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1. Introdution

Let 
 be a onvex domain in R

d

ontaining the origin in its interior. We mostly assume that 


has smooth boundary and that the Gaussian urvature of the boundary vanishes nowhere. Let

N




(t) = ard(t
 \ Z

d

);

the number of integer lattie point inside the dilated domain t
. It is well known that N




(t) is

asymptoti to t

d

vol(
) as t!1. We denote by

(1.1) �




(t) =

N




(t)� t

d

vol(
)

t

d

vol(
)

the relative error, or the disrepany funtion. It is onjetured that in dimensions d � 5 the relative

error is O(t

�2

) as t ! 1. This onjeture is known to be true in the ase of a ball entered at

the origin, and for ellipsoids in various degrees of generality (see Landau [20℄, Wal�sz [31℄, [32℄,

Bentkus and G�otze [2℄). The error an be even smaller. For example, Jarn��k [14℄ established the

bound O(t

�d=2+"

) for the relative error, with any " > 0, for almost all ellipsoids with axes parallel

to the oordinate axes. For general onvex domains with non-vanishing urvature on the boundary,

W. M�uller [22℄ proved that �




(t) = O(t

�2+�(d)+"

), where �(d) = (d + 4)=(d

2

+ d + 2), if d � 5,

�(4) = 6=17 and �(3) = 20=43, improving on earlier results by Kr�atzel and Nowak [19℄. For planar

domains, Huxley [11℄ obtained this estimate with �(2) = 46=73, whih implies the relative error

O(t

�100=73

(log t)

315=146

).

In this paper we study the mean square disrepany of the lattie rest, the square funtion

(1.2) G




(R) =

�

1

R

Z

2R

R

j�




(t)j

2

dt

�

1=2

and related expressions. For the ball B

d

in R

d

, entered at the origin, bounds and various asymptotis

for mean square disrepanies have been obtained by Wal�sz [32℄ for d � 4, Jarn��k [16℄ for d = 3

and Katai [17℄ for d = 2.

In the more general situation where the boundary of 
 is smooth and is assumed to have

everywhere non-vanishing Gaussian urvature, Nowak [25℄ proved that G




(R) = O(R

�3=2

) for planar
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domains. This estimate is sharp by the results of Bleher [3℄ who investigated the limit of R

3=2

G




(R)

as R ! 1. The higher dimensional ase was onsidered by W. M�uller [21℄, who proved a nearly

sharp estimate for d � 4, namely that G




(R) � C

"

R

�2+"

for any " > 0. The ase d = 3 was left

open.

The main purpose of this note is to show that the known endpoint bounds for the mean square

disrepany in the ase of the ball remain valid in the general ase, provided that d � 4. Moreover,

we prove a nearly sharp estimate in dimension d = 3, where we are o� by a fator of

p

logR.

Theorem 1.1. Let 
 be a onvex domain in R

d

ontaining the origin in its interior, and assume

that 
 has smooth boundary with everywhere non-vanishing Gaussian urvature. Then there exists

a onstant C(
), suh that for all R � 2,

(1.3) G




(R) � C(
)

8

>

<

>

:

R

�2

if d � 4

R

�2

logR if d = 3

R

�3=2

if d = 2

:

As we noted above, the sharp estimate O(R

�3=2

) in the plane was already known for more

general planar domains with the non-vanishing urvature assumption. In fat, it turns out that

this estimate holds even if we replae the mean square disrepany over [R; 2R℄ by the mean square

disrepany over substantially smaller intervals [R;R + h℄. A losely related result due to Huxley

[10℄ says that (

R

R+1

R

j�




(t)j

2

dt

�

1=2

� C




R

�3=2

(logR)

1=2

.

Theorem 1.2.1. Let 
 be a onvex domain in R

2

ontaining the origin in its interior, and assume

that 
 has C

1

boundary with non-vanishing urvature. Then there is a onstant C = C(
) so that

for all R � 2,

(1.4)

�

1

h

Z

R+h

R

j�




(t)j

2

dt

�

1=2

� C(
)R

�3=2

if logR � h � R:

As an immediate onsequene of Theorem 1.2.1, the mean square disrepany over [R;R+ h℄ is

dominated by C(
)R

�3=2

(logR)

1=2

h

�1=2

if 0 � h � logR. In partiular, the aforementioned result

of Huxley follows if we set h = 1.

We now onsider more general domains in the plane. We say that a onvex domain is of type

at most m if its boundary has order of ontat at most m with every tangent line. Thus if m = 2

we reover the ase of everywhere non-vanishing urvature onsidered above. It is known that the

analogue of Theorem 1.2.1 may fail if the order is greater than 2 (f. [26℄, [5℄, and [23℄). However

for almost all rotations the estimate remains true for the rotated domain. More preisely we have

the following result.

Theorem 1.2.2. Let 
 be a onvex domain in R

2

ontaining the origin in its interior, and assume

that the boundary is smooth and of �nite type at most m, in the sense that the order of ontat

of �
 with every tangent line is at most m. For A 2 SO(2), denote by A
 the rotated domain

fAx : x 2 
g. Then for almost all rotations A, the inequality (1.4) holds for A
, with the onstant

C

A


depending on A. More preisely, the following hold.
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(i) The maximal funtion

(1.5) C




(A) = sup

R�2

R

3=2

sup

logR�h�R

�

1

h

Z

R+h

R

j�

A


(t)j

2

dt

�

1=2

belongs to the weak type spae L

2m�2

m�2

;1

(SO(2)).

(ii) Let � be the set of all points P 2 �
 where the urvature vanishes, and for P 2 � assume

that the urvature vanishes of order m

P

� 2 (� m� 2). Let n

P

be the outer unit normal at P and

v

P

a unit tangent vetor at P . Then C




(A) < 1, if A satis�es, for some � > 0, the Diophantine

ondition

(1.6) max

P2�

supfjkj

m

P

m

P

�2

��

jhk;A

�

v

P

ij : dist(k;Rn

P

) � 1g > 0:

In partiular the set fA 2 SO(2) : C




(A) =1g is of Hausdor� dimension �

m�2

m�1

.

It is likely that one an weaken the Diophantine ondition and thus the estimate for the upper

bound of the Hausdor� dimension is presumably not sharp. The latter theorem is related to the

results by Colin de Verdi�ere [5℄ and Tarnopolska-Weiss [30℄ who proved similar statements about the

maximal funtion A 7! sup

t�1

t

4=3

�

A


(t); see also the improvements by Nowak [24℄ who obtained

the van der Corput type bounds j�

A


(t)j � C

A

t

�4=3�Æ

for suitable Æ = Æ(
) > 0, again under

appropriate Diophantine onditions on the rotation.

We remark that in Theorem 1.2.1 the smoothness assumption an be relaxed onsiderably;

moreover a slightly weaker variant of Theorem 1.2.2 holds without any assumption on the boundary

of the onvex domain. These issues are taken up in the sequel [13℄ to this paper.

Notation: Given two quantities A, B we write A . B if there is an absolute positive onstant,

depending only on the spei� domain 
, so that A � CB. We write A � B if A . B and B . A.

2. Preliminaries

We denote by 


�

the polar set of 
,

(2.1) 


�

= f� : hx; �i � 1 for all x 2 
g;

and let �

�

be the Minkowski funtional assoiated to 


�

; i.e. �

�

is homogeneous of degree 1 and

satis�es �

�

(�) = 1 if � 2 �


�

. Then, if P

+

(�) is the unique point in �
 at whih � is an outer normal

to �
, then

(2.2.1) �

�

(�) = hP

+

(�); �i:

Similary, if P

�

(�) is the unique point in �
 at whih � is an inner normal, then

(2.2.2) �

�

(��) = �hP

�

(�); �i:

If t 7! x(t) is a regular C

k

parametrization of �
 near a point P

0

= x(t

0

), and t 7! n(t) denotes

the outward unit normal vetor, then t 7! x

�

(t) = hx(t); n(t)i

�1

n(t) parametrizes the boundary of

3






�

, and x

�

is of lass C

k�1

. If �(P

0

) denotes the Gaussian urvature at P

0

, and �(P

0

) 6= 0 then

the parametrization t 7! x

�

(t) is regular near P

�

0

= x

�

(t

0

) and the urvature �

�

(P

�

0

) of �


�

at P

�

0

satis�es

(2.3) j�(P

�

0

)�(P

0

)j = (jP

0

j � jP

�

0

j)

�d�1

:

For these fats see e.g. Lemma 1 in [21℄.

We shall also need asymptotis for the indiator funtion of a onvex domains. Suppose that


 is of �nite line type (in the sense that every tangent line has �nite order of ontat with �
).

Let d� be a smooth density on the boundary of 
. We de�ne the Fourier transform by

b

f(�) =

R

f(y)exp({h�y; �i)dy, and then a result by Bruna, Nagel and Wainger [4℄ says that

(2.4.1)



d�(�) = e

�{hP

+

(�);�i

a

+

(�) + e

�{hP

�

(�);�i

a

�

(�);

where a

�

is smooth and satis�es the symbol estimates

(2.4.2) j�

�

�

a

�

(�)j � C

�



�

(�)j�j

�j�j

; j�j � 1

for all multiindies �, and 

�

is de�ned as follows. Let H

P

be the (aÆne) tangent plane to 
 at P .

Then 

�

(�) is the surfae measure of the ap

(2.5) 

�

(�) = �

�

fy 2 �
 : dist(y;H

P

�

(�)

) � j�j

�1

g

�

;

where � denotes surfae measure on �
. By the divergene theorem, �

x

i

�




= �n

i

d�, in the

sense of distributions, where n = (n

1

; : : : ; n

d

) is the outward unit normal. Thus we get �




(�) =

�{

P

d

i=1

(�

i

=j�j

2

)

[

n

i

d�(�). If one ombines this with (2.2.1/2) and (2.4.1/2), one obtains

(2.7) �




(�) = e

�{�

�

(�)

b

+

(�) + e

{�

�

(��)

b

�

(�);

where

(2.8) j�

�

�

b

�

(�)j � C

�



�

(�)j�j

�1�j�j

; j�j � 1:

In the ase of non-vanishing urvature one has 

�

(�) . j�j

�(d�1)=2

but of ourse the above

statement, and more preise asymptotis, follow from the method of stationary phase as in papers

by Hlawka [8℄ (see also x7 in [9℄). More generally, for �nite type domains one has

(2.9) 

�

(�) . j�(x

�

(�))j

�1=2

j�j

�(d�1)=2

:

This is proved in [29℄, and an also be dedued from the ap estimates (2.5) using an argument

in [6℄. However, it should be noted that these results are muh easier in the two-dimensional ase

needed here. See [27℄ and also [1℄.

De�nitions. Let Æ

0

> 0 be �xed so that the ball B

2Æ

0

(0) with enter 0 and radius 2Æ

0

is ontained

in 
. Let � be a smooth nonnegative radial uto� funtion supported in the ball B

Æ

(0) so that

R

�(x)dx = 1. Let �

"

(x) = "

�d

�(x=").

We set N(t) = N




(t),

E(t) = N(t)� t

d

vol(
);

and

(2.10)

N

"

(t) =

X

k2Z

d

�

t


� �

"

(k)

E

"

(t) = N

"

(t)� t

d

vol(
):

We also denote by N

�

"

(t) and E

�

"

(t) the orresponding expressions for the polar domain 


�

.
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Three elementary Lemmas.

Lemma 2.1. Suppose that 
 has C

1

boundary. Then there is a onstant C = C(
) suh that for

1 � R � t � 2R, 0 < " � 1,

jE

"

(t� ")j � Ct

d�1

" � jE(t)j � jE

"

(t+ ")j+ Ct

d�1

"(2.11.1)

jE(t� ")j � Ct

d�1

" �jE

"

(t)j � jE(t+ ")j+ Ct

d�1

"(2.11.2)

Proof. By the properties of the the uto� �

"

we have

N

"

(t� ") � N(t) � N

"

(t+ ");

and if we subtrat V (t) = t

d

vol(
) throughout, we get

E

"

(t� ") + [V (t� ")� V (t)℄ � E(t) � E

"

(t+ ") + [V (t+ ")� V (t)℄:

Clearly jV (t � ") � V (t)j . t

d�1

" and (2.11.1) follows. (2.11.2) follows as well if we apply (2.11.1)

with t� " in plae of t. �

Lemma 2.2. Suppose that � 2 [0; 1℄ and that the estimate

(2.12) sup

t>0

t

�(d�1��)

jE(t)j � C

1

holds. Then for t � 1

(2.13) E

"

(t) . maxft

d�1��

; t

d�1

"g:

Moreover there a onstant C so that for 0 < " � h � r

�

�

�

�

1

h

Z

r+h

r

jE(t)j

2

dt

�

1=2

�

�

1

h

Z

r+h

r

jE

"

(t)j

2

dt

�

1=2

�

�

�

� Cr

d�1

[h

�1=2

"

1=2

r

��

+ "℄:

Proof. We �rst observe that (2.13) is immediate by Lemma 2.1. We integrate and obtain

Z

r+h

r

jE(t)j

2

dt �

Z

r+h+"

r

jE

"

(t)j

2

dt+ Chr

2d�2

"

2

�

Z

r+h

r

jE

"

(t)j

2

dt+ Chr

2d�2

"

2

+ C

0

"r

2(d�1��)

;

whih implies one of the desired inequalities, the other is obtained in the same way. �

Lemma 2.3. Let 0 < " < 1 and let for � � 1

(2.15) S(�; ") = ardf` 2 Z

d

: � � " � �(`) � � + "g:

Then

(2.16) S(�; ") � C

1

�

d�1

"+ C

2

�

Z

�+"=2

��"=2

E

�

(t)

2

N

0

�

(t)dt

�

1=3

; � =

4"

Æ

0

:

5



Proof. Let t 2 (� � "; � + "). We use the elementary inequality

Z

�

(t+h)
nt


(x� y)�

�d

�(�

�1

y)dy � 

0

h=� if h� ", x 2 (� + ")
 n (� � ")
.

This implies

N

�

(t+ h)�N

�

(t) =

X

k

Z

�

(t+h)
nt


(k � y)�

�d

�(�

�1

y)dy

� 

0

h

�

S(�; ")

and thus

(2.17) N

0

�

(t) � 

0

S(�; ")"

�1

; jt� � j � "; � =

4"

Æ

0

:

We now turn to the proof of (2.16). We may assume that S(�; ") � C

1

"�

d�1

with C

1

=

d2

d+1



�1

0

vol(
). Then by (2.17),

E

0

�

(t) = N

0

�

(t)� d t

d�1

vol(
)

� N

0

�

(t)� d (2�)

d�1

vol(
)

� 

0

S(�; ")"

�1

� 2

d

C

�1

1

d "

�1

vol(
)S(�; ")

� 

0

(2")

�1

S(�; "):(2.18)

Let I

�;"

= [� � "=2; � + "=2℄ and pik t

0

2 I

�;"

so that min

t2I

�;"

jE

�

(t)j = jE

�

(t

0

)j; thus jE

�

(t)j �

jE

�

(t) � E

�

(t

0

)j=2 and jE

�

(t)j � j

R

t

t

0

E

0

�

(s)dsj=2 � 

0

(4�)

�1

jt � t

0

jS(�; "). We use also (2.17) and

obtain that

Z

�+"=2

��"=2

E

�

(t)

2

N

0

�

(t)dt �

Z

�+"=2

��"=2

(



0

4"

S(�; "))

2

jt� t

0

j

2


0

"

S(�; ") dt � [S(�; ")℄

3

as asserted. �

3. Proof of Theorem 1.1

In this setion we assume that 
 has a smooth boundary with everywhere non-vanishing ur-

vature. This implies that 


�

is also smooth and has everywhere non-vanishing Gaussian urvature.

See (2.3) above. We estimate the square-funtion

G

"

(R) =

�

1

R

Z

2R

R

jE

"

(t)j

2

dt

�

1=2

for 0 < " � 1=2 and R � 2, and set

(3.1) w

d

(R) =

8

>

<

>

:

R

2�d

if d � 4

(R logR)

�1

if d = 3

R

�1=2

if d = 2

6



and for 0 < s � 1=2 let

(3.2) A

d

(s) = sup

s<"�1=2

sup

R�2

(1 + "R)

�d�1

w

d

(R)G

"

(R):

Analogously, we denote by A

�

d

(s) the orresponding quantity assoiated to 


�

. It is not hard to see

that A

d

(s) is �nite for every s sine we have a trivial estimate A

d

(s) . sup

R�2

(1+sR)

�d�1

R . s

�1

;

and, similarly, A

�

d

(s) . s

�1

for every s � 1=2. We shall see that A

d

(s) is bounded as s ! 0. One

this is established, the required bound for G




follows from

(3.3) G




(R) . R

�d

�

G

1=R

(R) +R

d�2

�

;

whih is a onsequene of Lemma 2.2.

The boundedness of A

d

(s) an be dedued from the following iterative proedure.

Proposition 3.1. There is a onstant C




so that for s � 1=2

(3.4) A

d

(s)

2

� C




�

1 +A

�

d

(s)

�

:

Indeed, sine 


��

= 
, (3.4) implies that A

�

d

(s)

2

� C




�

�

1 +A

d

(s)

�

, so

A

d

(s)

2

� C




(1 +

p

C




�

(1 +A

d

(s)))

from whih the boundedness of A

d

is immediate.

Proof of Proposition 3.1. We estimate G

"

(R) assuming �rst that

R

�1

� " � 1=2:

We apply the Poisson summation formula

P

k2Z

d

f(k) = (2�)

d

P

k2Z

d

b

f(2�k) to f = �




(t�) � �

"

.

This yields

(3.5.1) E

"

(t) =

X

k 6=0

(2�t)

d

�




(2�tk)

b

�(2�"k):

We split E

"

(t) =

P

�

E

�

"

(t) by using (2.7/8); here

(3.5.2)

E

+

"

(t) =

X

k 6=0

(2�t)

d

b

+

(2�tk)exp(�2�{�

�

(k))

E

�

"

(t) =

X

k 6=0

(2�t)

d

b

�

(2�tk)exp(2�{�

�

(�k)):

Now �x a nonnegative � 2 C

1

(R) so that �(t) = 1 for t 2 [1; 2℄ and � is supported in (1=2; 3).

Then

G

"

(R) � G

+

"

(R) +G

�

"

(R)

:=

X

�

�

R

�1

Z

jE

�

"

(t)j

2

�(R

�1

t)dt

�

1=2

:

7



We shall only onsider estimates for G

+

"

(R) beause the estimates for G

�

"

(R) are exatly analogous.

Multiplying out the squared expression we get

(3.6) G

+

"

(R)

2

=

X

k 6=0

k

0

6=0

b

�(2�"k)

b

�(2�"k

0

)R

�1

Z

e

2�{t(�

�

(k)��

�

(k

0

))

q

k;k

0

(t)dt

where

(3.7) q

k;k

0

(t) = b

+

(2�tk)b

+

(2�tk

0

)t

2d

�(t=R):

Thus q

k;k

0

is supported in [R=2; 3R℄ and by (2.8) and 

�

(�) = O(j�j

�(d�1)=2

) we have the symbol

estimates

(3.8)

�

�

�

�

d

dt

�

m

q

k;k

0

(t)

�

�

�

� C

m

R

d�1�m

jkj

�(d+1)=2

jk

0

j

�(d+1)=2

:

We now integrate by parts in t. We note that jkj � �

�

(k) and j

b

�(2�k=R)j � C

N

(1 + jk=Rj)

�N

and

obtain the estimate

G

+

"

(R)

2

� C

M;N

X

k 6=0

X

k

0

6=0

R

d�1

(1 +Rj�

�

(k)� �

�

(k

0

)j)

�M

(1 + "jkj+ "jk

0

j)

�N

[�

�

(k)�

�

(k

0

)℄

�

d+1

2

:

The terms with j�

�

(k) � �

�

(k

0

)j � R

�1=2

give a ontribution of O(R

d�1�M=2

"

�2d

) =

O(R

3d�1�M=2

) and we may hoose M = 6d.

Thus

G

+

"

(R)

2

� C

1

X

�R

1=2

�n�R

1=2

X

k 6=0

(1 + "�

�

(k))

�N

X

j�

�

(`)��

�

(k)j

2[

n�1

R

;

n

R

℄

R

d�1

(1 + n)

M

[�

�

(k)℄

�d�1

+ C

2

R

3d�1�M=2

� C

0

1

R

d�1

X

�R

1=2

�n�R

1=2

(1 + n)

�M

X

k 6=0

(1 + "�

�

(k))

�N

S

�

(�

�

(k);

n+1

R

)

�

�

(k)

d+1

+ C

0

2

R

3d�1�M=2

;(3.9)

here reall that S

�

(�; ") = ardf` 2 Z

d

: � � " � �

�

(`) � � + "g. Now

X

k 6=0

(1 + "�

�

(k))

�N

S

�

(�

�

(k);

n+1

R

)

�

�

(k)

d+1

.

1

X

l=0

2

�l

(1 + "2

l

)

�N

�

1

2

ld

X

2

l

��

�

(k)<2

l+1

[S

�

(�

�

(k);

n+1

R

)℄

2

�

1=2

.

1

X

l=0

2

�l

(1 + "2

l

)

�N

[(n+ 1)I

l

+ II

n;l

℄

where

I

l

=

�

1

2

ld

X

2

l

��

�

(k)<2

l+1

�

�

(k)

2d�2

R

�2

�

1=2

;

II

n;l

=

�

1

2

ld

X

2

l

��

�

(k)<2

l+1

Z

�

�

(k)+(n+1)=2R

�

�

(k)�(n+1)=2R

E

�

�

(t)

2

N

�

�

0

(t)

S

�

(�

�

(k);

n+1

R

)

dt

�

1=2

;

8



with � = 4"=Æ

0

; here we used Lemma 2.3. Observe that for N large,

1

X

l=0

2

�l

(1 + "2

l

)

�N

I

l

. R

�1

1

X

l=0

2

l(d�2)

(1 + "2

l

)

�N

.

�

R

�1

"

2�d

if d � 3

R

�1

log(2 + "

�1

) if d = 2

(3.10)

and thus, sine we are assuming " � 1=R,

R

d�1

1

X

l=0

2

�l

(1 + "2

l

)

�N

I

l

. R

d�2

maxf"

2�d

; log(2 + "

�1

)g . w

d

(R)

�2

:

We now estimate II

n;l

and set J

k;n

:= [�

�

(k)� (n+ 1)=2R; �

�

(k) + (n+ 1)=2R℄. Observe that

S(�

�

(k);

n+1

R

) = ardf` : �

�

(k)�

n+1

R

� �

�

(`) � �

�

(k) +

n+1

R

g

� ardf` : t�

n+1

2R

� �

�

(`) � t+

n+1

2R

g if jt� �

�

(k)j �

n+1

2R

;

whih is saying that S(�

�

(k);

n+1

R

) � S(t;

n+1

2R

) if t 2 J

k;n

. Thus

X

2

l

<�

�

(k)�2

l+1

�

J

k;n

(t)

S(�

�

(k);

n+1

R

)

�

1

S(t;

n+1

2R

)

X

k

�

J

k;n

(t) = 1:

Therefore

II

2

n;l

= 2

�ld

Z

h

X

2

l

��

�

(k)<2

l+1

�

J

k;n

(t)

i

E

�

�

(t)

2

N

�

�

0

(t)

S

�

(�

�

(k);

n+1

R

)

dt

�

1

2

ld

Z

2

l+2

2

l�1

E

�

�

(t)

2

N

�

�

0

(t)dt

=

1

2

ld

Z

2

l+2

2

l�1

E

�

�

(t)

2

E

�

�

0

(t)dt +

1

2

ld

Z

2

l+2

2

l�1

E

�

�

(t)

2

d

dt

(vol(t
))dt

�

1

2

ld

�

[E

�

�

(2

l+2

)℄

3

3

�

[E

�

�

(2

l�1

)℄

3

3

�

+

C

2

l

Z

2

l+2

2

l�1

E

�

�

(t)

2

dt

.

�

2

l(2d�6+

6

d+1

)

+ 2

l(2d�3)

�

3

+

1

2

l

Z

2

l+2

2

l�1

E

�

�

(t)

2

dt

�

;

here we have used the estimate jE

�

�

(t)j . 2

l(d�2+

2

d+1

)

+ 2

l(d�1)

�, t � 2

l

, whih by Lemma 2.1 is a

onsequene of the lassial estimate jE

�

(t)j = O(t

d�2+

2

d+1

), d � 2. Thus

R

d�1

1

X

l=0

2

�l

(1 + "2

l

)

�N

II

n;l

. R

d�1

�

1

X

l=0

(1 + "2

l

)

�N

h

2

l(d�4+

3

d+1

)

+ 2

l(d�5=2)

�

3=2

+ 2

�l

�

1

2

l

Z

2

l+2

2

l�1

jE

�

�

(t)j

2

dt

�

1=2

i�

. R

d�1

"

3�d

+R

d�1

1

X

l=0

2

�l

(1 + "2

�l

)

�N

1

X

i=�1

G

�

(2

l�i

)

. R

d�1

"

3�d

+R

d�1

1

X

l=0

2

�l

(1 + "2

�l

)

�N

(1 + �2

l

)

d+1

w

d

(2

l

)

sup

r�0

�

(1 + �2

r

)

�d�1

G

�

�

(2

r

)w

d

(2

r

)

	

:

(3.11)
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Now sine R

d�1

"

3�d

. w

d

(R)

�2

for " � R

�1

we have

R

d�1

1

X

l=0

2

�l

�

w

d

(2

l

)

�

�1

(1 + "2

�l

)

�N

(1 + �2

�l

)

d+1

. R

d�1

1

X

l=0

2

�l

�

w

d

(2

l

)

�

�1

(1 + �2

�l

)

�N+d+1

. w

d

(R)

�2

(1 + �R)

d�2

;(3.12)

where the third inequality follows in a straightforward manner from the de�nition of w

d

. It is

preisely at this point where one needs to distinguish the ases d = 2, d = 3 and d � 4. Combining

the previous estimates (3.10), (3.11) with (3.12) we obtain for s � 1 and maxfs;R

�1

g � " � 1=2

�

(1 + "R)

�d�1

w

d

(R)G

+

"

(R)

�

2

. 1 + (1 + �R)

�2d�2

w

d

(R)

2

R

d�1

X

l�0

(1 + "2

l

)

�N

X

jnj�R

1=2

(1 + n)

�3

�

(n+ 1)I

l

+ II

n;l

�

. 1 + sup

r�0

�

(1 + �2

r

)

�d�1

G

�

�

(2

r

)w

d

(2

r

)

	

(3.13)

for � = 4"=Æ

0

The same estimate holds for G

�

"

(R) and thus for G

"

(R). Consequently, sine " � �,

we have

(3.14)

�

(1 + "R)

�d�1

w

d

(R)G

"

(R)

�

2

� C(1 +A

�

d

(s)) if R

�1

� " � 1=2

The required estimate for " � 1=R follows from a small modi�ation. Namely we an use Lemma

2.2 to see that

G

"

(R) � C

1

h�

1

R

Z

2R

R

jE(t)j

2

dt

�

1=2

+R

d�2

i

. C

2

h�

1

R

Z

2R

R

jE

1=R

(t)j

2

dt

�

1=2

+R

d�2

i

:

Thus

(1 + "R)

�2(d+1)

w

d

(R)

2

G

"

(R)

2

. w

d

(R)

2

�

R

2d�4

+G

1=R

(R)

2

�

� C(1 +A

�

d

(s)) if s � " � R

�1

:(3.15)

The desired estimate (3.4) follows from (3.14), (3.15). �

4. Loalized square funtions in the plane

In this setion we give the simple proof of Theorem 1.2.1. We assume that 
 is a onvex domain

in the plane, with smooth boundary, and that the urvature does not vanish at the boundary.

10



We may apply Lemma 2.2 with � = 0, say, and we let 1 � h � R and " = R

�1

. Then

(4.1)

�

1

h

Z

R+h

R

jE(t)j

2

dt

�

1=2

.

h�

1

h

Z

R+h

R

jE

1=R

(t)j

2

dt

�

1=2

+ (R=h)

1=2

i

:

Let �

0

be a nonnegative C

1

funtion supported in (�1=2; 3=2) and whih equals 1 on [0; 1℄. Then

(4.2)

1

h

Z

R+h

R

jE

1=R

(t)j

2

dt .

X

�

1

h

Z

jE

�

1=R

(t)j

2

�

0

(

t�R

h

)dt

with E

�

as in (3.5.2). The expressions on the right hand side are estimated by integration by parts,

as in the previous setion. We square the series. The uto� �(t=R) is now replaed by �

0

(

t�R

h

) and

this a�ets the argument sine in the symbol estimates for the modi�ation of q

k;k

0

the estimate

R

d�1�m

in (3.8) is now replaed by R

d�1

h

�m

.

As a result we obtain the estimate

1

h

Z

jE

�

1=R

(t)j

2

�

0

(

t�R

h

)dt

. R

X

k 6=0

X

k

0

6=0

(1 + hj�

�

(k)� �

�

(k

0

)j)

�M

(1 + jkj=R+ jk

0

j=R)

�N

j�

�

(k)�

�

(k

0

)j

�3=2

and this term is estimated by a onstant times

(4.3)

X

jnj�R

1=2

X

k 6=0

(1 + jnj)

�M

�

�

(k)

�3

(1 + �

�

(k)=R)

�N

S

�

(�

�

(k) +

n

h

;

1

h

) +R

1�M=2

;

where, as before, S

�

(�; ") = ard

�

f` 2 Z

2

: � � " � �

�

(`) � � + "g

�

:

Now by the lassial estimate for the remainder term E(t) with t = �

�

(k) + (n � 1)=h � �

�

(k)

we have

(4.4) S

�

(�

�

(k) +

n

h

;

1

h

) . h

�1

�

�

(k) + �

�

(k)

2=3

:

Putting the previous estimates together, we have

1

h

Z

jE

�

1=R

(t)j

2

�

0

(

t�R

h

)dt . R

X

k 6=0

(1 +R

�1

�

�

(k))

�N

minfh

�1

�

�

(k)

�2

; �

�

(k)

�7=3

g+R

1�M=2

. R

�

1 + h

�1

logR

�

whih is O(R) if h & logR. This �nishes the proof of Theorem 1.2.1. �

5. Estimates for �nite type domains in the plane

We shall give a proof of Theorem 1.2.2. Let 
 be a onvex �nite type domain in R

2

whih

ontains the origin in its interior. We �rst give a version of the standard lattie rest estimate for the

polar set 


�

whih has a C

1

boundary.

Lemma 5.1. We have the following estimate for the Fourier transform of the harateristi funtion

of 


�

,

(5.1)

�

�

d�




�

(�)

�

�

� C(1 + j�j)

�3=2

:

Taken Lemma 5.1 for granted we obtain as a onsequene

11



Corollary 5.2. Let 
 be a onvex set in R

2

, ontaining the origin in its interior and suppose that


 has smooth �nite type boundary. Let 


�

be the polar set. Then

(5.2) N




�

(t) = t

2

area(


�

) +O(t

2=3

)

as t!1.

Proof. This follows from Lemma 5.1 using the standard argument (see e.g. [8℄, or x7 of [9℄).

The Corollary an be improved by using more sophistiated tehniques whih however are not

needed here.

Before proving Lemma 5.1 we reall some terminology: We denote by � the set of all points in

�
 at whih the urvature vanishes; these points are separated and thus � is �nite. For every P 2 �

let m

P

be the type at P (i.e. the urvature vanishes of order m

P

� 2 at P ). For every P 2 �
 there

is a unique P

�

2 �


�

so that hP; P

�

i = 1 and we de�ne �

�

= fP

�

: P 2 �g.

Proof of Lemma 5.1.

The boundary �


�

is smooth away from �

�

and it is C

1

everywhere. Thus surfae measure d� is

well de�ned and by an appliation of the divergene theorem as in x2 estimate (5.1) follows provided

we an show that

(5.3) j

d

�d�(�)j . (1 + j�j)

�1=2

for � 2 C

1

0

.

To see this we introdue a partition of unity �d� =

P

�

�

�

d� where eah P

�

2 �

�

lies in exatly

one of the supports of the funtions �

�

. Clearly it suÆes to prove the estimate

d

d�

�

(�) = O(j�j

�1=2

)

for eah �

�

:= �

�

d�.

Fix � and P 2 �. If P

�

=2 supp d�

�

then

d

d�

�

(�) = O(j�j

�1=2

) by the standard stationary phase

argument. Thus suppose P 2 � \ supp d�

�

. By a rotation we may assume that n

P

= (0; 1) and by

an additional translation we may also assume that P lies on the x

2

-axis. Let m = m

P

be the type

at P . Near P the boundary of 
 is parametrized by (t; f(t)) where

f(t) = a

0

� a

m

t

m

m

+ t

m+1

g

1

(t)

with a

0

> 0, a

m

> 0. Thus a parametrization of �


�

near P

�

= (a

�1

0

; 1) is given by

t 7!

n(t)

hx(t); n(t)i

=

1

f(t)� tf

0

(t)

(�f

0

(t); 1)

p

1 + f

0

(t)

2

;

however this parametrization is not regular. Denote by !(t) the �rst oordinate of hx(t); n(t)i

�1

n(t).

Then it is easy to see that

!(t) = (a

m

=a

0

)t

m�1

(1 + tg

2

(t)) = (

0

s(t))

m�1

where 

0

= (a

m

=a

0

)

1=(m�1)

and s(t) = t+O(t

2

). Moreover

(f(t)� tf

0

(t))

�1

(

p

1 + f

0

(t)

2

)

�1

= a

�1

0

�

1�

m�1

m

a

m

a

0

t

m

+ t

m+1

g

2

(t)

�

:

12



Thus setting � = (

0

s(t))

m�1

we see after a short omputation that near P

�

the boundary is

parametrized by � 7! (�; h(�)) with

h(�) = a

�1

0

�

1� 

1

�

m=(m�1)

+ �

m+1

m�1

g

3

(�

1

m�1

)

�

where 

1

= (m � 1)m

�1

(a

m

=a

0

)

�m

0

= (m � 1)m

�1

(a

m

=a

0

)

�1=(m�1)

and g

3

is smooth. Thus we

have to show that

(5.4) J(�) =

Z

e

�i(�

1

�+�

2

h(�))

�(�)d� = O(j�j

�1=2

)

as j�j ! 1; here we may assume that the support of �

�

is ontained in a small interval (�Æ; Æ).

It suÆes to estimate the analogous integral extended over the set f� : j� j � j�j

�1=2

sine the

error is O(j�j

�1=2

). Observe that for small � we have jh

0

(�)j � 1 and jh

00

(�)j � �

�(m�2)=(m�1)

& 1.

Thus by van der Corput's lemma ([28℄, h. VIII.1) we obtain for large j�j the estimate jJ(�)j . j�

1

j

�1

if j�

1

j � j�

2

j (using �rst derivatives of the phase funtion) and the estimate jJ(�)j . j�

2

j

�1=2

if

j�

2

j � j�

1

j (using seond derivatives). This implies (5.4) and thus (5.3). �

Proof of Theorem 1.2.2. We shall deompose the Fourier transform of �




as in [27℄, following

rather losely [13℄. Using the divergene theorem as above, we see that

(5.5) �




(�) = {

d

X

i=1

�

i

j�j

2

Z

�

n

i

(y)e

�{hy;�i

d�(y)

where n

i

denotes the i

th

omponent of n

P

.

For every P 2 � we hoose a narrow oni symmetri neighborhood V

P

of the normals f�n

P

g,

a small neighborhood U

P

of P in � and a C

1

0

funtion �

P

whose restrition to � vanishes o� U and

so that �

P

equals one in a neighborhood of P . We may arrange these neighborhoods so that the sets

V

P

\ f� : j�j � 1g, P 2 � are pairwise disjoint and that the normals to all points in a neighborhood

of U

P

are ontained in V

P

, so that the U

P

's are disjoint too.

De�ne

F

i;P

(�) =

Z

�

�

P

(y)n

i

(y)e

�{hy;�i

d�(y)

Let v

P

a unit tangent vetor to �
 at P . Then if the ones V

P

are hosen suÆiently narrow, we

have

(5.5)

d

X

i=1

�

i

j�j

2

F

i;P

(�) = e

�{�

�

(�)

b

+

(�) + e

{�

�

(��)

b

�

(�)

where

(5.6) j�

�

�

b

�

(�)j � C

�

(

j�j

�1�j�j

minfj�j

�

1

m

P

; �

�

1

2

�

P

(�)g if � 2 V

P

C

N

j�j

�N

if � =2 V

P

;

with

(5.7) �

P

(�) =

�

�

�

hv

P

; �i

hn

P

; �i

�

�

�

�

m

P

�2

2(m

P

�1)

:

13



This follows from (2.8) (with � = 0) and (2.9) by a straightforward omputation. Moreover

(5.8)

d

X

i=1

�

i

j�j

2

�

F

i

(�)�

X

P2�

F

i;P

(�)

�

= e

�{�

�

(�)



+

(�) + e

{�

�

(��)



�

(�)

where

(5.9) j�

�

�



�

(�)j � C

�

j�j

�3=2�j�j

:

The estimate for � 2 V

P

follows from Proposition 1.2, and the estimate for � =2 V

P

follows by

a simple integration by parts; namely if t 7! (t) parametrizes � near P then jh

0

(t); �ij � j�j for

(t) 2 U

P

and � =2 V

P

.

Moreover by the usual stationary phase or van der Corput estimate we have

(5.10) jF

i

(�)�

X

P2�

F

i;P

(�)j . (1 + j�j)

�1=2

here we used the de�nition of � and the fat that �

P

is equal to 1 near P .

Let E

1=R;A

(t) be the remainder term (2.10) with " = 1=R, with 
 replaed by the rotated

domain A
; that is

E

1=R;A

(t) =

X

k2Z

2

�

t


� �

1=R

(A

�1

k)� t

2

area(
)

=

X

k 6=0

t

2

b

�(2�R

�1

Ak)

d

X

i=1

2�thAk; e

i

i

j2�tAkj

2

F

i

(2�tAk)(5.11)

For P 2 �, A 2 SO(2) let

Z

P

I

(A) = fk 2 Z

d

: Ak 2 V

P

; k 6= 0; dist(Ak;Rn

P

) < 1g

Z

P

II

(A) = fk 2 Z

d

: Ak 2 V

P

; k 6= 0; dist(Ak;Rn

P

) � 1g

and let

Z

III

(A) = fk 2 Z

d

: k 6= 0; k =2 [

P2�

V

P

g:

We may use estimate (4.1) whih does not depend on any urvature assumptions and see that it

suÆes to estimate the square funtion (h

�1

R

jE

1=R;A

(t)j

2

�

0

(

t�R

h

)dt)

1=2

(f. (4.2)). We deompose

for R � t � 2R

E

1=R;A

(t) =

�

X

P2�

X

k2Z

P

I

(A)

+

X

P2�

X

k2Z

P

II

(A)

t

2

b

�(2�R

�1

Ak)

d

X

i=1

2�thAk; e

i

i

j2�tAkj

2

F

i;P

(2�tAk)

+

X

k2Z

III

(A)

t

2

b

�(2�R

�1

Ak)

d

X

i=1

2�thAk; e

i

i

j2�tAkj

2

�

F

i

(2�tAk)�

X

P2�

F

i;P

(2�tAk)

�

+

X

P

X

k=2V

P

t

2

b

�(2�R

�1

Ak)

d

X

i=1

2�thAk; e

i

i

j2�tAkj

2

F

i;P

(2�tAk)

=

X

�

�

X

P2�

I

�

P

(t) +

X

P2�

II

�

P

(t) + III

�

(t)

�

+ IV (t)

14



where

(5.12) jIV (t)j = O(t

�N

)

and

I

+

P

(t; A) =

X

k2Z

P

I

(A)

b

�(2�R

�1

Ak)b

+

(2�tAk)e

�2�it�

�

(Ak)

II

+

P

(t; A) =

X

k2Z

P

II

(A)

b

�(2�R

�1

Ak)b

+

(2�tAk)e

�2�it�

�

(Ak)

III

+

(t; A) =

X

k2Z

P

III

(A)

b

�(2�R

�1

Ak)

+

(2�tAk)e

�2�it�

�

(Ak)

;

and the expressions I

�

P

, II

�

P

and III

�

P

are de�ned by replaing b

+

by b

�

, 

+

by 

�

, and e

�2�it�

�

(Ak)

by e

2�it�

�

(�Ak)

.

The argument in the previous setion applies to the square funtions assoiated to III

�

(t; A)

and we obtain the bound

(5.13)

1

h

Z

jIII

�

(t; A)j

2

�

0

(

t�R

h

)dt . R(1 + h

�1

logR);

uniformly in A.

A small variation of this argument also applies to the square funtion assoiated to II

�

P

(t; A).

Namely, arguing as in x3 and using (5.6/7) we see that

1

h

Z

jII

+

P

(t; A)j

2

�

0

(

t�R

h

)dt

. 2

X

k2Z

P

II

(A)

k

0

2Z

P

II

(A)

�

P

(Ak)��

P

(Ak

0

)

R(1 + hj�

�

(Ak)� �

�

(Ak

0

)j)

�N

�

1 +

jkj+ jk

0

j

R

�

�N

�

P

(Ak)�

P

(Ak

0

)

�

�

(Ak)

3=2

�

�

(Ak

0

)

3=2

. R

X

k2Z

P

II

(A)

�

P

(Ak)

2

�

�

(Ak)

3

X

n2Z

jnj�2

k�5

(1 + n)

�N

(1 + jkj=R)

�N

S

�

A

(�

�

(Ak) +

n

h

;

1

h

) +R

4�N

where now S

�

A

(�; ") = ard

�

f` 2 Z

2

: � � " � �

�

(A`) � � + "g

�

:

Observe that dist(Ak;Rn

P

) � 1 and dist(A�;Ak) � 1=2 implies that �

P

(Ak) � �

P

(A�). Thus

we an use the argument in x3 and Lemma 5.1 and estimate

1

h

Z

R+h

R

jII

�

P

(t; A)j

2

�

0

(

t�R

h

)dt

. R

Z

V

P

(1 + j�

�

(�)j)

�3

�

2

P

(�)(1 +R

�1

�

�

(�))

�N

minfh

�1

�

�

(�)

�2

; �

�

(k)

�7=3

gd� +R

1�M=2

:
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Sine �

2

P

is homogeneous of degree 0 and integrable over the sphere f�

�

(�) = 1g it is easy to see

that the former expression is bounded by R(1 + h

�1

logR); thus

(5.14)

1

h

Z

R+h

R

jII

+

P

(t; A)j

2

dt . R(1 + h

�1

logR);

for jhj � R, uniformly in A. The same estimate holds true with II

+

P

replaed by II

�

P

- the proof only

requires hanges in the notation.

In order to estimate the square funtion involving I

+

P

, we let S

P

(A) be the set of all k 2 Z

2

nf0g

with dist(k;RA

�

n

P

) < 1, and de�ne

M

P;"

(A) = sup

�

jkj

�1+"

�

P

(k) : k 2 S

P

(A)

	

:

Then

1

h

Z

jI

+

P

(t)j

2

�

0

(

t�R

h

)dt

.

X

k2S

P

(A)

X

k

0

2S

P

(A)

R(1 + hj�

�

(Ak)� �

�

(Ak

0

)j)

�N

(1 +

jkj+jk

0

j

R

)

�N

�

P

(Ak)�

P

(Ak

0

)

jkj

3=2

jk

0

j

3=2

.M

P;"

(A)

2

X

k2S

P

(A)

R(1 + hj�

�

(Ak)� �

�

(Ak

0

)j)

�N

(1 +

jkj+jk

0

j

R

)

�N

jkj

�"�1=2

jk

0

j

�"�1=2

.M

P;"

(A)

2

X

k2S

P

(A)

R(1 + jkj=R)

�N

jkj

�1�2"

;

and thus

(5.15)

1

h

Z

jI

+

P

(t)j

2

�

0

(

t�R

h

)dt � C

"

M

P;"

(A)

2

R:

Again the same estimate remains true for I

�

P

(t).

For eah k 6= 0 the funtion A 7! �

P

(Ak) belongs to the spae L

(2m

P

�2)=(m

P

�2);1

. For � > 0

the set fA 2 SO(2) : M

P;"

(A) > �g is the union of the sets E

k

(�) = fA : �

P

(Ak) > jkj

1�"

�g,

k 2 Z

2

n f0g and the measure of E

k

(�) is . (k

1�"

�)

�(2m

P

�2)=(m

p

�2)

. Sine (2m

P

� 2)=(m

p

� 2) > 2

we may sum over all k 2 Z

2

n f0g and we see that M

P;"

2 L

(2m

P

�2)=(m

P

�2);1

(SO(2)) provided that

" � 1=2. Combining the estimates (5.12-5.15) this proves that C




2 L

(2m

P

�2)=(m

P

�2);1

(SO(2)).

The Diophantine ondition (1.6) for some � > 0 is equivalent with the ondition M

P;"

(A) <1,

for some " > 0. Fix P . The estimates (5.12-15) show that C




(A) =1 also implies M

P;"

(A) =1 for

at least one P 2 �. Thus we an omplete the proof if for any suÆiently small " > 0 we demonstrate

that the set fA 2 SO(2) :M

P;"

(A) =1g has Hausdor� dimension � (m

P

� 2)(m

P

� 1)

�1

(1� ")

�1

.

Set � = (m

P

� 2)=(2m

P

� 2), thus � < 1=2. Now M

P;"

(A) =1 implies that there are in�nitely

many k 2 S

P

(A) so that jkj

"�1

jhk=jkj; v

P

ij

��

� 1. If A

�

v

P

= (�

1

; �

2

) this means jk

1

�

1

+ k

2

�

2

j �

jkj

(��1+")=�

. Now j�

1

j � j�

2

j implies jk

1

j . jk

2

j and j�

2

j � j�

1

j implies jk

2

j . jk

1

j (as k 2 S

P

(A)).

Thus if j�

1

j � j�

2

j the ondition M

P;"

(A) =1 implies that for in�nitely many k with jk

2

j � jkj we

have that

(5.16.1) jk

1

=k

2

� �

2

=�

1

j � Cjk

2

j

("�1)=�

or jk

1

=k

2

+ �

2

=�

1

j � Cjk

2

j

("�1)=�

:
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Likewise, if j�

2

j � j�

1

j and M

P;"

(A) =1 then

(5.16.2) jk

2

=k

1

� �

1

=�

2

j � Cjk

1

j

("�1)=�

or jk

2

=k

1

+ �

1

=�

2

j � Cjk

1

j

("�1)=�

for in�nitely many k with jk

1

j � jkj.

Let P

�

denote the set of all x 2 [�1; 1℄ for whih there exists in�nitely many rationals p=q suh

that jx � p=qj � q

�2��

. By a Theorem of Jarn��k [15℄ (see also [18℄) the Hausdor� dimension of P

�

is equal to 2=(2 + �) (and we need only the easy upper bound). Now hoose in (5.16.1/2) a small

" > 0 (in partiular so that � < (1� ")=2) and we apply the last statement with � = (1� ")�

�1

� 2

and then 2=(2 + �) = 2�(1� ")

�1

= (m

P

� 2)(m

P

� 1)

�1

(1� ")

�1

.

Consequently, with m being the maximal type, the Hausdor� dimension of the set fA 2 SO(2) :

C




(A) =1g does not exeed (m� 2)=(m� 1). �
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