

(2.12) �

00

x

0

z

0

(0; 0) = I

d�1

and

(2.13) �

00

x

0

z

d

(0; z) = 0:

Proof. We set 	(x; z) = �

0

(x;Az

0

; z

d

) with A = (�

00

x

0

z

0

)

�1

(0; 0); then 	 satis�es (2.10-2.12).

De�ne

Z(w) = (	

0

x

0

(0; w); w

d

)

which by (2.12) is a di�eomorphism near 0 with Z(0) = 0, DZ(0) = I

d

. Let z 7! w(z) = (w

0

(z); z

d

)

be the inverse map and de�ne

�(x; z) = 	(x; w(z)):
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It is immediate that � satis�es (2.10-2.12) and we check that (2.13) holds as well. This implies

the Lemma with G(z) = (Aw

0

(z); w

d

).

We di�erentiate the relation �(x; Z(w)) = 	(x; w), taking into account that r

w

0

Z

d

= 0,

@

w

d

Z

d

= 1 and

@Z

0

@w

(w) = 	

00

x

0

z

(0; w). Then

�

00

x

0

z

0

(x; Z(w))	

00

x

0

z

0

(0; w) = 	

00

x

0

z

0

(x; w)

�

x

0

z

d

(x; Z(w)) + �

00

x

0

z

0

(x; Z(w))	

00

x

0

z

d

(0; w) = 	

00

x

0

z

d

(x; w):

Evaluating at x = 0 yields

�

00

x

0

z

0

(0; Z(w)) = I

d�1

�

00

x

0

z

d

(0; Z(w)) = 0

and thus the assertion. �

The proof yields more than stated in (2.12), namely �

00

x

0

z

0

(0; z) = I

d�1

. However we later need

to introduce changes of variables violating this condition but keeping (2.12).

Proposition 2.8. Let c

0

2 C so that x

0

= �

X

c

0

= 0, z

0

= �

Z

c

0

= 0. Suppose that the phase

function � satis�es (2.11-13).

(a) �

L

: C

�

! T

�

X has an S

1

r

;0

singularity at c

0

if and only if

(2.14)

@

k+1

�

@z

k

d

@x

d

(0; 0) = 0; 1 � k � r;

@

r+2

�

@z

r+1

d

@x

d

(0; 0) 6= 0

and, if r � 2,

(2.15) rank [d

(x;z

0

)

@

2

�

@z

d

@x

d

; :::; d

(x;z

0

)

@

r+1

�

@z

r

d

@x

d

](0; 0) = r � 1:

(b) �

L

: C

�

! T

�

X has an S

+

1

r

;0

singularity at c

0

if and only if (2.14) holds and, if r � 2,

(2.16) rank [d

z

0

@

2

�

@z

d

@x

d

; :::; d

z

0

@

r+1

�

@z

r

d

@x

d

](0; 0) = r � 1:

Proof. For (a) apply Lemma 2.4 to the map (x; z) 7! (x;�

0

x

(x; z)). For (b) apply Lemma 2.4 to

the map z 7! (0;�

0

x

(0; z)) (in fact this map is already given in adapted coordinates). �

Note that the conditions (2.15), (2.16) are vacuous if r = 1; in particular, if �

L

has an S

1;0

singularity (or Whitney fold) it is already strong.

Interchanging x and z, one obtains a similar statement for the projection �

R

: C ! T

�

Z.

Obviously, C has a left S

1

r

;0

singularity (or left S

+

1

r

;0

singularity) if and only if the transpose

relation C

�

has a right S

1

r

;0

singularity ( right S

+

1

r

;0

singularity).

The following observation will be useful when discussing curvature hypothesis for the image of

cusp surfaces in the �bers. In what follows, e

1

; : : : ; e

d

will denote the standard basis in R

d

.
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Lemma 2.9. Let c

0

2 C

�

so that x

0

= �

X

(c

0

) = 0, z

0

= �

Z

(c

0

) = 0. Suppose �

0

(x; z) sat-

is�es (2.11-13) and suppose �

L

has an S

+

1

r

;0

singularity at c

0

. Then there is an invertible linear

transformations B 2 GL(R

d�1

), and smooth W (z) with W (0) = 0 and DW (0) 2 GL(R

d

) so that

�(x; z) = �

0

(Bx

0

; x

d

;W (z)) satis�es (2.11), (2.12), (2.13), (2.14),

(2.17) r

z

@

k+1

�

@x

d

@z

k

d

(0; 0) = e

d�r+k

; k = 1; : : : ; r � 1;

and

@

2

�

@x

d

z

d�r+1

(0; z

1

; : : : ; z

d�r

; 0; : : : ; 0) = 0;(2:18

0

)

@

k+1

�

@x

d

@z

k

d

(0; z

1

; : : : ; z

d�r

; 0; : : : ; 0) = 0; k = 1; : : : ; r� 1;(2:18

k

)

for z

i

near 0.

Moreover

(2.19) S

1

k

(�

L;x

0
) =

��

(0;�

0

x

(0; z); z;��

0

z

(0; z)

�

: �

(j+1)

x

d

z

j

d

(0; z) = 0; j = 1; : : : ; k

	

and for c 2 S

1

(�

L;x

0
) near c

0

, �

Z

c = z

(2.20) ker(d�

L;x

0
)

c

=

�

�(

@

@z

d

;�

d

X

i=1

�

00

z

i

z

d

(0; z)

@

@�

i

) : � 2 R

	

:

Proof. By Proposition 2.8, (2.16) we may choose an invertible linear transformation B such that

Be

d�r+k

=

d�1

X

i=1

@

k+2

�

0

@x

d

@z

k

d

@z

i

�

�

(0;0)

e

i

;

for k = 1; : : : ; r� 1. De�ne 	(x; z) = �

0

(Bx

0

; x

d

; (B

t

)

�1

z

0

; z

d

). Then 	 satis�es (2.11-14), (2.16),

by Proposition 2.8; moreover it satis�es (2.17). Therefore

	

(k+1)

x

d

z

k

d

(0; w) = w

d�r+k

+ Q

d�r+k

(w); k = 1; : : : ; r� 1

	

00

x

d

z

d�r+1

(0; w) = w

d

+ Q

d

(w)

with smooth Q

d�r+k

vanishing of second order at 0. In what follows set w

00

= (w

1

; : : : ; w

d�r

).

De�ne a di�eomorphism z = (z

1

; : : : ; z

d

) by

z

i

(w) =

�

w

i

; if 1 � i � d� r

w

i

+ Q

i

(w

00

; 0); if d� r + 1 � k � d

and let z 7! w(z) denote its inverse. De�ne

�(x; z) = 	(x; w(z)):
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Clearly w(0) = 0, Dw(0) = Id and therefore � satis�es (2.11-12). Since z

i

(w) does not depend

on w

d

, for i � d � 1. Similarly one veri�es (2.16), (2.17). To see (2.18) we di�erentiate the

relation �(x; z(w)) = 	(x; w) and noting that @

w

d�r+1

z

d�r+1

= @

w

d

z

d

= 1 and @

w

d

z

i

= 0 if i 6= d,

@

w

d�r+1

z

i

= 0 if i 6= d� r + 1 we obtain

�

(k+1)

x

d

z

k

d

(x; z(w)) = 	

(k+1)

x

d

z

k

d

(x; w)

�

00

x

d

z

d�r+1

(x; z(w)) = 	

00

x

d

z

d�r+1

(x; w):

Consequently

�

(k+1)

x

d

z

k

d

(0; z(w

00

; 0)) = 	

(k+1)

x

d

z

k

d

(0; w

00

; 0) = z

d�r+k

(w

00

; 0) 1 � k � r � 1

�

00

x

d

z

d�r+1

(0; z(w

00

; 0)) = 	

00

x

d

z

d�r+1

(0; w

00

; 0) = z

d

(w

00

; 0)

by de�nition of z. Since z(w

00

(z

00

; 0); 0)) = (z

00

; 0) the assertion (2.18) follows and the lemma holds

with W (z) = ((B

t

)

�1

w

0

(z); z

d

).

De�ne e�

L;x

0
(z) = (0;�

0

x

(0; z)). Then S

1

k

(�

L;x

0
) consists of all (0;�

0

x

(0; z); z;��

0

z

0

(0; z)) with

z 2 S

1

k

(e�

L

). By (2.11-12) the kernel of de�

L;x

0
is spanned by

@

@z

d

from which (2.20) follows. The

assertion (2.19) on S

1

k

(�

L

) follows now from Remark 2.3.4 above, since e�

L;x

0
is given in adapted

coordinates. �

Curvature conditions for strong Morin singularities. Suppose that C is a canonical relation

in T

�

X � T

�

Z and suppose that �

L

: C ! T

�

X has an S

+

1

r

;0

singularity at c

0

2 C. Then for a

neighborhood U of c

0

, the image of the cusp surface,

(2.21) �

L;x

0

1

r

=

�

�

L;x

0
c : c 2 S

1

r

(�

L;x

0
) \ U

	

= �

L

(S

1

r

(�

L

) \ U) \ T

�

x

0

X;

is a smooth manifold of codimension r in T

�

x

0

X . The L

2

! L

q

mapping properties of oscillatory

integrals may depend on the curvature properties of these surfaces. Although it is possible to

investigate a variety of curvature conditions we limit ourselves to two extreme cases, corresponding

to having ` nonvanishing principal curvatures with respect to a normal n, and a weaker �nite type

condition.

We now give, for a submanifold of R

d

, the de�nition of �nite type with respect to normal n.

To do this recall that a (germ of a) smooth function f : R

m

! R is said to be of �nite type k at

x

0

2 R

d

if Q(D)f(x

0

) = 0 for all di�erential operators of order � k � 1 and P (D)f(x

0

) 6= 0 for

some di�erential operator of order k.

De�nition 2.10. Let M be a submanifold of R

d

, with codimension `, P 2 M and t 7! �(t)

a parametrization of M near P , with �(0) = P . Let n 2 T

�

P

R

d

, so that n annihilates tangent

vectors in T

P

M . Let k � 2. M is said to be of type k at P , with respect to n if the function

R

d�`

3 t 7! hn;�(t)i is of type k at t = 0.

It is easy to check that the last condition is independent of the particular parametrization; so

the notion of type k is well de�ned. Also note the invariance of this notion under linear changes of

coordinates. If M is of type k at P , with respect to n, then k � 2 since n is required to annihilate

tangent vectors in T

P

M .

If M is of type k with respect to n at P , and �(0) = P then there is a vector U 2 R

d�`

so that

hU;r

t

i)

k

�

hn;�(t)i

�

�

�

t=0

6= 0;
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this follows from [30, p. 343].

The curvature condition that we shall impose on �

L;x

0

1

r

will be de�ned with respect to n in the

one-dimensional cokernel of the map (d�

L;x

0
)

c

; n clearly annihilates tangent vectors in T

�

0

�

L;x

0

1

r

and the curvature conditions will be invariant under changes of coordinates in X since the induced

changes of coordinates in the �bers are linear. If L

L;x

0

1

= S

1

(�

L;x

0
), the surface where �

L;x

0
drops

rank by 1, then n has the geometric interpretation of being a \normal" vector to the hypersurface

�

L;x

0
(L

L;x

0

1

) which is nonsmooth at the cusp points (but has a well de�ned tangent plane there).

Lemma 2.11. Let c

0

= (x

0

; �

0

; z

0

; �

0

) 2 C

�

so that x

0

= z

0

= 0, and suppose that �

L

has an

S

+

1

r

;0

singularity at c

0

. Suppose that � satis�es (2.11-13), (2.14), (2.17-18). Let �

L;0

1

r

� T

�

0

X be

the image of S

1

r

(�

L;x

0
) under �

L;x

0
, and 0 6= n 2 coker (d�

L;0

)

c

0
. Then the following holds:

(i) For ` � d� r the surface �

L;0

1

r

has ` nonvanishing principal curvatures with respect to n at

�

0

if and only if

(2.22) rank

�

�

000

x

d

z

i

z

j

(0; 0)

�

i;j=1;:::;d�r

= `:

(ii) �

L;0

1

r

2 T

�

0

X is of type k at �

0

if and only if there is a vector u 2 spanfe

1

; : : : ; e

d�r

g so that

(2.23) (hu;r

z

i)

k

�

0

x

d

(0; 0) 6= 0

and

(2.24) @

�

1

z

1

: : : @

�

d�r

z

d�r

�

0

x

d

(0; 0) = 0 if

d�r

X

j=1

j�

j

j < k

Proof. It follows from (2.13) that coker (d�

L;x

0
)

c

� T

�

�

0

(T

�

x

0

X) is spanned by d�

d

. By (2.19)

�

L;0

1

r

=

�

�

0

x

(0; z) : �

(k+1)

x

d

z

k

d

(0; z) = 0 for k = 1; : : : ; r

	

:

Writing z = (z

00

; z

d�r+1

; : : : ; z

d�1

; z

d

) we may use (2.14), (2.17) and the implicit function theorem

to obtain a function z

00

7! Z = (Z

d�r+1

; :::;Z

d

), with Z(0) = 0 so that

�

(k+1)

x

d

z

k

d

(0; z) = 0 () z

d�r+k

= Z

d�r+k

(z

00

) for 1 � k � r:

Implicit di�erentiation yields

(2.25) �

(k+2)

x

d

z

k

d

z

i

(0; z

00

;Z(z

00

)) +

r

X

j=1

�

(k+2)

x

d

z

k

d

z

d�r+j

(0; z

00

;Z(z

00

))

@Z

d�r+j

@z

i

(z

00

) = 0

for i = 1; : : : ; d� r. Repeating this we see that for P

�

(z

00

) = z

�

1

1

� � �z

�

d�r

d�r

(2.26) P

�

(@

z

00

)�

(k+1)

x

d

z

k

d

(0; z

00

;Z(z

00

)) +

r

X

j=1

�

(k+2)

x

d

z

k

d

z

d�r+j

(0; z

00

;Z(z

00

))P

�

(@

z

00

)Z

d�r+j

(z

00

) = R

�

(z)

12



where R

�

belongs to the ideal of smooth functions generated by the P

�

(@

z

00

)Z

d�r+j

with

P

d�r

j=1

�

j

<

P

d�r

j=1

�

j

.

Note that by (2.17)

�

(k+2)

x

d

z

k

d

z

d�r+j

(0; 0) =

�

1 if j = k

0 if j 6= k

and it follows from (2.25) that @Z

d�r+j

=@z

i

(0) = 0 for i = 1; : : : ; d� r. Inductively we use (2.26)

to deduce that

P

�

(@

z

00

)Z

d�r+j

(0) = 0; j = 1; : : : ; r

for all multiindices �. Consequently

(2.27) P

�

(@

z

00

)

�

�

0

x

d

(0; z

00

;Z(z

00

))

�

= P

�

(@

z

00

)�

0

x

d

(0; z

00

;Z(z

00

)) + �

�

(z

00

)

where � is in the ideal generated by all P

�

(@

z

00

)Z

d�r+j

, so that � vanishes at 0. The assertion of

the Lemma is now an immediate consequence of (2.27). �

Examples: For i = 1; 2; 3; 4 let

�

i

(x; z) = x

1

z

1

+ � � �+ x

d�1

z

d�1

+ x

d

h

i

(x; z)

where

h

1

(x; z) = z

r+1

d

+

r�1

X

k=1

x

d�r+k

z

k

d

h

2

(x; z) =

r

X

k=1

z

d�r+k

z

k

d

h

3

(x; z) =

r

X

k=1

z

d�r+k

z

k

d

+ z

m

1

h

4

(x; z) =

r

X

k=1

z

d�r+k

z

k

d

+

`

X

i=1

z

2

i

with 1 � ` � d� r and k � 2. Let �

i

L

denote the projection of C

�

i

to T

�

X . Then �

1

L

has an S

1

r

;0

singularity but not an S

+

1

r

;0

singularity, while �

2

L

, �

3

L

, �

4

L

have S

+

1

r

;0

singularities. For i = 2; 3; 4

the cokernel of d�

i

L;0

is generated by n = d�

d

. For �

2

L

the manifold �

L;0

1

r

is the d � r dimensional

plane given by �

d�r+j

= 0, j = 1; : : : ; r. For �

3

L

this manifold is of type m (with respect to n)

where �

1

= 0 and of type 2 where �

1

6= 0. For �

4

L

it has ` nonvanishing principal curvatures with

respect to n.

3. Estimates for oscillatory integrals with strong one-sided cusps

Let X;Z be open subsets of R

d

and let � 2 C

1

(X � Z) be a real valued phase function and

a 2 C

1

0

(X � Z). De�ne, for � > 0, the oscillatory integral operator T

�

as in (2.8), and let C

�

be the associated symplectic relation. Recall the de�nition (2.21) of the image �

L;x

0

1;1

of the cusp

surface to the �bers.

13



Theorem 3.1. Suppose that (x

0

; z

0

) 2 X � Z, c

0

2 C

�

with �

X

c

0

= x

0

, �

Z

c

0

= z

0

and let

�

0

= �

0

x

(x

0

; z

0

). Then there is a neighborhood U of (x

0

; z

0

), depending on � so that the following

holds provided that a is supported in U .

(i) If �

L

has an S

+

1;1;0

singularity at c

0

then

(3.1) kT

�

k

L

2

(Z)!L

q

(X)

.

(

�

�

d�1

q

+

2

3q

�

1

2

; 2 � q �

10

3

�

�

d

q

;

10

3

� q � 1

:

(ii) Suppose that �

L

has an S

+

1;1;0

singularity at c

0

and that �

L;x

0

1;1

has ` nonvanishing principal

curvatures with respect to n 2 coker d�

L;x

0
. Then

(3.2) kT

�

k

L

2

(Z)!L

q

(X)

.

(

�

�

d�1

q

�

`+2

2

(

1

2

�

1

q

)�

1

3q

; 2 � q �

6`+20

3`+6

�

�

d

q

;

6`+20

3`+6

� q � 1

:

(iii) Suppose that �

L

has an S

+

1;1;0

singularity at c

0

and that �

L;x

0

1;1

is of �nite type k at �

0

with

respect to n 2 coker d�

L;x

0
. Then

(3.3) kT

�

k

L

2

(Z)!L

q

(X)

.

(

�

�

d�1

q

�

k+1

k

(

1

2

�

1

q

)�

1

3q

; 2 � q �

10k+6

3k+3

�

�

d

q

;

10k+6

3k+3

� q � 1

:

We shall see that the L

2

! L

2

estimates hold with just the assumption of an S

1;1;0

singularity, see

x4; however the L

2

! L

q

estimate (3.1) may fail to hold without the assumption of a strong cusp;

see the example in Remarks 3.5 below.

The estimate should be compared with the corresponding estimates for folds which were either

explicitely stated in [7] or follow by the arguments of [7]. Assuming that �

L

has a fold singularity

then one obtains that

(3.4) kT

�

k

L

2

(Z)!L

q

(X)

.

(

�

�

d�1

q

�b(

1

2

�

1

q

)�

1

2q

; 2 � q � q(b)

�

�

d

q

; q(b) � q � 1

where b = 1=2 and q(b) = 4. If the image �

L;x

0

1

in the �ber has ` nonvanishing curvatures then

b = (` + 1)=2 and q(b) = (2` + 4)=(` + 1), and if �

L;x

0

1

is of �nite type � k with respect to the

normal n 2 coker d�

L

then b = 1=2 + 1=k and q(b) = 4(k + 1)=(k + 2).

The estimates of Theorem 3.1 can be extended to more general oscillatory integrals with

nonhomogeneous phase functions depending on frequency variables. This will be useful in x4; the

arguments leading to this extension are contained in [7, x3].

Let X; Y be open sets in R

D

, and let 
 be an open set in R

N

. Let S

�

be de�ned by

(3.5) S

�

f(x) =

ZZ

R

D

�R

N

e

i� (x;y;#)

b(x; y; #)f(y)dydz

14



where the phase  is smooth and real valued in X � Y � 
 and the amplitude b is smooth and

compactly supported in X�Y �
. We assume that d

x;y;#

 

0

#

i

, i = 1; : : : ; N are linearly independent,

so that

Crit

 

= f(x; y; #) :  

0

#

(x; y; #) = 0g

is a 2D dimensional immersed manifold (in other words,  is assumed to be nondegenerate in the

sense of H�ormander [13], although no homogeneity is required). Consequently

C

 

= f(x;  

0

x

; y;� 

0

y

) :  

0

#

= 0g

is a smooth symplectic relation.

Corollary 3.2. Let c

0

= (x

0

;  

0

x

(x

0

; y

0

; #

0

); y

0

;� 

0

y

(x

0

; y

0

; #

0

)) with (x

0

; y

0

) 2 X � Y , #

0

2 
,

so that  

0

#

(x

0

; y

0

; #

0

) = 0.

Suppose that the projection �

L

: C

 

! T

�

X has an S

+

1;1;0

singularity at c

0

. Then there is a

neighborhood U of (x

0

; y

0

; #

0

) such that

kS

�

k

L

2

(Y )!L

2

(X)

. �

�

D+N�1

2

�

1

6

provided that b is supported in U .

Likewise one can formulate versions of the L

2

! L

q

estimates of Theorem 3.1 for the operators

S

�

to obtain L

2

! L

q

estimates; one sets d = D, � = � and multiplies the resulting expressions in

(3.1-3.3) by �

�N=2

.

Corresponding estimates for Fourier integral estimates with homogeneous phase functions can

be deduced from (3.1-3.4) using standard arguments involving partial Fourier transforms and

Littlewood-Paley type estimates [13, 24, 27, 7]. The result is

Corollary 3.3. Let X and Y be d dimensional manifolds, C � (T

�

Xn0) � (T

�

Y n0) be a ho-

mogeneous canonical relation. Let A 2 I

m

(C;X; Y ) with compactly supported Schwartz-kernel

K

A

. Let c

0

= (x

0

; �

0

; y

0

;��

0

) 2 C and suppose that �

L

has an S

+

1;1;0

singularity at c

0

. Then

the following holds provided that the wavefront relation WF(K

A

)

0

is contained in a suitable conic

neighborhood of c

0

.

(i) Amaps L

2

�;comp

(Y ) boundedly to L

q

�;loc

(X) ifm+��� � d(

1

q

�

1

2

)+

1

2

�

5

3q

and 2 � q � 10=3,

or if m+ � � � � d(

1

q

�

1

2

) and 10=3 � q < 1;

(ii) Suppose that �

L;x

0

1;1

has ` nonvanishing principal curvatures at �

0

with respect to n 2

coker d�

L;x

0
. Then A maps L

2

comp

(Y ) boundedly to L

q

loc

(X) if m � d(

1

q

�

1

2

) +

`+2

4

�

3`+10

6q

and

2 � q �

6`+20

3`+6

, or if m � d(

1

q

�

1

2

) and

6`+20

3`+6

� q <1.

(iii) Suppose that �

L;x

0

1;1

is of �nite type k at �

0

with respect to n 2 coker d�

L;x

0
. Then A

maps L

2

comp

(Y ) boundedly to L

q

loc

(X) if m � d(

1

q

�

1

2

) +

k+1

2k

�

5k+3

3kq

and 2 � q �

10k+6

3k+3

, or if

m � d(

1

q

�

1

2

) and

10k+6

3k+3

� q <1.

The restricted X-ray transforms discussed in the introduction are Fourier integral operators of

order �1=2, with the projection �

R

: N

�

Z

C

! 
 having strong cusp singularities; this is shown in

x5. Thus the following can be applied to obtain estimates for these operators.
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Corollary 3.4. Suppose thatX and Y are manifolds of dimension d = 4 and C � T

�

Xn0�T

�

Y n0

is a homogeneous canonical relation such that the projection �

R

: C

�

! T

�

Y have singularities

that are at most strong simple cusps, i.e., at every point of C

�

, �

R

is either a di�eomorphism,

a Whitney fold, or an S

+

1;1;0

. Suppose also that the projection �

Y

: S

1

(�

R

) ! Y has surjective

di�erential everywhere in S

1

(�

R

). Let R be a Fourier integral operator in the class I

�1=2

(C;X; Y ).

Then

(i) R maps L

2

�;comp

(Y ) to L

2

�+

1

3

;loc

(X) and L

7=4

comp

(Y ) to L

2

loc

(X).

(ii) R maps L

12=7

comp

(Y ) to L

2

loc

(X), under the additional assumption that the surfaces �

L;x

0

1;1

are

of type � 3 everywhere with respect to n 2 coker d�

L;x

0
.

Corollary 3.4 follows from Corollary 3.3 by splitting R = R

1

+R

2

where the wavefront relation

of R

1

is localized near the cusp surface S

1;1

(�

R

), and therefore Corollary 3.3 can be applied to the

adjoint R

�

1

. The operator R

�

2

is a Fourier integral operator of order �1=2 for which �

L

has only

fold singularities. It follows from Theorem 1.2 in [7] and interpolation that R

�

2

is bounded from L

2

to L

(4d�4)=(2d�3)

, hence, since d = 4, for q � 12=5. We remark that typically the latter estimate

can be improved since in view of the strong cusp assumption the images of the fold surface have

curvature at least near the cusp points. However we shall not have to make use of this observation

here.

Remarks 3.5. Concerning the sharpness of these estimates we consider various restricted X-ray

transforms.

1. Let R

C

be the restricted X-ray transform as in (1.1) for the translation-invariant complex

of lines with parametrizations

(v; t) = (v

1

+ v

4

t; v

2

+ v

2

4

t; v

3

+ v

3

4

t; t) : t 2 R;

Test R

C

on the cut-o� Heaviside function f = H(w

3

)�(w). Then f 2 L

2

1

2

��;comp

(R

4

), for all � > 0,

and no better. On the other hand,

R

C

f(v) =

Z

v

3

+v

3

4

t�0

�

2

(v

1

+ v

4

t; v

2

+ v

2

4

t; v

3

+ v

3

4

t; t)dt;

from which it is easy to see that R

C

f(v) is smooth in v

1

; v

2

and approximately homogeneous of

degree 0 in v

3

; v

4

with respect to the nonisotropic dilations (v

3

; v

4

)! (r

3

v

3

; rv

4

). Thus, its Fourier

transform is Schwartz in �

1

; �

2

and approximately homogeneous of degree -4 in �

3

; �

4

with respect

to these same dilations. From this, it is straightforward to see that R

C

f 2 L

2

2

3

��

0

;loc

, for all �

0

> 0,

and no better, and thus R

C

, smooths by no more than 1/6 derivatives.

2. The L

7=4

! L

2

estimate of Corollary 3.4 cannot be improved without adding further

assumptions (such as well-curvedness). To see this, consider again the restricted X-ray transform

R

C

with line complex given by

(v; t) = (v

1

+ v

4

t; v

2

+ v

2

4

t; v

3

+ v

1

v

3

4

t; t):

Then, if f

�

is the characteristic function of the rectangle fjw

1

j � �; jw

2

j � �

2

; jw

3

j � �

4

; jw

4

j � 1g,

we have kf

�

k

L

p

' �

7

p

, while R

C

f

�

� 1 on fjv

1

j � c�; jv

2

j � c�

2

; jv

3

j � c�

4

; jv

4

j � c�g, so that

kR

C

k

L

q

� c�

8

q

. Letting � & 0, we must have

8

q

�

7

p

; in particular, for q = 2 we must have p �

7

4

.

Hence, R

C

: L

7

4

! L

2

, and no better.
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3. For q 6= 2 the L

2

! L

q

estimates of Corollary 3.3 cannot hold in general without the strong

cusp assumption. In R

3

, consider the restricted X-ray transform given by

R

C

f(v) =

Z

f(v

1

+ t(v

2

v

3

+ v

3

3

); v

2

; t)�(t)dt:

The associated canonical relation is

C = f(w

1

� w

3

(w

2

v

3

+ v

3

3

); w

2

; v

3

; �

1

; �

2

+ w

3

v

3

�

1

; w

3

(w

2

+ 3v

2

3

)�

1

;

w

1

; w

2

; w

3

; �

1

; �

2

;�(w

2

v

3

+ v

3

3

)�

1

) : w 2 R

3

; v

3

2 R; (�

1

; �

2

) 2 R

2

n0g;

from which we see that �

R

: C ! T

�

R

3

n0 has at most S

1;1;0

singularities where �

1

6= 0, but

those S

1;1;0

singularities are not strong. We take f

�

(w) = �

�

(w

2

; w

3

) (�

�3

w

1

) where �

�

is the

characteristic function of fjw

2

j � �

2

; jw

3

j � 1g, and  is a C

1

0

function with cancellation. The

cancellation allows us to microlocalize R

C

to frequencies with �

1

6= 0. Then jR

C

f

�

(v)j � c on a

�xed fraction of fjv

1

j � �

3

; jv

2

j � �

2

; jv

3

j � �g, so that kf

�

k

p

� �

5

p

and kR

C

f

�

k

2

� �

3

. Hence, the

L

p

! L

2

boundedness of (the microlocalized version of)R

C

implies p � 5=3 and R

�

C

: L

2

! L

q

only

if q � 5=2. The corresponding result for Fourier integral operators with strong cusps (Corollary

3.3) would imply a better L

2

! L

8=3

estimate. �

In order to prove Theorem 3.1 we now wish to follow the proof [7] of the corresponding results

for Whitney folds. Some of the arguments are in fact valid under the assumption that �

L

is a

strong cusp of order r � d� 2 everywhere, so we will work under this assumption at �rst. We will

have to be able to prove an estimate for particular families of oscillatory integrals of the form (3.5)

with phases and amplitudes depending smoothly on a parameter ; the canonical relations will

have two-sided S

1

r�1

singularities. The conjectured L

2

estimates kT

�

k . �

�d�1�1=(2r+2)

could be

proved if one could show that kS

�

k

L

2

!L

2
. �

�

D+N�1

2

�a

with a = 1=(r+1) (see (3:14

a

) below.) If

C

 

is a folding symplectic relation (so r� 1 = 1 and both �

L

, �

R

have only Whitney folds or S

1;0

singularities) then this estimate does hold with a = 1=3. This is is shown in [22] (see also [17] for

the corresponding result for homogeneous canonical relations, and [24], [29], [4], [8] for di�erent

proofs); these bounds are uniform with respect to parameters as follows for example by combining

arguments in [7, x3] and [8].

We shall perform the change of variables discussed in x2, and from now on work close to the

origin; the general assumption is that � satis�es (2.10-2.13) and C

�

has a strong S

1

r

singularity at

c

0

above (0; 0). According to Lemma 2.9 we can assume that (2.14), (2.17) and (2.18) hold. The

amplitude a is supposed to be supported where jxj+ jzj � "

0

� ", the parameter " is small (the

argument below determines how small these parameters are to be chosen).

We now argue as in x2 of [7, p.42 �.], to reduce matters to estimates involving oscillatory integral

operators such as in (3.5) acting on functions in R

d�1

. To bound kT

�

k

L

2

!L

p

0

� kT

�

T

�

�

k

1=2

L

p

!L

p

0

,

one writes T

�

T

�

�

f(x

0

; x

d

) =

R

K

x

d

;y

d

[f(�; y

d

)](x

0

) dy

d

where

(3.6) K

x

d

;y

d

g(x

0

) =

Z

K

�

(x

0

; x

d

; y

0

; y

d

) g(y

0

) dy

0

with

(3.7) K

�

(x

0

; x

d

; y

0

; y

d

) =

Z

e

i�[�(x

0

;x

d

;z)��(y

0

;y

d

;z)]

a(x; z)a(y; z)dz:

17



The kernel of K

x

d

;y

d

can be split as H

x

d

;y

d

(x

0

; y

0

) + R

x

d

;y

d

(x

0

; y

0

) so that H

x

d

;y

d

(x

0

; y

0

) = 0 if

jx

0

� y

0

j � �jx

d

� y

d

j or if jx

d

� y

d

j � �

�1

. Here "� 1 but "� "

0

. Observe that by (2.12), (2:13)

�

0

x

0

(x

0

; x

d

; z)� �

0

x

0

(y

0

; y

d

; z) = x

0

� y

0

+O("

0

jx� yj);

therefore we integrate by parts with respect to z

0

and obtain that the operator R

x

d

;y

d

with kernel

R

x

d

;y

d

is L

p

! L

p

0

bounded with

(3.8) kR

x

d

;y

d

k

L

p

!L

p

0

. �

(1�d)=p

0

(1 + �jx

d

� y

d

j)

�N

; 1 � p � 2:

By (2.17), �

000

x

d

z

d�r+1

z

d

(0; 0) 6= 0. Therefore we can apply the method of stationary phase to

obtain that

jK

�

(x

0

; x

d

; y

0

; y

d

)j . (1 + �jx

d

� y

d

j)

�1

; if jx

0

� y

0

j � �jx

d

� y

d

j;

a better estimate is valid in the complementary region by (3.8). Therefore we have

(3:9

�

) kK

x

d

;y

d

k

L

1

!L

1
. (1 + �jx

d

� y

d

j)

��

;

with � = 1. This may be improved if one imposes additional curvature assumptions on the images

of cusp surfaces (see Lemma 3.8 below).

We now turn to L

2

estimate of H

x

d

;y

d

; recall that only x

d

; y

d

with jx

d

j+ jy

d

j � � are of interest.

For �xed x

d

; y

d

one splits H

x

d

;y

d

=

P

n2Z

d�1

H

n

x

d

;y

d

where

H

n

x

d

;y

d

(x

0

; y

0

) = �("

�1

1

jx

d

� y

d

j

�1

x

0

� n)H(x

0

; y

0

); n 2Z

d�1

and "

1

is small. The kernels H

n

x

d

;y

d

are localized to cubes with center c

n

= n"

1

jx

d

� y

d

j and

diameter O("

1

jx

d

� y

d

j), so as in [7], because of the localization and therefore by (almost) ortho-

gonality, it su�ces to prove the required bounds for the individual operators H

n

x

d

;y

d

(with kernels

H

n

x

d

;y

d

(x

0

; y

0

)); in fact







X

n

H

n

x

d

;y

d







L

2

!L

2

. "

�2d

1

sup

n





H

n

x

d

;y

d





L

2

!L

2

:

One introduces rescaled operators

e

H

n

x

d

y

d

with kernels

e

H

n

x

d

;y

d

(u; v) = H

n

(c

n

+ ujx

d

� y

d

j); c

n

+ vjx

d

� y

d

j);

then H

n

x

d

;y

d

g(x) = jx

d

� y

d

j

d�1

e

H

n

x

d

y

d

[f(jx

d

� y

d

j �+n)](

x

jx

d

�y

d

j

� n) and

(3.10) kH

n

x

d

;y

d

k

L

p

(R

d�1

)!L

p

0

(R

d�1

)

= jx

d

� y

d

j

2(d�1)=p

0

kH

n

x

d

y

d

k

L

p

(R

d�1

)!L

p

0

(R

d�1

)

;

notice also that

e

H

n

x

d

;y

d

(u; v) = 0 for ju� vj � C"

1

.

The kernels

e

H

n

x

d

;y

d

can be imbedded in two families of oscillatory integrals h

�

�;;c

(u; v) depend-

ing on the large parameter

� = �jx

d

� y

d

j

18



and the small parameters

 = (

1

; 

2

) = (jx

d

� y

d

j; y

d

); c = n"

1

jx

d

� y

d

j

notice that  = O(�

0

), c = O(�

0

). The oscillatory integrals are given by

(3.11) h

�

�;;c

(u; v) =

Z

e

i�	

�

(u;v;z;;c)

b

;c

(u; v; z) dz

where the amplitudes b

;c

(u; v; z) belong to bounded subsets of C

1

, and depend smoothly on the

parameters c, ; the phases are given by

	

�

(u; v; z; ; c) =

�(u

1

+ c; 

2

� 

1

; z)� �(v

1

+ c; 

2

; z)



1

=

Z

1

0

hu � v;�

0

x

0

i(v

1

+ s(u� v)

1

+ c

2

� s

1

; z)� �

0

x

d

(v

1

+ s(u � v)

1

+ c; 

2

� s

1

; z)ds:

Of course this last formula makes sense for 

1

= 0. Expanding in 

1

and 

2

about 0 yields

	

�

(u; v; z; ; c) =hu� v;�

0

x

0

i(0; c; z)� �

0

x

d

(0; c; z)

+ 

1

�

�

1

(u; v; z; ; c)+ 

2

�

�

2

(u; v; z; ; c);(3.12)

so that 	

�

are perturbations of phases which occur in a translation invariant situation.

De�ne

(3.13) S

�

�;;c

g(u) =

Z

h

�

�;;c

(u; v)g(v)dv

with h

�

�;;c

as in (3.11).

We shall work under the following

(3:14

a

) Hypothesis: kS

�;;c

k

L

2

!L

2
. �

�(d�1�a)

, for small  and c, and large �.

As mentioned above it is conjectured that (3.14) holds with a = 1=(r + 1); in fact we shall

prove this estimate for the limiting case  = 0 (see Lemma 3.9 below). Moreover we shall verify

that the operators S

�;;c

are oscillatory integrals associated to smooth symplectic relations, with

the projections �

L

, �

R

being S

+

1

r�1

;0

singularities (see Lemma 3.7 below). In particular we know

then that (3:14

a

) holds if r = 2 and a = 1=3 (of course it also holds with r = 1 and a = 1=2; this

is the situation of [7]).

Lemma 3.6. Hypotheses (3:14

a

) and (3:9

�

) imply that

kT

�

k

L

2

!L

q
. �

�

d�1

q

��(

1

2

�

1

q

)�

a

q

; 2 � q �

2(� + 1� a)

�

:(3.15)

kT

�

k

L

2

!L

q
. �

�

d

q

;

2(� + 1� a)

�

� q � 1:(3.16)

Proof. Continuing the reasoning of [7, x2] we obtain, using (3:14)

a

and taking (3.10) into account,

that

(3.17) kH

x

d

;y

d

k

L

2

!L

2
. �

1�d

(1 + �jx

d

� y

d

j)

�a

19



and hence the same estimate for kK

x

d

;y

d

k

L

2

!L

2
.

Interpolating between (3:9

�

) and (3.17) for H

x

d

;y

d

replaced by K

x

d

;y

d

yields

(3.18) kK

x

d

;y

d

k

L

p

!L

p

0

. �

2

p

0

(1�d)

(1 + �jx

d

� y

d

j)

��(p)

; 1 � p � 2;

where

�(p) = �(

2

p

� 1) +

2

p

0

a

:

If

1

p

�

1

p

0

� 1� �(p) one may use fractional integration as in [7] to obtain that

(3.19) kT

�

T

�

�

k

L

p

!L

p

0

. �

2

p

0

(1�d)��(p)

;

2(1 + � � a)

2 + � � 2a

� p � 2;

which implies (3.15). Interpolating the resulting L

2

! L

2(�+1�a)

�

estimate with the trivial estimate

kT

�

k

L

2

!L

1
� C, we obtain (3.16). �

We shall now analyze the oscillatory integrals in (3.11).

Lemma 3.7. Let 	

�

be as in (3.12) and let

C

�

;c

= f(u; (	

�

)

0

u

; v;�(	

�

)

0

v

) : (	

�

)

0

z

= 0; u; v; z near 0g:

For c near 0,  near 0, C

�

;c

is a smooth symplectic relation, with two sided S

+

1

r�1

;0

singularities.

Proof. In order to simplify the notation we write 	 for 	

�

. We shall also assume that  = 0, c = 0

which is no loss of generality in view of the invariance of our statements under small perturbations.

We �rst show that the set of critical points Crit

	

�
=

�

(u; v; z) : 	

0

z

j

(u; v; z) = 0; j = 1; :::; d

	

is a smooth manifold. By (2:12), we know that 	

00

uz

0

= �

00

x

0

z

0

is nonsingular, moreover since

u� v = O("

1

)

(3.20) (	

�

)

00

z

d

z

d�r+1

= ��

000

x

d

z

d

z

d�r+1

(0; 0) + O("):

By (2.17) (	

�

)

00

z

d

z

d�r+1

is bounded below so the gradients r

u;v;z

	

0

z

j

are linearly independent and

Crit

	

�
are smooth manifolds. Note that we had to use the assumption of a strong S

1

r

;0

singularity

here.

In view of the symmetry at  = 0, c = 0, it su�ces to check that, �

L

: C

�

0;0

! T

�

X has S

+

1

r�1

singularities at the point c

0

= (0; 0; 0; 0); notice that �

0

x

(0; 0) = �

0

z

(0; 0) = 0 by (2.10).

We solve the equations 	

0

z

d

(0; 0; z) = �

00

x

d

z

d

(0; 0; z) = 0 and in view of (2.17) we see that z

d�r+1

can be expressed as a function of ~z = (z

1

; : : : ; z

d�r

; z

d�r+2

; : : : ; z

d

), so that

(3.21) �

00

x

d

z

d

(0; 0; z

1

; : : : ; z

d�r

; z

�

d�r+1

(~z); z

d�r+2

; : : : ; z

d

) = 0:

We then have to show that

~z 7! F (~z) := �

0

x

0

(0; z

1

; : : : ; z

d�r

; z

�

d�r+1

(~z); z

d�r+2

; : : : ; z

d

)
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has an S

1

r�1

singularity at 0. To do this we use Lemma 2.4 (for functions of d� 1 variables), the

appropriate version of (2.6), (2.7) being

@

k

F

�

@z

k

d

(0) = 0; 1 � k � r � 1; � 6= d� r + 1(3.22)

@

k

F

�

@z

0

@z

k�1

d

(0) = 0; 2 � k � r � 1; � 6= d� r + 1:(3.23)

Given (3.22), (3.23) we shall then have to verify that

(3.24)

@

k

F

d�r+1

@z

k

d

(0) =

�

0; if 1 � k � r � 1

1; if k = r

:

and

(3.25)

@

k

F

d�r+1

@z

k�1

d

@z

i

(0) =

�

0; if 2 � k � r � 1; i 6= d� r + k

1; if 2 � k � r � 1; i = d� r + k

:

Di�erentiating (3.21) yields

(3.26) �

000

x

d

z

d

z

d�r+1

@z

�

d�r+1

@z

d

+ �

000

x

d

z

2

d

= 0

where the derivatives of � are evaluated at z

d�r+1

= z

�

d�r+1

(~z). Similarly

(3.27) �

000

x

d

z

d

z

d�r+1

@

k

z

�

d�r+1

@z

k

d

+�

(k+2)

x

d

z

k+1

d

2 J

k�1

where J

k�1

is the ideal generated by the functions

@z

�

d�r+1

@z

j

d

, for 1 � j � k� 1. (3.26), (3.27) imply

together with (2.14), (2.17) that

(3.28)

@

k

z

�

d�r+1

@z

k

d

(0) =

�

0; if 1 � k � r � 1

1; if k = r

:

Di�erentiating the relation (3.26) with respect to z

i

yields

�

000

x

d

z

d

z

d�r+1

@

k

z

�

d�r+1

@z

k�1

d

+ �

(k+1)

x

d

z

k�1

d

z

i

2 J

k�1

so that
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(3.29)

@

k

z

�

d�r+1

@z

k�1

d

@z

i

=

�

0; if 2 � k � r; i 6= d� r + k

1; if 2 � k � r; i = d� r + k

:

We now di�erentiate F and use that �

00

x

0

z

d

(0; z) � 0 (by (2.13)). It follows that

@

k

F

�

@z

k

d

� �

00

x

�

z

d�r+1

@

k

z

�

d�r+1

@z

k

d

2 J

k�1

; 1 � k � r(3.30)

@

k

F

�

@z

k

d

� �

00

x

�

z

d�r+1

@

k

z

�

d�r+1

@z

k�1

d

@z

i

2 J

k�1

; 2 � k � r:(3.31)

Now (3.30), (3.31) together with (2.12) imply (3.22), (3.23), (3.24) and (3.25). �

We now show how our various curvature assumption imply improved decay estimates in (3.9);

this is analogous to the role of curvature in proving restriction theorems for the Fourier transform.

Lemma 3.8. Assuming r � 2 then

(i) Estimate (3:9

�

) holds with � = 1.

(ii) If �

L;x

0

1;1

is of �nite type k at �

0

with respect to n 2 coker d�

L;x

0
then estimate (3:9

�

) holds

with � = (k + 1)=k.

(iii) If �

L;x

0

1;1

has ` nonvanishing principal curvatures with respect to n 2 coker d�

L;x

0
at �

0

then (3:9

�

) holds with � = (`+ 2)=2.

Proof. We split variables as z = (z

00

; z

d�r+1

; ~z; z

d

) (so that the ~z-part is not present if r = 2). We

begin by solving in (z

d�r+1

; z

d

) the equations �

00

x

d

z

d�r+1

= �

00

x

d

z

d

= 0 for ~z = 0. This is possible

since rank

@(�

00

x

d

z

d�r+1

;�

00

x

d

z

d

)

@(z

d�r+1

;z

d

)

= 2, by (2.17), (2.14).

We obtain functions Z

d�r+1

; Z

d

depending on z

00

and vanishing at 0 so that

�

00

x

d

z

d�r+1

(z

00

; Z

d�r+1

(z

00

); 0; Z

d

(z

00

)) = 0

�

00

x

d

z

d

(z

00

; Z

d�r+1

(z

00

); 0; Z

d

(z

00

)) = 0

We examine the derivatives of Z

d�r+1

and Z

d

. Implicit di�erentiation yields that for P

�

(z

00

) =

z

�

1

1

� � �z

�

d�r

d�r

P

�

(@

z

00

)�

00

x

d

z

d�r+1

+�

000

x

d

z

d�r+1

z

d�r+1

P

�

(@

z

00

)Z

d�r+1

+ �

000

x

d

z

d�r+1

z

d

P

�

(@

z

00

)Z

d

= R

d�r+1;�

(3.32)

P

�

(@

z

00

)�

00

x

d

z

d

+ �

000

x

d

z

d

z

d�r+1

P

�

(@

z

00

)Z

d�r+1

+�

000

x

d

z

2

d

P

�

(@

z

00

)Z

d

= R

d;�

(3.33)

where R

d�r+1;�

= R

d;�

= 0 if j�j = 1 and where otherwise R

d�r+1;�

and R

d;�

belong to the ideal

generated by all P

�

(@

z

00

)Z

d�r+1

, P

�

(@

z

00

)Z

d

with j�j < j�j. Applying (3.33) for j�j = 1 yields
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@Z

d�r+1

@z

i

(0) = 0, in view of (2.17) and (2.14). Applying then (3.32) yields

@Z

d

@z

i

(0) = 0, in view of

(2.17) and (2:18)

0

; here i = 1; : : : ; d� r. Inductively we obtain for all multiindices �

(3.34) P

�

(@

z

00

)Z

d�r+1

(0) = P

�

(@

z

00

)Z

d

(0) = 0:

In view of (3.8) we have to verify the estimate (3:9

�

) only for jx

0

� y

0

j � "jx

d

� y

d

j. Expand

(3.35) '(x; y; z) :=

�(x

0

; x

d

; z)� �(y

0

; y

d

; z)

x

d

� y

d

= �

0

x

d

(0; z

00

; z

d�r+1

; 0; z

d

) + �(x; y; z)

where

�(x; y; z) = h

x

0

� y

0

x

d

� y

d

; A

1

(x; y; z)i+ hx

0

; A

2

(x; y; z)i+ hy

0

; A

3

(x; y; z)i+ h~z; A

4

(x; y; z)i

the latter is a small perturbation as a function of (z

00

; z

d�r+1

; z

d

), in the C

1

topology.

We can solve the equations '

0

z

d�r+1

= '

0

z

d

= 0 obtaining functions Z

d�r+1

, Z

d

of (x; y; z

00

; ~z)

so that

'

0

z

d�r+1

(x; y; z

00

;Z

d�r+1

; ~z;Z

d

) = 0

'

0

z

d

(x; y; z

00

;Z

d�r+1

; ~z;Z

d

) = 0;

here the functions Z

d�r+1

�Z

d�r+1

and Z

d

�Z

d

and their z

00

derivatives are O(jx

0

j+ jy

0

j+

jx

0

�y

0

j

jx

d

�y

d

j

+

j~zj). Moreover we have '

00

z

d

z

d�r+1

(0; 0) 6= 0 and '

00

z

d

z

d

(0; 0) = 0 so that rank

@

2

'

@(z

d�r+1

;z

d

)

= 2. We

may therefore apply the method of stationary phase. Set

 (x; y; ~z; z

00

) = '(x; y; z

00

;Z

d�r+1

(x; y; z

00

; ~z); ~z;Z

d

(x; y; z

00

; ~z)):

Then

K

�

(x

0

; x

d

; y

0

; y

d

) =

M

X

j=0

(�jx

d

� y

d

j)

�1�j

Z

I

j

(x; y; ~z; �)d~z+ O((�jx

d

� y

d

j)

�M

)

where

I

j

(x; y; ~z; �) =

Z

e

i�(x

d

�y

d

) (x;y;~z;z

00

)

�

j

(x; y; ~z; z

00

)dz

00

with compactly supported smooth �

j

.

By Lemma 2.11 and (3.34), (3.35) the assumption of ` nonvanishing principal curvature of �

L;0

1;1

implies that the Hessian of z

00

7!  (x; y; ~z; z

00

) has rank `. Another application of the method of

stationary phase yields I

j

(x; y; �) = O((�jx

d

� y

d

j)

�`=2

). Similarly the assumption of �nite type k

and an application of van der Corput's lemma using (2.23) yields I

j

(x; y; �) = O((�jx

d

� y

d

j)

�1=k

)

in this case. Putting the previous estimates together yields the assertion of the lemma. �

Proof of Theorem 3.1. We specialize to the case of a strong one-sided cusp (r = 2) and apply

Lemma 3.6. Since C

�

;c

is a folding canonical relation, by Lemma 3.7, we know that the required

(3:14

a

) holds with a = 1=3. The appropriate bounds (3:9

�

) are given in Lemma 3.8. �

We shall now conclude this section showing that the inequality (3:14

a

) for a = 1=(r+ 1) holds

at least if  = 0. In order to prove the sharp bound kT

�

k

L

2

!L

2
. �

�(d�1)�1(2r+2)

for operators

with one sided S

+

1

r

;0

singularities, r � 3, one would have to extend this result to small values of .
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Lemma 3.9. Let S

�

�;;c

be as in (3.13) and suppose that c is small. Then for � � 1

kS

�;0;c

k

L

2

!L

2
. �

�(d�1�

1

r+1

)

:

Proof. Consider the multiplier

m

�;�

(�) =

Z

�(u; z)e

i[hu;��

x

0
(0;c;z)��i���

0

x

d

(0;c;z)]

dudz

where � 2 C

1

0

. Let  (u; z) = hu;�

x

0

(0; c; z)i� �

0

x

d

(0; c; z) then the rank of the Hessian of  with

respect to the variables u; z

0

is 2(d�1), and this Hessian is equal to the Hessian of  (u; z)�hu; �=�i.

We apply the method of stationary phase in these variables to see that

m

�;�

(�) =

M

X

j=0

�

�(d�1+j)

Z

�

j

(z

d

; �)e

i��(z

d

;�)

dz

d

+ O(�

�M

)

where

P

r+1

l=1

j@

l

z

d

�(z

d

; �)j 6= 0 and the bounds are uniform in �. This follows from the assumption

(2.14) (cf. also the calculation in the proof of Lemma 3.7). Van der Corput's Lemma shows that

the integrals are O(�

�1=(r+1)

). Therefore

(3.36) km

�;�

k

1

. �

�(d�1�

1

r+1

)

:

To obtain the conclusion of the Lemma write

b

0;c

(u; v; z) =

1

(2�)

d�1

Z

b

b

0;c

(u; �; z)e

ih�;vi

d�

where the C

N

norms of z 7! ba(�; z) are O((1 + j�j)

�M

) for all M , N . We now apply the estimate

(3.36) for the multiplier with cuto� function �(u; z) =

b

b

0;c

(u; �; c). �

4. L

2

estimates for oscillatory integrals with nonstrong cusp singularities

The purpose of this section is to prove Theorem 1.1. By [7, x3] it is an immediate consequence

of the corresponding estimate for oscillatory integral operators (2.8) which we shall now formulate.

Theorem 4.1. Let T

�

be as in (2.8), C

�

as in (2.9). Suppose that (x

0

; z

0

) 2 X�Z, c

0

2 C

�

with

�

X

c

0

= x

0

, �

Z

c

0

= z

0

and let � = �

0

x

(x

0

; z

0

). Suppose that �

L

has a Whitney cusp at c

0

. Then

there is a neighborhood U of (x

0

; z

0

), so that

kT

�

k

L

2

(Z)!L

2

(X)

. �

�

d

2

+

1

3

provided that the amplitude a is supported in U .

Proof. We may assume that x

0

= z

0

= 0 and that � satis�es (2.10-2.13). By Proposition 2.8 we

have that (2.14) and (2.15) hold for r = 2. We may assume that �

000

x

d

xz

d

(0; 0) is large compared to

�

000

x

d

z

0

z

d

(0; 0) since otherwise we can use Theorem 3.1. Moreover we may assume that �

000

x

d

x

0

z

d

(0; 0)
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is large compared to �

000

x

2

d

z

d

(0; 0) since otherwise �

R

has a fold singularity at (0; 0) and the estimates

are better (at least kT

�

k

L

2

!L

2
. �

�

d

2

+

1

4

, by [7]).

Replacing � by �(B

t

x

0

; x

d

; B

�1

z

0

; z

d

) for a suitable rotation B in R

d�1

we can assume that

(4.1) j�

000

x

d

x

1

z

d

(0; 0)j � 10j�

000

x

d

z

0

z

d

(0; 0)j+ 10j�

000

x

2

d

z

d

(0; 0)j

then the properties (2.10-2.13), (2.14), (2.15) are still satis�ed. We shall also assume that the

neighborhood U in the statement of Theorem 4.1 is chosen as a subset of f(x; z) : jxj+ jzj � 10

�2

g.

We will construct a unitary operator which reduces the study of C

�

to the strong cusp situation

we already understand by the results of x3. First split the variables as x = (x

1

; ~x) and de�ne

�

�

�

f(x) =

1

2�

ZZ

e

i�[hx

1

�w

1

;�

1

i�

�

2

1

2

]

d�

1

f(w

1

; ~x)dw

1

where the �

1

integral is to be interpreted as conditionally convergent oscillatory integral. By

rescaling one reduces the L

2

behavior for �

�

to the study of the Fourier multipliers exp(�i��

2

1

=2)

and it is easy to see that ��

�

�

are in fact unitary operators on L

2

(R

d

), and �

�

�

�

+

�

= �

�2

Id. It

therefore su�ces to show that

(4.2) k�

+

�

T

�

k

L

2

!L

2
. �

�1�

d

2

+

1

3

:

Note that composing T

�

with �

+

�

corresponds to applying a linear canonical transformation in T

�

X

and composing its graph with the relation C

�

.

Let �

0

2 C

1

(R) so that �

0

(s) = 1 for jsj � 1=20 and �(s) = 0 for jsj � 1=10. We localize in

the x

1

and �

1

variables and split �

+

�

= �

+

�;1

+ �

+

�;2

where

2��

+

�;1

f(x) = �

0

(x

1

)

ZZ

�

0

(�

1

)e

i�[hx

1

�w

1

;�

1

i+

�

2

1

2

]

d�

1

f(w

1

; ~x)dw

1

We �rst show that the operator �

+

�;2

T

�

is negligeable. Let �

j

(�

1

) = �

0

(2

�j

�

1

)� �

0

(2

�j+1

�

1

).

The kernel of �

+

�;2

can be decomposed as

R

�

(x; z) = G

�;1

(x; z) +

1

X

j=1

G

�;2;j

(x; z) +

1

X

j=1

G

�;3;j

(x; z)

where

2�G

�;1

(x; z) = (1� �

0

(x

1

))

ZZ

�

0

(�

1

)e

i�[hx

1

�w

1

;�i+

�

2

1

2

+�(w

1

;~x;z)]

a(w

1

; ~x; z)d�

1

dw

1

2�G

�;2;j

(x; z) = �

0

(x

1

)

ZZ

�

j

(�

1

)e

i�[hx

1

�w

1

;�

1

i+

�

2

1

2

+�(w

1

;~x;z)]

a(w

1

; ~x; z)d� dw

2�G

�;3;j

(x; z) = (1� �

0

(x

1

))

ZZ

�

j

(�

1

)e

i�[hx

1

�w

1

;�

1

i+

�

2

1

2

+�(w

1

;~x;z)]

a(w

1

; ~x; z)d� dw:

First consider G

�;1

. Integrating by parts in w

1

we gain arbitrary negative powers of �jx

1

�w

1

j

and in view of the support properties of a and �

0

we have jx

1

� w

1

j � 1=100 here. From this it is

easy to see that jG

�;1

(x; z)j � C

M

1

;M�2

�

�M

1

(1 + jx

1

j)

�M

2

.
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The kernel G

�;2;j

is � C

M

(2

j

�)

�M

since we can integrate by parts with respect to �, the �

1

derivative of the phase function is �(x

1

�w

1

+ �

1

) which is of the order of � in view of the support

properties of a and �

0

.

To handle G

�;3;j

we integrate by parts �rst with respect to x

1

and, if jx

1

j � 2

j

=100, with

respect to �

1

and x

1

. The result is that jG

�;3;j

(x; z)j � C

M

1

;M

2

2

�j

�

�M

1

(1 + jx

1

j)

�M

2

. These

estimates clearly imply that k�

+

�

T

�

k

L

2

!L

2
= O(�

�M

) for any M .

We now consider the operator S

�

:= �

�;1

T

�

; then S

�

is of the form (3.5) with frequency

variables # = (w

1

; �

1

) 2 R

2

and phase

 (x; z; w

1

; �

1

) = hx

1

� w

1

; �

1

i+

�

2

1

2

+ �(w

1

; ~x; z):

The canonical relation C

 

is given by

C

 

= f(x;�

0

x

(w

1

; ~x; z); z;��

0

z

(w

1

; ~x; z)) : x

1

� w

1

+ �

0

x

1

(w

1

; ~x; z) = 0g

We solve

(4.3) x

1

� w

1

+ �

0

x

1

(w

1

; ~x; z) = 0 () w

1

= g(x; z)

with g(0) = 0. This is possible since �

0

x

is small near (0; 0) by (2.10) (we assume that U is chosen

so small that (4.3) holds for (w; z) 2 U and x

1

2 supp �

0

).

We verify that �

L

: C

 

! T

�

X has a strong cusp at c

0

= (0; 0; 0; 0). In order to do this we

have to show that the map

F : z 7! �

0

x

(g(0; z); 0; z)

is a cusp at z = 0; to do this we use Lemma 2.4.

Let I

m

is the ideal generated by

@

j

g

@z

j

d

, 1 � j � m. Then (4.3) yields

�

@g

@z

d

+�

00

x

1

x

1

@g

@z

d

+ �

00

x

1

z

d

= 0

�

@

2

g

@z

i

@z

d

+ �

00

x

1

x

1

@

2

g

@z

d

@z

i

+�

000

x

1

z

d

z

i

2 I

1

; i = 1; : : : ; d

�

@g

@z

1

+ �

00

x

1

x

1

@g

@z

1

+�

00

x

1

z

1

= 0

and all derivatives of � are evaluated at x

1

= g(0; z).

Using (2.13)

(4.4) g(0) =

@g

@z

d

(0) =

@

2

g

@z

d

@z

i

(0) = 0

for i = 1; : : : ; d, and

(4.5)

@g

@z

1

(0) = 1:
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Di�erentiating F yields

@F

d

@z

d

= �

00

x

d

x

1

@g

@z

d

+�

00

x

d

z

d

@

2

F

d

@z

2

d

= �

00

x

d

x

1

@

2

g

@z

2

d

+ �

000

x

d

z

2

d

+ R

1

@

3

F

d

@z

3

d

= �

00

x

d

x

1

@

3

g

@z

3

d

+ �

(4)

x

d

z

3

d

+ R

2

where R

1

2 I

1

and R

s

2 I

2

. From (4.4), (4.5) and (2.10), (2.14) it follows that

@F

d

@z

d

and

@

2

F

d

@z

2

d

vanish at 0, but

@

3

F

d

@z

3

d

does not (that is (2.3), (2.5) hold).

Next

@

2

F

d

@z

1

@z

d

= �

000

x

d

z

d

x

1

@g

@z

1

+�

000

x

d

z

d

z

1

+�

00

x

d

x

1

@

2

g

@z

d

@z

1

+ R

3

where R

3

2 I

1

. Since we assume that �

000

x

d

z

d

x

1

(0; 0) is large compared to �

000

x

d

z

d

z

1

it follows from

(4.5), (2.10) that

@

2

F

d

@z

1

@z

d

(0) 6= 0, i.e. (2.4) is satis�ed. By Corollary 3.2 the operator norm of

�

+

�;1

T

�

is O(�

�1�

d

2

+

1

3

) which implies the required (4.2). �

5. The X-ray transform for well curved line complexes

In this section we shall show that the strong cusp assumptions holds for the canonical relations

associated to line complexes in R

4

that are well curved in the sense of De�nition 1.2, and then

prove Theorem 1.3. Finally we shall show optimal L

p

! L

2

estimates for a translation invariant

line complex in higher dimension which serves as a model example for the class of well-curved line

complexes (see (5.8), (5.9) below).

Proposition 5.1. If C � M

1;d

is a well-curved line complex over 
 � R

d

, then the singularities

of the projection �

R

: N

�

Z

0

C

! T

�


 are all S

+

1

r

;0

singularities with r � d� 2.

Proof. By choosing local coordinates v on C vanishing at 

0

2 C

w

0
and (linear) w on R

d

, we may

assume that w

0

= 0 and that the line 

0

is the w

d

-axis, so that locally the incidence relation is

given by

Z

C

=

�

(v; w) 2 R

d

�R

d

: w

0

= v

0

+ w

d

�(v

0

; v

d

)

	

;

with � : R

d�1

� R ! R

d�1

a smooth family of nondegenerate curves parametrized by the last

variable. By the well-curvedness of the line complex we have

(5.1) rank

�

@�

@v

d

; : : : ;

@

d�1

�

@v

d�1

d

�

= d� 1

By a linear change of variables in v

0

, w

0

, we replace �(v

0

; v

d

) by A

�1

�(Av

0

; v

d

). We can therefore

assume that

(5.2)

@

j

�

@v

j

d

(0) = e

j

; j = 1; : : : ; d� 1:
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We may then write the restricted X-ray transform as

(5.3) R

C

f(v) =

ZZ

R

d�1

�R

d

e

i(v

0

�w

0

+w

d

�(v

0

;v

d

))��

0

a(v; w; �

0

)f(w)dwd�

0

;

with amplitude a 2 S

0

(R

d

�R

d

� (R

d�1

n0)) and � satisfying (5.2).

The nondegenerate phase function

 (v; w; �

0

) = (v

0

� w

0

+ w

d

�(v

0

; v

d

)) � �

0

has critical manifold Crit

 

= f(v

0

; v

d

; v

0

+ w

d

�(v

0

; v

d

); w

d

; �

0

) : v 2 R

d

; w

d

2 R; �

0

2 R

d�1

n0g and

thus parametrizes the canonical relation

(5.4) C = N

�

Z

0

C

= f(v

0

; v

d

; (I + w

d

d

v

0

�)

�

�

0

; w

d

d

v

d

� � �

0

; v

0

+ w

d

�; w

d

; �

0

;�� � �

0

)g:

For jw

d

j su�ciently small, we may solve for v

0

in terms of w, and thus obtain

(5.5) �

R

C = f(w

0

; w

d

; �

0

;�~�(w; v

d

) � �

0

) : w 2 R

d

; v

d

2 R; �

0

2 R

d�1

n0g

for suitable ~�. Notice that

@

j

~�

@v

j

d

(w

0

; w

d

; v

d

) =

@

j

�

@v

j

d

(v

0

; v

d

) + O(w

d

) if w

0

= v

0

+ w

d

�(v

0

; v

d

)

Therefore

(5.6)

@

j

~�

@v

j

d

(w

0

; 0) = e

j

; j = 1; : : : ; d� 1:

To show that �

R

2 S

+

1

r

;0

, we need to show that the map

F : (�

0

; v

d

) 7! (�

0

;�~�(w

0

; v

d

) � �

0

)

has only S

1

r

;0

singularities with r � d � 2, at v

d

= 0. This map is given in adapted coordinates

(2.2) with h(�

0

; v

d

) = �~�(w

0

; v

d

) � �

0

.

Let �

0

0

be �xed. By (5.6), either

_

~�(w

0

; 0) � �

0

6= 0, in which case F is a di�eomorphism near

(�

0

0

; 0), or there is a least integer r , 1 � r � d� 2 , such that ~�

(k)

(w

0

; 0) � �

0

0

= 0 for 1 � k � r and

~�

(r+1)

(w

0

; 0) � �

0

0

6= 0; so that (2.3) and (2.5) are satis�ed. Denoting derivatives of ~� with respect

to v

d

by

_

~� etc., we also have

rank [d(

@h

@v

d

); : : : ; d(

@

r

h

@v

r

d

)] = rank [d(

_

~� � �

0

); : : : ; d(~�

(r)

� �

0

)]

� rank [d

�

0

(

_

~� � �

0

); : : : ; d

�

0

(~�

(r)

� �

0

)] = rank [

_

~�; : : : ; ~�

(r)

] = r

by (5.6). Thus, (2.4) is also satis�ed, and F has only S

1

r

;0

singularities, with r � d� 2. �
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Proof of Theorem 1.3. By Corollary 3.4 we have to verify that the image of the cusp surface

in the �bers of T

�


 satis�es a �nite type condition. We shall use the notation in the proof

of Proposition 5.1. By (5.5) we see that d�

R;w

0
drops rank by 1 where

_

~� � �

0

= 0, and there

ker(d�

R;w

0
) is generated by

@

@v

4

. Thus

(5.7) �

R;w

0

1;1

= f(�;�~� � �) : v

d

near 0; � 2 R

3

n 0;

_

~�(w

0

; v

4

) � � =

�

~�(w

0

; v

4

) � � = 0g:

By (5.6)

~�(w; v

4

) =

�

v

4

+ O(jwj+ v

2

4

);

1

2

v

2

4

+ O(jwj+ jv

4

j

3

);

1

6

v

3

4

+ O(jwj+ v

4

4

)

�

;

and therefore

_

~�(w; v

4

) =

�

1 + O(jwj+ jv

4

j); v

4

+ O(jwj+ v

2

4

);

1

2

v

2

4

+ O(jwj+ jv

4

j

3

)

�

;

and

�

~�(w; v

4

) =

�

O(1); 1 +O(jwj+ v

4

); v

4

+O(jwj+ v

2

4

)

�

:

>From this, it follows that

_

~� � �

0

= 0 implies that for jv

4

j small,

�

1

= �v

4

�

2

�

1

2

v

2

4

�

3

+ O(jwj+

3

X

j=1

jv

j

4

jj�

j

j)

and thus

�

~� � �

0

= 0 implies that

�

2

= �v

4

�

3

+ O(jwj+ jv

4

j

3

j�

3

j):

Therefore

�

R;w

0

1;1

= f(

1

2

v

2

4

�

3

+O

1

;�v

4

�

3

+O

2

; �

3

;�

1

6

v

3

4

�

3

+ O

4

) : (w; v

4

) near (w

0

; 0); �

3

2 Rn0g

where O

j

= O(jwj + jv

4

j

j

). Intersecting �

R;w

0

1;1

with any transverse hyperplane in T

�

0


 yields a

curve with nonzero curvature and torsion; this is stronger than the type � 3 condition required in

Corollary 3.4. �

Remark. Our estimates can also be applied to operators with two-sided cusp singularities. Consider

the translation invariant operator de�ned on functions in R

4

by

Af(x) =

Z

f(x� �(t))�(t)dt

with �(t) = (t; t

2

; t

3

; t

4

). Then A 2 I

�

1

2

(C;R

4

;R

4

). Writing �

0

= (�

2

; �

3

; �

4

) and g(t; �

0

) =

�(2t�

2

+ 3t

3

�

3

+ 4t

3

�

4

) one computes that

C = f(x;�g(t; �

0

); �

0

; x� �(t);�g(t; �

0

); �

0

)g

which exhibits �

R

and �

L

as strong cusps. The fold surface S

1

(�

L

) is given by 2�

2

+6t�

3

+12t

2

�

4

= 0

and the cusp surface S

1;1

(�

L

) by �

2

= 6t

2

�

4

; �

3

= �4t�

4

so that for any x

0

2 R

4

,

�

L;x

0

1;1

= f(�4t

3

�

4

; 6t

2

�

4

;�4t�

4

; �

4

) : t 2 R; �

4

2 Rn0g:

Intersecting this with H

�

0
= f�

4

= �

0

4

g , we get a curve with nonzero curvature and torsion, so that

the type � 3 condition of Corollary 3.4 is satis�ed. Since the same applies to �

R

we deduce from

Corollary 3.4 and interpolations that A maps L

p

to L

q

if (

1

p

;

1

q

) 2 hullf(0; 0); (1; 1); (

7

12

;

1

2

); (

1

2

;

5

12

)g:

This falls substantially short of the recent sharp estimates for A obtained by Oberlin [21], but it

does apply to non-translation-invariant variants of A. We shall consider one way of describing such

variants in x6.
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Appendix: A translation invariant line complex. Let d � 3 and consider the operator

de�ned by

(5.8) Rf(v

0

; v

d

) = �(v)

Z

f(v

0

+ t(v

d

))�(t)dt

where

(5.9) (s) = (s; s

2

; : : : ; s

d�1

; 1);

moreover � 2 C

1

0

(R

d

) with �(0) = 1 and � 2 C

1

0

(R), both are assumed to be real valued without

loss of generality. Carrying out the analysis in x3 leads to a translation invariant situation as in

Lemma 3.9 and one concludes that R maps L

2

to L

2

1=(2d�2)

.

The natural L

p

! L

q

conjecture is that R is bounded from L

p

to L

q

if and only if (1=p; 1=q)

belongs to the triangle T = hull(A;B;C) where A = (0; 0), B = (1; 1), C = (

d

2

�d+2

d

2

+d

;

d

2

�d

d

2

+d

). It is

necessary that (1=p; 1=q) is on or above CB, that is d=p � 1 + (d � 1)=q. To see this one tests R

on the characteristic function of the ball fjwj � �g and lets � ! 0. To check that (1=p; 1=q) has

to be on or above AC, that is (d

2

� d)=p � (d

2

� d+ 2)=q, one tests R on characteristic functions

of the rectangle fw : jw

j

j � �

j

; j = 1; : : : ; d� 1; jw

d

j � 1g. The following proposition establishes

the L

p

! L

q

estimate for (1=p; 1=q) in a subtriangle with vertex D on the lower edge AC of T , so

that the sharp L

p

! L

q

estimate is obtained for p � 2�

4

d

2

�d+2

.

Proposition 5.2. Let R be as in (5.8), (5.9). R maps L

p

to L

q

if T = hull(A;B;D) where

A = (0; 0), B = (1; 1), D = (

d

2

�d+2

2d

2

�2d

;

1

2

).

Proof. It su�ces to show that R maps L

p

to L

2

where p =

2d(d�1)

d

2

�d+2

, d � 3. For this it su�ces to

show that R

�

R maps L

p

to L

p

0

. A computation yields

R

�

Rf(x) =

ZZ

h(�; �; x)f(x

0

� �(�); x

d

� �)d�d�

with a suitable C

1

function h with compact support. Now R

�

Rf(x) � T (jf j)(x) where

Tf(x) = �

1

(x

0

)�

2

(x

d

)

ZZ

�

3

(�)�

4

(�)f(x

0

� �(�); x

d

� �)d�d�

with suitable smooth and positive cuto� functions �

i

. For functions de�ned in R

d�1

let

S

�

g(x

0

) =

Z

�

3

(�)g(x

0

� �(�))d�:

Then

Tf(x

0

; x

d

) = �

1

(x

0

)�

2

(x

d

)

Z

�

4

(�)S

�

[f(�; x

d

� �)](x

0

)d�

For (t) = (t; : : : ; t

n

) McMichael [16] proved that S

1

is bounded from L

p

(R

n

! L

p

0

(R

n

)

provided that 2n(n+ 1)=(n

2

+ n+2) � p � 2, here n = d� 1. Since S

�

g(x

0

) = S

1

[f(��)](x

0

=�) the

L

p

! L

p

0

operator norm of S

�

is � C�

(d�1)(1�2=p)

, for 2(d

2

� d)=(d

2

� d+2) � p � 2. We use the
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(by now) standard slicing argument due to Oberlin [20] (see also Strichartz [31].) By Minkowski's

inequality

kTfk

p

0

�

�

Z

�

2

(x

d

)

h

Z

�

4

(�)kS

�

[f(�; x

d

� �)]k

p

0

d�

i

p

0

dx

d

�

1=p

0

.

�

Z

�

2

(x

d

)

h

Z

�

4

(�)�

(d�1)(1�2=p)

kf(�; x

d

� �)k

p

d�

i

p

0

dx

d

�

1=p

0

:(5.10)

In order to apply the theorem on fractional integration we need the restriction (d � 1)(1 �

2

p

) �

1

p

�

1

p

0

� 1 or d(1�

2

p

)+ 1 > 0; notice that d(1�

2

p

) + 1 �

d�2

d�1

for p � 2(d

2

� d)=(d

2

� d+2). Since

we are assuming d � 3 the right hand side of (5.10) is bounded by Ckfk

p

: �

6. Strong cusps and exponentials of vector �elds

We next examine the strong cusp condition in the context of families of curves in R

4

given by

exponentials of vector �elds; the setup is as in [2]. Let X; Y; Z and W be smooth vector �elds on

R

4

and



x

(t) = exp(tX + t

2

Y + t

3

Z + t

4

W )(x);

so that f

x

: x 2 R

4

g is a smooth family of curves, with 

x

(0) = x. Let � 2 C

1

0

(R). The

generalized Radon transform,

Rf(x) =

Z

R

f(

x

(t))�(t)dt

belongs to I

�

1

2

(R

4

;R

4

;C), where C = N

�

�

0

, the conormal bundle of

� = f(x; 

x

(t)) : x 2 R

4

; t 2 supp (�)g:

We assume that supp (�) is small and are concerned with the behavior of the Schwartz kernel of

R close to the diagonal. The following is the analogue for S

+

1

r

;0

singularities of a result in [24] for

folds in three variables.

Proposition 6.1. Let c

0

2 C be above the diagonal, c

0

= (x

0

; �

0

; x

0

;��

0

).

(i) Suppose that the vectors �elds

(6.1) X; Y; Z �

1

6

[X; Y ]; W �

1

4

[X;Z] +

1

24

[X; [X; Y ]]

are linearly independent at x

0

. Then the only possible singularities of the projection �

R

: C !

T

�

R

4

at c

0

are Whitney folds and strong Whitney cusps.

(ii) Suppose that the vectors �elds

(6.2) X; Y; Z +

1

6

[X; Y ]; W +

1

4

[X;Z] +

1

24

[X; [X; Y ]]

are linearly independent at x

0

. Then the only possible singularities of the projection �

L

: C ! T

�

R

4

at c

0

are Whitney folds and strong Whitney cusps.

Proof. We will approximate �, and thus C, to high order near the diagonal, by using the �rst

terms of the Baker-Campbell-Hausdor� formula: for vector �elds A;B,

(6.3) exp(B)exp(A)(x) = exp(A+ B +

1

2

[A;B] +

1

12

[A�B; [A;B]] + : : : )(x);
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where : : : denotes commutators of four or more terms. Note the order of the product, since

composition of di�eomorphisms is right-to-left. Using (6.3), an elementary calculation leads to

(6.4) exp(tX + t

2

Y + t

3

Z + t

4

W )(x) = exp(t

3

e

Z + t

4

f

W + O

5

)exp(t

2

Y )exp(tX)(x);

with

e

Z = Z �

1

2

[X; Y ] and

f

W = W �

1

2

[X;Z] +

1

6

[X; [X; Y ]]:

Here, O

j

denotes terms which are O(t

j

) as t! 0 (or O((y

1

� x

1

)

j

) below.) We will also need the

second order Taylor polynomial of exp(tA):

(6.5) exp(tA)(x) = x+ tA(x) +

t

2

2

DA(x)(A(x)) + O

3

:

Since X 6= 0, by a local change of variables we can take X =

@

@y

1

. Write x = (x

1

; x

0

); y =

(y

1

; y

0

) and vector �elds as A = (A

1

; A

0

). Fixing a basepoint y

0

, one can also assume that Y (y

0

) =

@

@y

2

. Before applying (6.5) to the vector �eld Y below, we note that the DY (Y ) term is not

invariantly de�ned. In fact, if 	 is a di�eomorphism and

~

Y (y) = 	

�

Y (y) = (D	(y))

�1

(Y (	(y)))

denotes the pullback of Y , then a calculation yields

D

~

Y (

~

Y ) = (D	)

�1

�

DY (Y )�D

2

	(

~

Y ;

~

Y )

�

:

Setting v = DY (Y )(y

0

) (and assuming y

0

= 0), we take 	(y) = y +

y

2

2

2

v. This preserves the

conditions X =

@

@y

1

and Y (y

0

) = e

2

, and also D

2

	(e

2

; e

2

) = v hence D

~

Y (

~

Y )(y

0

) = 0; so that we

can assume

(6.6) X =

@

@y

1

; Y

1

(y

0

) = 0; DY (Y )(y

0

) = 0:

Since X =

@

@y

1

, by (6.3) we have

� = f(x; exp(t

3

e

Z + t

4

f

W +O

5

)exp(t

2

Y )(x

1

+ t; x

0

)) : x 2 R

4

; t 2 Rg;

which by (6.5) with t replaced by t

2

equals

n

�

x; exp(t

3

e

Z + t

4

f

W + O

5

)(x+ (t; 0) + t

2

Y (x

1

+ t; x

0

) +

t

4

2

(DY (Y ))(x

1

+ t; x

0

))

�

o

= f

�

x; x+ (t; 0) + t

2

Y (x

1

+ t; x

0

) + t

3

e

Z(x

1

+ t; x

0

) + t

4

(

f

W +

1

2

DY (Y ) +O

5

)

�

o

:

But,

e

Z(x

1

+ t; x

0

) =

e

Z(x) + t[X;

e

Z](x) + O

2

Y (x

1

+ t; x

0

) = Y (x) + t[X; Y ](x) +

t

2

2

[X; [X; Y ]](x) + O

3

and therefore

� = f

�

x; x+ (t; 0) + t

2

Y + t

3

(

e

Z + [X; Y ]) + t

4

(

f

W + [X;

e

Z] +

1

2

[X; [X; Y ]] +

1

2

DY (Y )) +O

5

)

�

g;
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where all the vector �elds are evaluated at x. Now change coordinates on � from (x; t) to (x; y

1

)

via

y

1

= x

1

+ t + t

2

Y

1

(x) + t

3

(

e

Z + [X; Y ])

1

(x);

by the inverse function theorem, we may then express

t = (y

1

� x

1

)� (y

1

� x

1

)

2

Y

1

� (y

1

� x

1

)

3

((

e

Z + [X; Y ])

1

� 2Y

2

1

) + O

4

;

t

2

= (y

1

� x

1

)

2

� (y

1

� x

1

)

3

� 2Y

1

+ (y

1

� x

1

)

4

(5Y

2

1

� 2(

e

Z + [X; Y ])

1

) +O

5

;

and

t

3

= (y

1

� x

1

)

3

� (y

1

� x

1

)

4

3Y

1

+ O

5

;

with all vector �elds being evaluated at x. Thus,

� =

(

�

x; y

1

+ O

4

; x

0

+ (y

1

� x

1

)

2

Y

0

+ (y

1

� x

1

)

3

(�2Y

1

Y +

e

Z + [X; Y ])

0

+(y

1

� x

1

)

4

�

5Y

2

1

Y � 2(

e

Z + [X; Y ])

1

Y � 3Y

1

(

e

Z + [X; Y ])

+

f

W + [X;

e

Z] +

1

2

DY (Y )

�

0

+ O

5

�

: x 2 R

4

; y

1

2 R

)

:

To change the point where the vector �elds are evaluated to (y

1

; x

0

), we expand Y mod O

3

as

above and

e

Z; [X; Y ] and Y

1

� Y mod O

2

. This leads to

(6.7)

� =

( 

x; y

1

+O

4

; x

0

+ (y

1

� x

1

)

2

Y

0

+ (y

1

� x

1

)

3

(�2Y

1

Y +

e

Z)

0

+(y

1

� x

1

)

4

�

5Y

2

1

Y � 2(

e

Z + [X; Y ])

1

Y � 3Y

1

(

e

Z + [X; Y ])

+

f

W + [X;

e

Z] +

1

2

[X; [X; Y ]] +

1

2

DY (Y )

+

1

2

[X; [X; Y ]]� [X;

e

Z]� [X; [X; Y ]]

+2[X; Y ]

1

Y + 2Y

1

[X; Y ]

�

0

+ O

5

!

: x 2 R

4

; y

1

2 R

)

=

( 

x; y

1

+O

4

; x

0

+ (y

1

� x

1

)

2

Y

0

+ (y

1

� x

1

)

3

(�2Y

1

Y +

e

Z)

0

+(y

1

� x

1

)

4

�

(5Y

2

1

� 2(

e

Z + [X; Y ])

1

)Y + 2Y

1

[X; Y ]

�3Y

1

(

e

Z + [X; Y ]) +

f

W + [X;

e

Z] +

1

2

DY (Y )

�

0

!

: x 2 R

4

; y

1

2 R

)

;

with the vector �elds evaluated henceforth at (y

1

; x

0

). Using (6.7), we may give a set of approximate

de�ning functions, f

0

(x; y) = (f

2

(x; y); f

3

(x; y); f

4

(x; y)) , for �. These will be speci�ed modulo

O

5

; since we only need to check the strong cusp condition at y

0

, the f

0

(x; y) will su�ce for our

purpose.
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One has

� ' f(x; y) 2 R

4

�R

4

: f

0

(x; y) = 0g

where

f

0

(x; y) = x

0

� y

0

+ (y

1

� x

1

)

2

� Y

0

+ (y

1

� x

1

)

3

(

e

Z � 2Y

1

Y )

0

+ (y

1

� x

1

)

4

�

f

W + (5Y

2

1

� 2

e

Z)

1

Y � Y

1

[X; Y ]� 3Y

1

e

Z +

1

2

DY (Y )

�

0

:

To calculate the conormal bundle C = N

�

�

0

, we really just need to �nd �d

y

1

f

0

� �

0

for �

0

=

(�

2

; �

3

; �

4

) 2 R

3

n0 :

�d

y

1

f

0

� �

0

= �

�

2(y

1

� x

1

)Y + (y

1

� x

1

)

2

(3

e

Z � 6Y

1

Y + [X; Y ])

+ (y

1

� x

1

)

3

�

4

f

W + (20Y

2

1

� 8

e

Z

1

)Y � 4Y

1

[X; Y ]

� 12Y

1

e

Z + 2DY (Y ) + [X;

e

Z]� 2Y

1

[X; Y ]� 2[X; Y ]

1

Y

�

�

0

� �

0

mod ((y

1

� x

1

)

4

):

Changing variables y

0

= x

0

+ ::: and s = y

1

� x

1

, we have (not worrying about the (x; �) terms)

C =

n�

�; �; y;�

�

2sY +s

2

(3

e

Z + [X; Y ]� 6Y

1

Y )

+s

3

(4

f

W + [X;

e

Z]� 6Y

1

[X; Y ] + (20Y

2

1

� 8

e

Z

1

� 2[X; Y ]

1

)Y

�12Y

1

e

Z + 2DY (Y ))

�

0

� �

0

; �

0

�

: y 2 R

4

; s 2 R; �

0

2 R

3

n0

o

;

with the vector �elds evaluated at (y

1

; x

0

) = (y

1

; y

0

+ :::). Thus, the singularities of �

R

: C ! T

�

R

4

are completely determined by

@�

1

@s

. The derivatives

@

j

�

1

@s

j

mod s

4�j

, 1 � j � 3, are given by

�

@�

1

@s

=

 

2Y + 2s(3

e

Z + [X; Y ]� 6Y

1

Y ) + 3s

2

�

4

f

W + [X;

e

Z]� 6Y

1

[X; Y ]

+(20Y

2

1

� 8

e

Z

1

� 2[X; Y ]

1

)Y � 12Y

1

e

Z + 2DY (Y )

�

!

0

� �

0

;

�

@

2

�

1

@s

2

= 2

�

(3

e

Z + [X; Y ]� 6Y

1

Y ) + 3s(: : : )

�

0

� �

0

;

�

@

3

�

1

@s

3

= 6(: : : )

0

� �

0

;

where : : : denotes the expression above beginning with 4

f

W + [X;

e

Z] + : : : . Evaluating at y =

y

0

; s = 0, these three derivatives are (using Y

1

(y

0

) = 0 and DY (Y )(y

0

) = 0) given by functions

g

1

= 2Y

0

� �

0

; g

2

= 6(Z �

1

6

[X; Y ])

0

� �

0

and

g

3

= 24

�

W �

1

4

[X;Z] +

1

24

[X; [X; Y ]]� (2

e

Z

1

+

1

2

[X; Y ]

1

)Y

�

0

� �

0

:

If the vectors in (6.1) are linearly independent, then d

�

0

g

1

; d

�

0

g

2

; d

�

0

g

3

are linearly independent

(d

�

0

g

3

di�ering from the last term in (6.1) by at most a multiple of Y .) Thus, (�

0

; �

1

) on T

�

y

R

4

and

(�

0

; s) on �

�1

R

(fyg) are adapted coordinates and thus �

R

has at most S

1;0

or S

+

1;1;0

singularities. To

obtain the corresponding statement for �

L

one simply repeats the above argument with (X; Y; Z;W )

replaced by (�X;�Y;�Z;�W ). �
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