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Abstract. We study fractional variants of the quasi-norms introduced
by Brezis, Van Schaftingen, and Yung in the study of the Sobolev space
Ẇ 1,p. The resulting spaces are identified as a special class of real interpo-
lation spaces of Sobolev-Slobodeckĭı spaces. We establish the equivalence
between Fourier analytic definitions and definitions via difference opera-
tors acting on measurable functions. We prove various new results on
embeddings and non-embeddings, and give applications to harmonic and
caloric extensions. For suitable wavelet bases we obtain a characteriza-
tion of the approximation spaces for best n-term approximation from a
wavelet basis via smoothness conditions on the function; this extends a
classical result by DeVore, Jawerth and Popov.

1. Introduction and statements of results

For d ≥ 1, b ∈ R and a locally integrable function f ∈ L1
loc(Rd) consider

the difference quotient

(1.1) Dbf(x, y) =
f(x)− f(y)

|x− y|b
, (x, y) ∈ Rd × Rd = R2d.

Haïm Brezis and two of the authors [8] discovered that for f ∈ C∞c (Rd) and
1 ≤ p <∞, the Marcinkiewicz quasi-norm [D1+d/pf ]Lp,∞(R2d) is comparable
to the Gagliardo-seminorm ‖∇f‖Lp(Rd) (see also [46], [10] for related results).
Using this equivalence, they considered in [9] certain borderline Gagliardo-
Nirenberg interpolation inequalities that fail, and proved substitutes such
as [Ds+d/pf ]Lp,∞(R2d) . ‖f‖1−sL∞(Rd)

‖∇f‖s
L1(Rd)

for s = 1/p and 1 < p < ∞,
raising the natural question of what can be said about the class of functions
for which [Ds+d/pf ]Lp,∞(R2d) is finite for 0 < s < 1. This class was also
considered in the papers by Poliakovsky [48] who asked about a more specific
relation to Besov spaces, and in the work by Domínguez and Milman [23]
who considered abstract versions of [8]. As a special case of our main results
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we show that the above fractional variant arises as a real interpolation space
of a family of homogeneous Sobolev-Slobodeckĭı spaces Ẇ s,p. Henceforth,
for 0 < s < 1 and 1 < p < ∞, the space Ẇ s,p consists of all equivalent
classes of measurable, finite a.e. functions f (modulo equality a.e. and
additive constants) for which Ds+d/pf ∈ Lp(R2d), with semi-norm ‖f‖Ẇ s,p =
‖Ds+d/pf‖Lp(R2d); this space can be naturally identified the diagonal Besov
space Ḃs

p,p (see e.g. the case r = p in Theorem 1.3 below). We will show that
for p0, p1 ∈ (1,∞) such that p0 < p < p1 and 0 < s+ d

p −
d
pi
< 1 the norm

on the interpolation space [Ẇ
s+ d

p
− d
p0
,p0 , Ẇ

s+ d
p
− d
p1
,p1 ]θ,∞ is equivalent with

the quasi-norm ‖Ds+ d
p
f
∥∥
Lp,∞(R2d)

.
The class of functions for which ‖Ds+d/pf‖Lp,∞(R2d) is finite was labelled

BSY s
p in [23]. Here we shall denote it by Ḃsp(d,∞) as it will arise as a member

of a natural and more general scale of spaces Ḃsp(γ, r). We begin by giving a
Fourier analytic definition of the spaces Ḃsp(γ, r), which extends the classical
definition of the homogeneous Besov space Ḃs

p,p; in fact Ḃsp(γ, r) all coincide
with Ḃs

p,p when r = p (regardless of the value of γ). We have learned in the
final stage of preparation of this paper that V.L. Krepkogorskĭı had already
introduced the inhomogeneous variants of these classes in a little noticed
paper [36] in 1994 and proved that they occur as interpolation spaces for
Sobolev and other spaces; see Remark 1.2 and the comments before Theorem
1.15 below.

Variants of Besov-Sobolev spaces. We let ϕ ∈ C∞c (Rd) be a radial
function with

supp(ϕ) ⊂ {ξ : 3/4 < |ξ| < 7/4},(1.2a)
ϕ(ξ) = 1 for 7/8 ≤ |ξ| ≤ 9/8,(1.2b) ∑
k∈Z

ϕ(2−kξ) = 1 for all ξ 6= 0.(1.2c)

It is easy to check that the three requirements can be achieved. For a
tempered distribution f we define the frequency localizations Lkf via the
Fourier transform by

L̂kf(ξ) = ϕ(2−kξ)f̂(ξ).

We recall the definition of the diagonal homogeneous Besov spaces Ḃs
p,p.

Consider the space S∞(Rd) of Schwartz functions whose Fourier transforms
vanish to infinite order at 0; this space carries the natural Fréchet topology
inherited from the space of Schwartz functions. We let S ′∞(Rd) denote
the dual space; it can be identified with the space of tempered distributions
modulo polynomials. The space Ḃs

p,p is defined as the subspace of f ∈ S ′∞(Rd)
for which

‖f‖Ḃsp,p :=
(∑
k∈Z

ˆ
Rd

∣∣2ksLkf(x)
∣∣p dx

)1/p
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is finite.
We will now define various Lorentz versions of these spaces where a Lorentz

norm is taken on the space Rd × Z. Recall that if (Ω, µ) is a measure space
and 0 < p, r < ∞, the Lorentz space Lp,r(Ω, µ) is defined as the space of
measurable functions g on Ω for which

[g]Lp,r(Ω,µ) =
(
r

ˆ ∞
0

λrµ({x ∈ Ω : |g(x)| > λ})r/p dλ

λ

)1/r

is finite. For r =∞ we set [g]Lp,∞(Ω,µ) = supλ>0 λµ({|g| > λ})1/p. The space
Lp,r is normable when 1 < p < ∞, 1 ≤ r ≤ ∞, and for simplicity we will
only consider these parameter ranges. The precise expression for the norm is
not important for this paper; a suitable choice ([33]) is

‖g‖Lp,r =
(ˆ ∞

0
[t1/pg∗∗(t)]r

dt

t

)1/p

where g∗∗(t) = t−1
´ t

0 g
∗(s) ds and g∗ denotes the nonincreasing rearrangement

of g.

Definition 1.1. Let γ ∈ R.
(i) For a measurable subset E of Rd × Z let 1E be the indicator function

of E and

µγ(E) =
∑
k∈Z

2−kγ
ˆ
Rd
1E(x, k) dx.

(ii) For b ∈ R define P bf : Rd × Z→ C by

P bf(x, k) = 2kbLkf(x).

(iii) For s ∈ R, 1 < p < ∞, 1 ≤ r ≤ ∞, let Ḃsp(γ, r) be the space of
f ∈ S ′∞(Rd) such that the function P

s+ γ
p f belongs to the Lorentz space

Lp,r(Rd × Z;µγ) and let

(1.3) ‖f‖Ḃsp(γ,r) =
∥∥P s+ γ

p f
∥∥
Lp,r(µγ)

.

Unravelling the definition, with measA denoting the Lebesgue measure of
A ⊂ Rd, if 1 ≤ r <∞ we get the following equivalence

(1.4) ‖f‖Ḃsp(γ,r) ≈(
r

ˆ ∞
0

λr
[∑
k∈Z

2−kγmeas
{
x ∈ Rd : |Lkf(x)| > λ2

−k(s+ γ
p

)}]r/p dλ

λ

)1/r

whereas

(1.5)

‖f‖Ḃsp(γ,∞) ≈ sup
λ>0

λ
[∑
k∈Z

2−kγmeas
{
x ∈ Rd : |Lkf(x)| > λ2

−k(s+ γ
p

)}]1/p
.
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It is easy to check that we always have S∞(Rd) ⊆ Ḃsp(γ, r). Note that a
simple Fubini-type argument gives

(1.6) Ḃsp(γ, p) = Ḃs
p,p, for all γ ∈ R.

In contrast, for r 6= p the spaces Ḃsp(γ, r) depend on γ (see Theorem 1.6 (ii)
below).

Remark 1.2 (Inhomogeneous versions). We may also consider inhomogeneous
versions of the above spaces. Define

(1.7) Łk = Lk for k > 0, Ł0 := Id−
∑
k>0

Łk.

For E ⊂ Rd × N0 let µ̃γ(E) =
∑∞

k=0 2−kγ
´
1E(x, k) dx. Define Πbf(x, k) =

2kbŁkf(x) for k = 0, 1, 2, . . . We may then define Bsp(γ, r) to be the space of
all tempered distributions f ∈ S ′(Rd) such that

(1.8) ‖f‖Bsp(γ,r) := ‖Πs+γ/pf‖Lp,r(Rd×N0,µ̃γ)

is finite. These spaces have already been defined by Krepkogorskĭı [36], who
used the notation BLs,kp,q . The space Bsp(γ, r) corresponds to BLs,−γp,r in the
notation of [36].

Characterizations via difference operators. In order to explore the
relation to the characterization of Sobolev spaces via weak-type quasinorms
for difference operators used in [8, 10] we seek equivalent definitions of the
spaces Ḃsp(γ, r) to spaces defined via difference operators, at least for s > 0.
Let

∆hf(x) = f(x+ h)− f(x),

and define for M ≥ 2 inductively ∆M
h = ∆h∆M−1

h . These operations extend
to tempered distributions. We define a measure νγ on Lebesgue measurable
subsets of Rd × (Rd \ {0}) by

νγ(E) =

¨
E

dx
dh

|h|d−γ
.

Also define, for any f ∈ L1
loc(Rd) and h 6= 0,

QM,bf(x, h) =
∆M
h f(x)

|h|b
.

We say that g is a tempered function if g ∈ L1
loc(Rd) and if there exists an

N <∞ such that

(1.9)
ˆ
Rd
|g(x)|(1 + |x|)−N dx <∞.

The space of tempered functions will be denoted by T ; the Fréchet topology
on T is defined by the seminorms (1.9).

Let PM−1 denote the set of polynomials of degree less than M . We wish to
characterize Ḃsp(γ, r) in terms of the operators QM,b which annihilate PM−1.
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As Ḃsp(γ, r) ⊂ S ′∞, every element f ∈ Ḃsp(γ, r) is actually an equivalent class
[f ] of tempered distributions modulo all polynomials. Using the following
theorem, if 0 < s < M and M ∈ N, we determine, for each f ∈ Ḃsp(γ, r),
a subset of [f ], so that all elements of this subset differ by a polynomial
in PM−1. Each element of this subset will be called a representative of f
modulo PM−1. This is often useful in practice, because then it makes sense
to define, for example, any derivative of f of order ≥M , and to define the
convolution of f with any Schwartz function that has M vanishing moments.
For the classical Besov and Triebel-Lizorkin spaces (in particular Ḃs

p,p) this
is already addressed in Bourdaud’s theory of realized spaces [7], in fact for
Ḃsp(γ, p) ≡ Ḃs

p,p an essential part of the theorem is subsumed in [7].

Theorem 1.3. Let 0 < s < M , 1 < p <∞, 1 ≤ r ≤ ∞ and γ ∈ R. There
exist positive constants C1, C2 so that the following holds.

(i) Let f ∈ Ḃsp(γ, r). Then there exists a tempered function f◦ such that

(1.10) 〈f, φ〉 =

ˆ
Rd
f◦(x)φ(x) dx for all φ ∈ S∞

and

(1.11) ‖QM,s+ γ
p
f◦‖Lp,r(νγ) ≤ C1‖f‖Ḃsp(γ,r).

The a.e. equivalent class of the function f◦ is unique modulo PM−1;
we refer to the function f◦ as a representative of f modulo PM−1.

(ii) Suppose f : Rd → C is a measurable function satisfying

QM,s+ γ
p
f ∈ Lp,r(νγ).

Then f is a tempered function, and under the natural identification
in S ′∞, we have f ∈ Ḃsp(γ, r) with

‖f‖Ḃsp(γ,r) ≤ C2‖QM,s+ γ
p
f‖Lp,r(νγ).

Theorem 1.3 will be proved in §3, where a more abstract equivalent
statement is also given (Theorem 3.2).

Remark 1.4. We point out that in previous works on homogeneous Besov
spaces there is the a priori assumption f ∈ L1

loc for the bound by difference
operators. One way in which our result differs is that we show this assumption
is superfluous: the function f in Theorem 1.3 (ii) is a priori only assumed to
be measurable and we show that it is locally integrable.

Embeddings and non-embeddings. We establish various embedding
relations which sharpen previous results. We relate our classes to standard
homogeneous Besov and Triebel-Lizorkin spaces and their Lorentz-space
counterparts Ḃs

q [L
p,r] and Ḟ sq [Lp,r]. These are defined as the subspaces of



6 Ó. DOMÍNGUEZ A. SEEGER B. STREET J. VAN SCHAFTINGEN P.-L. YUNG

f ∈ S ′∞(Rd) for which

‖f‖Ḃsq [Lp,r] =
(∑
k∈Z

2ksq‖Lkf‖qLp,r(Rd)

)1/q
(1.12)

‖f‖Ḟ sq [Lp,r] =
∥∥∥(∑

k∈Z
2ksq|Lkf |q

)1/q∥∥∥
Lp,r

(1.13)

are finite, respectively. The inhomogeneous analogues Bs
q [L

p,r], F sq [Lp,r] are
defined analogously using the frequency localizations Łk, k ≥ 0 in (1.7).

For the standard Besov and Triebel-Lizorkin spaces one works with the
underlying Lp metric, i.e. they are recovered by setting r = p and we have
Ḃs
p,q = Ḃs

q [L
p], and Ḟ sp,q = Ḟ sq [Lp]. For embedding relations among them one

may consult [52] (however some care is needed since the results in [52] are
formulated for the inhomogeneous versions Bs

q [L
p,r], F sq [Lp,r]).

Theorem 1.5. The following statements hold for all s ∈ R, p ∈ [1,∞).
(i) For all γ ∈ R,

Ḃsp(γ, r) ↪→ Ḃs
r [L

p,r], p ≤ r ≤ ∞,

Ḃs
r [L

p,r] ↪→ Ḃsp(γ, r), 1 ≤ r ≤ p.
(ii) Let γ 6= 0. Then,

Ḟ sp,r ↪→ Ḃsp(γ, r), p ≤ r ≤ ∞,

Ḃsp(γ, r) ↪→ Ḟ sp,r, 1 ≤ r ≤ p.
This will be proved in §4. The statements can be extended by combin-

ing them with the three trivial embeddings for q1 ≤ q2, r1 ≤ r2, namely
Ḃsp(γ, r1) ↪→ Ḃsp(γ, r2), Ḃs

q1 [Lp,r1 ] ↪→ Ḃs
q2 [Lp,r2 ] and Ḟ sq1 [Lp,r1 ] ↪→ Ḟ sq2 [Lp,r2 ].

Part (ii) of the theorem is an improvement and generalization over Theo-
rem 1.3 in [30] which (in conjunction with our Theorem 1.3) yields that
Ḟ sp,2 ↪→ Ḃsp(d,∞) for 0 < s < 1. Part (ii) also covers the embedding
Ċsp ↪→ BSY s

p ≡ Ḃsp(d,∞) for the homogeneous Calderón-Campanato (or
DeVore-Sharpley) spaces in [19], [11] which was obtained in [23, Theorem
4.1] for 0 < s < 1; indeed from [51] we know that Ċsp = Ḟ sp,∞ for 0 < s < 1.
For every p ∈ (1,∞) Theorem 1.5 also recovers the known embeddings
Ḟ sp,r ↪→ Ḃs

r [L
p,r] if p ≤ r, and Ḃs

r [L
p,r] ↪→ Ḟ sp,r if r ≤ p; cf. [52, Theorem

1.2(iv), Theorem 1.1(iv)].
In view of the case r = ∞ of the embedding in part (ii) of Theorem

1.5 it is natural to ask whether in the embedding Ḟ sp,∞ ↪→ Ḃs
p(γ,∞) the

Triebel-Lizorkin space Ḟ sp,∞ can be replaced by the larger Besov space Ḃs
p,∞;

this was implicitly suggested in [48]. Part (i) of the following theorem implies
a negative answer, and in fact a stronger result.

Theorem 1.6. Let s ∈ R, 1 < p < r ≤ ∞. Then the following hold.
(i) For all γ ∈ R,

Ḃs
p,r \ Ḃsp(γ,∞) 6= ∅.
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(ii) For all β, γ ∈ R with β 6= γ,

Ḃsp(β, r) \ Ḃsp(γ,∞) 6= ∅.

This will be proved in §5, along with corresponding versions for the
inhomogeneous spaces.

Since Ḃsp(γ, p) = Ḃs
p,p for all γ ∈ R (see (1.6)) it is clear that the assumption

r > p is necessary in Theorem 1.6. We also address the case γ = 0 in part
(ii) of Theorem 1.5; the following result shows that the condition γ 6= 0 is
necessary for those statements.

Theorem 1.7. Let s ∈ R and 1 < p <∞. For the case γ = 0 the following
hold.

(i) For all r > p

Ḟ sp,r \ Ḃsp(0,∞) 6= ∅.

(ii) For all r < p

Ḃsp(0, 1) \ Ḟ sp,r 6= ∅.

Remark 1.8. By part (ii) of Theorem 1.6 we know that for 0 < s < M and
γ1 6= γ2 the seminorms ‖QM,s+γi/pf‖Lp,∞(νγi )

, i = 1, 2 are not equivalent
on the space of Schwartz functions. This is in striking contrast with the
limiting result for D1+γ/p, by Brezis and three of the authors [10], where it is
shown that for 1 < p <∞, and all γ 6= 0 the semi-norms ‖D1+γ/pf‖Lp,∞(νγ)

are equivalent with the Gagliardo semi-norm ‖∇f‖p. Moreover, for p = 1
one has ‖f‖ ˙BV ≈ ‖D1+γf‖L1,∞(νγ) provided that γ ∈ R \ [−1, 0] (and this
additional assumption is necessary). These equivalences hold under the
a-priori assumption that f is locally integrable.

An embedding result involving ˙BV . Denote by V∞ = V∞(Rd) the quotient
space of L∞ by additive constants, with norm

‖f‖V∞ = inf
c∈C
‖f − c‖∞.

Denote by [·, ·]θ,r the real interpolation spaces for the Peetre Kθ,r method
[4, Section 3.1]. The following embedding result involves a real interpolation
space between ˙BV and V∞. It will be used below to study solutions of
harmonic and caloric functions on Rd+1

+ .

Theorem 1.9. Let γ ∈ R \ [−1, 0] and 1 < p <∞. Then

[V∞, ˙BV ] 1
p
,1 ↪→ Ḃ

1/p
p (γ,∞).

The case γ = d of Theorem 1.9 has its roots in [9, Theorem 1.4]. Its
full generality is based on an estimate in [10]. It complements interpolation
results in [15, Theorem 1.4], and extends an embedding theorem by Greco
and Schiattarella [28] for functions of bounded variation on the unit circle.
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Harmonic and caloric functions in the upper half space. We now formulate
some consequences of the embedding in Theorem 1.9. The original motivation
of the space Ḃ1/2

2 (1,∞), defined in terms of difference operators, came from
the study of harmonic extension of functions of bounded variation in [28]
(see also an earlier result by Iwaniec-Martin-Sbordone [34] for circle home-
omorphisms). For a function such that

´
Rd |f(x)|(1 + |x|)−d−1 dx <∞, the

harmonic extension to the upper half space Rd+1
+ through the Poisson kernel

is given by

Pf(x, t) =
Γ(d+1

2 )

π
d+1
2

ˆ
Rd

t

(|x− y|2 + t2)
d+1
2

f(y) dy.

In order to state our result let

(1.14) Kbf(x, t) = t1−b∇Pf(x, t)

where ∇P denotes the (x, t)-gradient, for t > 0, i.e.

∇Pf(x, t) =
Γ(d+1

2 )

π
d+1
2

ˆ
Rd

((d+ 1)t(x− y), |x− y|2 − dt2)

(|x− y|2 + t2)
d+3
2

(f(y)− f(x)) dy.

This last expression makes sense for f ∈ V∞ + ˙BV . Define the measure λγ
on Lebesgue measurable sets of Rd+1

+ by

(1.15) λγ(E) =

¨
E

dx
dt

t1−γ
.

Corollary 1.10. Let 1 < p <∞, γ ∈ R \ [−1, 0]. Then

K
γ+1
p : [V∞, ˙BV ] 1

p
,1 → Lp,∞(λγ)

is bounded. In particular

∇P : [V∞, ˙BV ] 1
2
,1 → L2,∞( dx dt)

is bounded.

Remark 1.11. When d = 1 we have ˙BV (R) ↪→ V∞(R) and thus we recover the
upper half plane analogue of Theorem 4.2 of [28], saying that∇Pf ∈ L2,∞(R2

+)

for f ∈ ˙BV (R).

Another corollary is about solutions u(x, t) = Uf(x, t) = et∆f(x) of the
initial value problem for the heat equation in the upper half space,

(1.16)
∂u

∂t
= ∆u, u|t=0 = f.

For b ∈ R, t > 0, define Hb = (Hb
1, . . . ,H

b
d+1) by

Hb
jf(x, t) = t

1
2
−b ∂

∂xj
Uf(x, t), j = 1, . . . , d

Hb
d+1f(x, t) = t1−b

∂

∂t
Uf(x, t).
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Corollary 1.12. Let β ∈ R \ [−1
2 , 0], and 1 < p <∞. Then

(i) H
2β+1
2p : [V∞, ˙BV ] 1

p
,1 → Lp,∞(λβ) is bounded.

(ii) Let u = Uf solve the problem (1.16) for t > 0. Then

f ∈ [V∞, ˙BV ] 2
3
,1 =⇒ ∂u

∂t
= ∆xu ∈ L

3
2
,∞(Rd+1

+ , dx dt),

f ∈ [V∞, ˙BV ] 1
3
,1 =⇒ ∇xu ∈ L3,∞(Rd+1

+ , dx dt).

When d = 1 we obtain a caloric analogue of the result in [28], for boundary
values in ˙BV (R).

Corollary 1.13. Let f ∈ ˙BV (R) and let u solve the initial value problem
∂u
∂t = ∂2u

∂x2
, u(x, 0) = f(x). Then ∂u

∂t ∈ L
3
2
,∞(R2

+) and ∂u
∂x ∈ L

3,∞(R2
+).

Remark 1.14. It would be interesting to upgrade the results of Theorem
1.9 and/or the corollaries to other interpolation spaces of V∞ and ˙BV . A
related question in dimension d = 1 is whether such inequalities can be
proved for functions in the Wiener spaces V p of bounded p-variation. Note
that V 1 = ˙BV and that for 1 < p < ∞ we have [V∞, V 1] 1

p
,p ⊂ V p, see [5].

If V p,∞ denotes the space of f for which the numbers N(f, α) of α-jumps
satisfy supα>0 αN(f, α)1/p < ∞ then, by [43], V p ⊂ V p,∞ = [V∞, V 1]1/p,∞.
See also [13] for a related result on the K-functional for the couple (V∞, V 1).

Interpolation. We review the problem of interpolation of Besov spaces.
Recall the definition of the homogeneous Besov space Ḃs

p,q ≡ Ḃs
q(L

p) as
the subspace of f ∈ S ′∞(Rd) for which ‖f‖Ḃsp,q := (

∑
k∈Z ‖2ksLkf‖

q
p)1/q is

finite. Regarding real interpolation, the case for fixed p and varying s is
well known. Suppose s0, s1 ∈ R with s0 6= s1. If 1 ≤ p, r ≤ ∞, one has
[4, Theorem 6.4.5(i)] [Ḃs0

p,p, Ḃ
s1
p,p]θ,r = Ḃs

p,r if s = (1 − θ)s0 + θs1, θ ∈ (0, 1);
see also [21]. For the case p0 6= p1 the spaces Ḃsp(γ, r) arise as interpolation
spaces for the Kθ,r-method. The following theorem and corollary were already
known to Krepkogorskĭı [36] who considered the inhomogeneous variants. For
an extension to the quasi-Banach range see [37]. For a description of the
interpolation spaces via wavelet coefficients see also the recent work by Besoy,
Haroske, and Triebel [6].

Theorem 1.15. Let 1 ≤ p0, p1, r ≤ ∞, p0 6= p1, s0, s1 ∈ R. Let

(1.17) γ = − s0 − s1
1
p0
− 1

p1

,

let 0 < θ < 1 and

(1.18) (1
p , s) = (1− θ)( 1

p0
, s0) + θ( 1

p1
, s1).

Then

[Ḃs0
p0,p0 , Ḃ

s1
p1,p1 ]θ,r = Ḃsp(γ, r),(1.19)

with equivalence of (quasi-)norms. �
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Corollary 1.16. Let 1 < p0, p1 <∞, p0 6= p1, s0, s1 ∈ R, 1 ≤ q0, q1, r0, r1 ≤
∞ and 1 ≤ r ≤ ∞. Suppose that (1.17) and (1.18) hold with 0 < θ < 1.
Then

(1.20a) [Ḃs0p0(γ, r0), Ḃs1p1(γ, r1)]θ,r = Ḃsp(γ, r).

Moreover, if s0 6= s1,

(1.20b) [Ḟ s0p0,q0 , Ḟ
s1
p1,q1 ]θ,r = Ḃsp(γ, r).

Note that for s ∈ N ∪ {0} and 1 < p <∞, the space Ḟ sp,2 is identified with
the Sobolev space Ẇ s,p. Thus, if s0, s1 are non-negative integers, s0 6= s1,
and 1 < p0, p1 <∞ with p0 6= p1, then for 0 < θ < 1 and 1 ≤ r ≤ ∞ we get
in particular

[Ẇ s0,p0 , Ẇ s1,p1 ]θ,r = Ḃsp(γ, r)
where (1

p , s) and γ are given by (1.18) and (1.17).
For completeness we shall sketch in §8 the standard proofs based on the

Fourier analytic definition which are very much analogous to [36]. More
interestingly, for M = 1 and s0, s1 ∈ (0, 1), an alternative approach to
the interpolation result (1.19) will be given in §9, based directly on the
characterization via first order differences.

Nonlinear wavelet approximation. Our results can be obtained to prove
new results on best approximation via n terms in a wavelet basis, relating it
to suitable regularity properties of the given function.

To fix ideas we first recall basic notation in wavelet theory. Let u ∈ N,
φ ∈ Cu(R) be a univariate scaling function associated with the univariate
wavelet ψ ∈ Cu(R). Let ψ0 := φ and ψ1 := ψ. If E denote the set of the
2d − 1 non-zero vertices of [0, 1]d, given e = (e1, . . . , ed) ∈ E, we define the
d-variate wavelets ψe(x) =

∏d
i=1 ψ

ei(xi). As in [40] we assume certain decay
and nonvanishing moment conditions on the ψe, namely

(1.21a) sup
x∈Rd

(1 + |x|)M |Dαψe(x)| <∞, |α| ≤ u, e ∈ E,

and

(1.21b)
ˆ
Rd
xαψe(x) dx = 0, |α| < u, e ∈ E,

for u, M satisfying

(1.21c) u > |s|, M > d+ u.

If one works with Lp-based Besov spaces and allows the parameter range
to be p > 0, then one needs to require u > max{ d

min{1,p} − d − s, s}, M >

max{ d
min{1,p} , d+ u}.

Let, for j ∈ Z and m ∈ Zd,

(1.22) ψej,m(x) := 2
jd
2 ψe(2jx−m).
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We assume that the system

(1.23) Ψ = {ψej,m : j ∈ Z, m ∈ Zd, e ∈ E}

forms an orthonormal basis in L2(Rd), see e.g. [16] for an introduction to
wavelet theory.

Let 1 < q <∞. Consider now the best n-term approximation of f ∈ Lq(Rd),
with respect to Ψ, measured in the Lq(Rd) norm; i.e.,

σn(f)q = inf
{∥∥∥f − ∑

ψν∈Λ⊂Ψ

cνψν

∥∥∥
Lq(Rd)

: #(Λ) ≤ n, cν ∈ C
}
.

Let α > 0 and 0 < r ≤ ∞. The related approximation space Aαr (Lq,Ψ) is
defined as the set of functions f ∈ Lq(Rd) for which

‖f‖Aαr (Lq ,Ψ) =


(∑∞

n=1

[
nασn(f)q

]r 1
n

) 1
r if r <∞

supn n
ασn(f)q if r =∞

is finite.
It is well known that Aαr (Lq(Rd),Ψ) can be characterized in terms of a

certain interpolation space between Lq(Rd) and Besov spaces. Specifically,
let 1 < q <∞, 0 < r ≤ ∞, and 0 < s < σ. Then

(1.24) As/dr (Lq,Ψ) = [Lq, Ḃσ
u,u]θ,r if θ =

s

σ
and

1

u
=

1

q
+
σ

d
;

see DeVore’s survey [17, (7.41)] and also [47, page 223] for related results on
spline approximation with d = 1. We specialize (1.20b) with s0 = 0, p0 = q,
q0 = 2, q1 = p1 = u, s1 = σ, hence γ = − s1−s0

p−1
1 −p

−1
0

= −d. We thus see that for

θ, u as in (1.24) the space [Lq, Ḃσ
u,u]θ,r coincides with Ḃsp(−d, r) if 1

p = 1
q + s

d .
Combining this with (1.24), we have verified

Theorem 1.17. Let 1 < q <∞, 0 < s < d(1− 1
q ), and let 1

p = 1
q + s

d . Then,
for 1 ≤ r ≤ ∞,

As/dr (Lq,Ψ) = Ḃsp(−d, r).

For r = p, 0 < s < d(1− 1
q ) we recover As/dp (Lq,Ψ) = Ḃs

p,p for 1
p = 1

q + s
d ,

which is a result proved by DeVore, Jawerth and Popov [18]. Together
with our characterization in Theorem 1.3 we achieve a new interpretation
via difference operators of some results in [17, 20, 29, 35] where the spaces
Aαr (Lq,Ψ) are characterized in terms of wavelet coefficients.

For r =∞ the spaces As/d∞ (Lq,Ψ) are of special interest in applications,
see for example [32, 14, 31]. In the statistics literature these spaces are
sometimes referred to as ‘weak-Besov spaces’ (see [3, 50] and the references
within). In view of Theorem 1.17, these weak-Besov spaces coincide with
Ḃsp(−d,∞), with s = d(1/p − 1/q), i.e. p = dq

d+sq . Putting α = s/d and
combining Theorem 1.3 and Theorem 1.17 we obtain
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Corollary 1.18. Let 1 < q <∞, 0 < α < 1− 1
q . Then, for M > αd,

sup
n≥1

nασn(f)q ≈ sup
λ>0

λ
(ˆ

meas
({
x : |h|

d
q |∆M

h f(x)| > λ
}) dh

|h|2d
) 1
q

+α
.

Remark. There are suitable extensions of the definitions of this paper, and
many of the results, to certain parameter ranges in the quasi-Banach setting
(that is, to the cases r < 1 and p ≤ 1); we intend to pursue these elsewhere. In
particular it is interesting to extend Theorem 1.17 to values of s ≥ d(1− 1/q)

and r > 0; this requires consideration of the spaces Ḃsp(−d, r) in the range
p ≤ 1.

Notation. We denote by Ld(E) the Lebesgue measure of a Lebesgue mea-
surable set in Rd, and also write measE for Ld(E) when the dimension is
clear from the context. A measurable function f : Rd → C will always be
assumed to be defined almost everywhere. We use f̂(ξ) =

´
f(y)e−i〈y,ξ〉 dy

as definition of the Fourier transform. For a function m on R̂d we define
m(D) to be the convolution operator with Fourier multiplier m, i.e. it is
given by m̂(D)f(ξ) = m(ξ)f̂(ξ). We let C∞c be the space of compactly
supported C∞-functions, S be the space of Schwartz functions, and SM be
the subspace of S consisting of those Schwartz functions whose moments
up to order M − 1 vanish. Also let S∞ =

⋂
M∈N SM . We denote by S ′ the

space of tempered distributions and by S ′M , S ′∞ the dual spaces of SM and
S∞, respectively. We let, for k ∈ Z, Lk = ϕ(2−kD) and L̃k = ϕ̃(2−kD) be
operators in frequency localizing Littlewood-Paley decompositions, satisfying
L̃kLk = Lk. The functions ϕ, ϕ̃ are radial and the relevant properties are
defined in (1.2) and (2.2), respectively. For a set E with positive measure,
the slashed integral

ffl
E f is used to denote the average of f over E.

Structure of the paper. In §2 we prove a rudimentary form of the characteri-
zation in Theorem 1.3 just for S∞ functions. The full proof of Theorem 1.3
will be given in §3. The embedding results in Theorem 1.5 are proved in §4.
Various counterexamples establishing Theorem 1.6 are discussed in §5. In §6
we give the proof of Theorem 1.9 and in §7 the proof of Corollaries 1.10 and
1.12. In §8 we include a proof of Theorem 1.15 based only on the Fourier
analytic definition of Ḃsp(γ, r). A different proof of the interpolation result,
just for parameters si ∈ (0, 1) and based on a retraction argument using first
order differences is given in §9.
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2. Norm equivalences for S∞-functions

Before giving the full proof of Theorem 1.3 we give a proof of the norm
equivalence for functions in the class S∞(Rd). Note that for f ∈ S∞(Rd) we
have f =

∑
k∈Z Lkf with convergence in the topology of S(Rd).

Proposition 2.1. Let M ∈ N, 1 < p < ∞, 1 ≤ r ≤ ∞, γ ∈ R and
0 < s < M . For f ∈ S∞(Rd),

(2.1) ‖f‖Ḃsp(γ,r) ≈ ‖QM,s+γ/pf‖Lp,r(νγ).

Let ϕ̃ ∈ C∞c (Rd) be such that

(2.2) supp (ϕ̃) ⊂ {ξ : 1/2 < |ξ| < 2} and ϕ̃(ξ) = 1 for 3/4 ≤ |ξ| ≤ 7/4.

This implies ϕ̃ϕ = ϕ. Let L̃k = ϕ̃(2−kD) so that Lk = L̃kLk = LkL̃k.
To bound ‖QM,s+γ/pf‖Lp,r(νγ) in terms of ‖f‖Ḃsp(γ,r), we use the following

lemma.

Lemma 2.2. Let M ∈ N, 1 < p <∞, 1 ≤ r ≤ ∞, b, γ ∈ R with 0 < b− γ
p <

M . Then the operator

Tbg(x, h) :=
∑
k∈Z

∆M
h L̃kg(x, k)

(2k|h|)b
, (x, h) ∈ Rd × (Rd \ {0})

defines a bounded linear map from Lp,r(µγ) to Lp,r(νγ).

Proof. By real interpolation it suffices to consider the case r = p. From the
elementary inequality

‖∆M
h L̃k‖Lp→Lp . min{1, (2k|h|)M},

we obtain

‖Tbg‖Lp(νγ) .
(ˆ [∑

k∈Z

‖∆M
h L̃kg(·, k)‖Lp( dx)

(2k|h|)b
]p dh

|h|d−γ
)1/p

.
(ˆ [∑

k∈Z
min{(2k|h|)−(b− γ

p
)
, (2k|h|)M−(b− γ

p
)}2−k

γ
p ‖g(·, k)‖p

]p dh

|h|d
)1/p

'
(∑
j∈Z

[∑
k∈Z

min{(2k−j)−(b− γ
p

)
, (2k−j)

M−(b− γ
p

)}2−k
γ
p ‖g(·, k)‖p

]p)1/p

and the desired conclusion follows since if α, β > 0 then the convolution on
Z with the sequence {min{2−kα, 2kβ}}k∈Z ∈ `1(Z) is bounded on `p(Z). �
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To apply the lemma note that under the hypotheses of Proposition 2.1 we
have

(2.3) f(x) =
∑
k∈Z

2
−k(s+ γ

p
)
L̃kP

s+ γ
p f(x, k)

with the convergence in S∞(Rd) (in particular pointwise for every x ∈ Rd).
Hence for every (x, h) ∈ Rd × (Rd \ {0}) we have

∆M
h f(x)

|h|s+
γ
p

= Ts+ γ
p
P
s+ γ

p f(x, h).

Lemma 2.2 with b := s+ γ
p (which satisfies 0 < b− γ

p < M) and g := P
s+ γ

p f

yields the inequality

(2.4)
∥∥∥{∆M

h f(x)

|h|s+
γ
p

}∥∥∥
Lp,r(νγ)

. ‖P s+
γ
p f‖Lp,r(µγ)

and thus the following corollary.

Corollary 2.3. Let M ∈ N, 1 < p <∞, 1 ≤ r ≤ ∞, γ ∈ R and 0 < s < M .
Then for f ∈ S∞(Rd)∥∥∥{∆M

h f(x)

|h|s+
γ
p

}∥∥∥
Lp,r(νγ)

. ‖f‖Ḃsp(γ,r).

For the converse inequality we like to consider an operator acting on
F (x, h) = |h|−b∆M

h f , for b = s+ γ/p, and then we are faced with the task
of “dividing out" the difference operator. To achieve this we work with the
partition of unity of the annulus {ξ ∈ Rd : 1/2 < |ξ| < 2}. Alternative
Fourier arguments can be found e.g. in [45, 5.2.1].

Let ε < (10M)−1. We use a finite partition {χκ}Nκ=1 of unity on the
support of ϕ, so that χκ ∈ C∞c is supported on the ball Bd(uκ, ε). Let
wκ = πuκ

2|uκ|2 and then we have, for ξ ∈ supp (χκ) and |w − wκ| ≤ ε,

|〈ξ, w〉 − π

2
| ≤ |〈ξ, w − wκ〉|+ |〈ξ − uκ, wκ〉|+ |〈uκ, wκ〉 − π

2 | ≤ 2ε+ 2ε+ 0.

We may then write

(2.5a) ϕ(ξ) =

N∑
κ=1

mκ(ξ)

ˆ
|h−wκ|≤ε

(ei〈ξ,h〉 − 1)M dh

where

(2.5b) mκ(ξ) = ϕ(ξ)
χκ(ξ)´

|h−wκ|≤ε(e
i〈ξ,h〉 − 1)M dh

.

Since the denominator is bounded away from 0 on the support of χκ we get
|∂αmκ(ξ)| ≤ Cα for all multiindices α, and thus the L1 norms of the Fourier
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inverse transforms of the mκ are finite. We then get

(2.6) Ljf =

N∑
κ=1

mκ(2−jD)

ˆ
|h−2−jwκ|≤ε2−j

∆M
h f

dh

2−jd
.

Lemma 2.4. Let m be the Fourier transform of a bounded Borel measure,
with L1 → L1 multiplier norm ‖m‖M1. Let w ∈ Rd such that 1/2 ≤ |w| ≤ 2
and ε ∈ (0, 1

2). For b, γ ∈ R, 1 < p < ∞, 1 ≤ r ≤ ∞, and F ∈ Lp,r(Rd ×
(Rd \ {0}), νγ) define V b

m,w,εF by

(2.7) V b
m,w,εF (·, k) ≡ V b,k

m,w,εF

= m(2−kD)

ˆ
|h−2−kw|≤ε2−k

(2k|h|)bF (·, h)
dh

2−kd
.

Then V b
m,w,ε maps Lp,r(νγ) to Lp,r(µγ) and we have

(2.8) ‖V b
m,w,εF‖Lp,r(µγ) ≤ C‖m‖M1‖F‖Lp,r(νγ)

where C only depends on p, r, b, γ.

Proof. Since (F,m) 7→ V b
m,w,εF is bilinear we may normalize and assume that

‖m‖M1 = 1. Again by real interpolation it suffices to prove the theorem for
p = r, 1 ≤ p ≤ ∞. Since ‖m(2−kD)‖Lp→Lp ≤ 1 for 1 ≤ p ≤ ∞ we obtain

‖V b
m,w,εF‖Lp(µγ) .

(∑
k∈Z

2−kγ
∥∥∥ˆ
|h−2−kw|≤ε2−k

(2k|h|)bF (·, h)
dh

2−kd

∥∥∥p
p

)1/p

.
(∑
k∈Z

2−kγ
∥∥∥ˆ

2−k−1≤|h|≤2−k+1

|F (·, h)| dh

|h|d
∥∥∥p
p

)1/p

.
(ˆ

Rd
‖F (·, h)‖pp

dh

|h|d−γ
)1/p

= ‖F‖Lp(νγ)

which completes the proof of the lemma. �

To apply the lemma it is beneficial to express P bf(·, k) = 2kbLkf as

(2.9a) P bf(x, k) =

N∑
κ=1

mκ(2−kD)

ˆ
|h−2−kwκ|≤ε2−k

(2k|h|)b
∆M
h f(x)

|h|b
dh

2−kd

and thus we get

(2.9b) P bf =
N∑
κ=1

V b
mκ,wκ,εF, with F (x, h) =

∆M
h f(x)

|h|b
.

Now, setting b = s+ γ/p, Lemma 2.4 yields

Corollary 2.5. Let M ∈ N, 1 < p < ∞, 1 ≤ r ≤ ∞, s, γ ∈ R. For
f ∈ S∞(Rd),

‖f‖Ḃsp(γ,r) . ‖QM,s+ γ
p
f‖Lp,r(νγ).

Proposition 2.1 is just the combination of Corollaries 2.3 and 2.5.
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3. Norm equivalences for all measurable functions

We give the proof of Theorem 1.3. We begin by rephrasing it in a more
abstract way which allows us to keep in mind the distinction between equiva-
lence classes modulo all polynomials and modulo polynomials of degree < M .
LetM denote the space of (Lebesgue almost everywhere equivalence classes
of) measurable functions on Rd and let PM denote the space of (almost
everywhere equivalence classes of) functions which are almost everywhere
equal to a polynomial of degree at most M . LetMM :=M/PM−1 and let
πM :M→MM denote the projection map. Since the operators QM,s+γ/p

annihilate polynomials of degree ≤M−1 we can make the following definition.

Definition 3.1. For M ∈ N, s ∈ R, 1 < p <∞, and 1 ≤ r ≤ ∞, we define
an extended norm1 onMM by

‖πMf‖BM,s,p(γ,r) := ‖QM,s+ γ
p
f‖Lp,r(νγ)

and let BM,s,p(γ, r) be the subspace of MM for which ‖πMf‖BM,s,p(γ,r) is
finite.

Recall that T ⊆ M denotes the space of (Lebesgue almost everywhere
equivalence classes of) tempered functions on Rd, and let TM := T /PM−1.
πM : M → MM restricts to a map πM : T → TM . We let ιM denote the
natural map TM → S ′∞(Rd) which assigns to πM (f) (with f ∈ T ) the linear
functional ιM (πM (f)) : φ 7→

´
Rd f(x)φ(x) dx. We rephrase Theorem 1.3 in

the following, equivalent, form:

Theorem 3.2. Fix M ∈ N, M ≥ 1. For 0 < s < M , p ∈ (1,∞), r ∈ [1,∞],
γ ∈ R, we have

(i) BM,s,p(γ, r) ⊆ TM ;
(ii) Ḃsp(γ, r) = ιM (BM,s,p(γ, r));
(iii) The map

ιM
∣∣
BM,s,p(γ,r)

: BM,s,p(γ, r)→ Ḃsp(γ, r)

is an isomorphism of normed vector spaces; i.e., it is a bounded,
bijective linear map with bounded inverse.

The rest of this section is devoted to the proof of Theorem 3.2. In what
follows we denote, for M ∈ N, by SM (Rd) the closed subspace of S(Rd)
which consists of all f ∈ S(Rd) with

´
p(x)f(x) dx = 0 for all polynomials of

degree ≤M − 1. Then clearly S∞ =
⋂
M∈N SM (and S∞ ≡ Z in the notation

of [56]). We denote by S ′M the dual space of SM . To prove the theorem,
we introduce two maps: Ḃsp(γ, r)↔ BM,s,p(γ, r), which will turn out to be
inverses to each other. We begin with the map Ḃsp(γ, r)→ BM,s,p(γ, r). The
following proposition is similar to results of Bourdaud [7] and Moussai [44]

1A priori, ‖ · ‖BM,s,p(γ,r) is merely an extended semi-norm. Lemma 3.6 below shows
that ‖πMf‖BM,s,p(γ,r) = 0⇔ πMf = 0.
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for the so-called realized Besov spaces, and, in fact, could be deduced from
their results by interpolation arguments.

Proposition 3.3. Fix M ∈ N, M ≥ 1. For 0 < s < M , 1 < p <∞, γ ∈ R,
and 1 ≤ r ≤ ∞, there is a bounded linear map

EM : Ḃsp(γ, r)→ BM,s,p(γ, r)

such that EM (Ḃsp(γ, r)) ⊆ TM and ιM is a left inverse to EM ; i.e., ιMEM is
the identity map Ḃsp(γ, r)→ Ḃsp(γ, r).

We need a lemma about the Littlewood-Paley decomposition for f ∈
Ḃsp(γ,∞) ⊆ S ′∞(Rd), for p ∈ (1,∞). Note that Lkf is a convolution of an
element of S ′∞(Rd) and an element of S∞(Rd), and thus a C∞-function.
By the definition of Ḃsp(γ,∞), Lkf ∈ Lp,∞(Rd) with ‖2ksLkf‖Lp,∞(Rd) .
‖f‖Ḃsp(γ,∞) uniformly in k ∈ Z.

By Young’s convolution inequality

‖L̃k‖Lp,∞→L∞ = O(2kd/p)

and from L̃kLk = Lk we obtain ‖Lkf‖∞ . 2kd/p‖Lkf‖Lp,∞ . We use this to
establish convergence of the Littlewood-Paley decomposition in SM , under
the additional condition M > s− d/p.

Lemma 3.4. Let M be a nonnegative integer, 1 < p <∞, N ∈ N. Then the
following holds.

(i) For f ∈ Ḃsp(γ,∞) and ψ ∈ SM ,

|〈Ljf, ψ〉| ≤ CN,M,ψ2
j( d
p
−s)

min{2−jN , 2jM}‖f‖Ḃsp(γ,∞).

(ii) Let M > s− d/p, and f ∈ Ḃsp(γ, r). Then
∑

j∈Z Ljf converges in S ′M .

Proof. Since ψ ∈ S we get ‖L̃jψ‖1 . CN,ψ2−jN for j ≥ 0. Using the M − 1

vanishing moment conditions we get ‖L̃jψ‖1 . 2jM for j ≤ 0.
We have

|〈Ljf, ψ〉| = |〈L̃jLjf, L̃jψ〉| ≤ ‖L̃jLjf‖∞‖L̃jψ‖1

. 2
j d
p ‖Ljf‖Lp,∞ min{2−jN , 2jM}

. ‖f‖Ḃsp(γ,∞)2
j( d
p
−s)

min{2−jN , 2jM}

where the implicit constants depend onM,N,ψ. Choosing N large enough we
see that

∑
j>0 |〈Ljf, ψ〉| <∞. Moreover

∑
j≤0 |〈Ljf, ψ〉| <∞ ifM > s−d/p

and thus
∑

j∈Z Ljf converges in S ′M . �

Proof of Proposition 3.3. We first define the map

IM : TM ↪→ S ′M (Rd)
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as taking πMu (with u ∈ T ) to the distribution IMπMu defined by

〈IMπMu, φ〉 =

ˆ
Rd
uφ

and observe that IM is injective. Also let f ∈ ∪r∈[1,∞]Ḃsp(γ, r) = Ḃsp(γ,∞).
By Lemma 3.4

∑
k∈Z IMπMLkf converges in S ′M (Rd) to some U ∈ S̃ ′M (Rd).

We claim U ∈ IM (TM ). To see this, decompose

U = Uhigh + Ulow :=
∑
k≥0

IMπMLkf +
∑
k<0

IMπMLkf,

where the above sums converge in S ′M (Rd). Since f ∈ Ḃsp(γ,∞), we have
‖Lkf‖Lp,∞ . 2−ks, and since s > 0 we see that

∑
k≥0 Lkf converges in

Lp,∞(Rd) and

Uhigh =
∑
k≥0

IMπMLkf = IMπM
[∑
k≥0

Lkf
]
∈ IM (TM ).

Since Ulow ∈ S ′M (Rd), we can use the Hahn-Banach Theorem to establish the
existence of an extension U ext

low ∈ S ′(Rd) such that

〈U ext
low, ψ〉 = 〈Ulow, ψ〉, ∀ψ ∈ SM (Rd).

In particular, by the definition of Ulow, we see that the Fourier transform of
U ext

low is supported in {|ξ| ≤ 2}. Schwartz’s Paley-Wiener Theorem implies
there exists G ∈ T with 〈U ext

low, ψ〉 =
´
Rd Gψ, for all ψ ∈ S(Rd). It follows

that Ulow = U ext
low

∣∣
SM

= IMπMG ∈ IM (TM ). This completes the proof that
U ∈ IM (TM ).

We now can define EMf ; because by injectivity of IM we have

U = IM (EMf),

for a unique EMf ∈ TM . The map EM : f 7→ EMf is then clearly linear. Also
U
∣∣
S∞(Rd)

= f and therefore ιMEMf = IMEMf
∣∣
S∞(Rd)

= U
∣∣
S∞(Rd)

= f ; that
is, ιMEM is the identity.

We still need to establish the estimate

(3.1) ‖EMf‖BM,s,p(γ,r) . ‖f‖Ḃsp(γ,r);

this is done using the arguments in §2. Define g(x, k) := 2
k(s+ γ

p
)
EMLkf(x) so

that f =
∑

k∈Z IM2
−k(s+ γ

p
)
L̃kg(·, k) with convergence in S ′M . By definition

of Ḃsp(γ, r) we have g ∈ Lp,r(µγ). For all h and a.e. x,

∆M
h EMf(x)

|h|s+
γ
p

= Ts+ γ
p
g(x, h)

where Ts+ γ
p
is as in Lemma 2.2. Then we get (3.1) from Lemma 2.2. �

We turn to the map BM,s,p(γ, r)→ Ḃsp(γ, r).
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Proposition 3.5. For M ∈ N, s ∈ R, p ∈ (1,∞), r ∈ [1,∞], γ ∈ R, there
is an injective bounded linear map

JM : BM,s,p(γ, r)→ Ḃsp(γ, r)
such that

(3.2) JM
∣∣
BM,s,p(γ,r)∩TM

= ιM
∣∣
BM,s,p(γ,r)∩TM

.

The main difficulty we must contend with in Proposition 3.5 is that elements
of BM,s,p(γ, r) are a priori only equivalence classes of measurable functions
(not necessarily locally integrable), and so we cannot directly use any tools
from distribution theory to study them. The following lemma appears to be
well-known but we include a proof since we have not been able to locate a
precise reference.

Lemma 3.6. Let M ≥ 1, and f : Rd → C be measurable with ∆M
h f(x) = 0

for L2d-almost every (h, x) ∈ R2d. Then there is a polynomial P of degree at
most M − 1 such that f(x) = P (x) almost everywhere.

Before proving the lemma we recall some basic facts from the theory of
functional equations [39] which are needed in the proof. First, we need a
formula about iterated differences, attributed to Kemperman in [39, Theorem
15.1.2], see also Djoković [22] for related results. Namely, for all dimensions
d, for all N ∈ N, if v(1), ..., v(N) are vectors in Rd then

∆v(1) . . .∆v(N)f(x) =
∑

(ε1,...,εN )∈{0,1}N
(−1)ε1+...εN∆M

h(ε)f(x+ h̃(ε)),

where h(ε) = −
N∑
j=1

j−1εjv
(j), h̃(ε) =

N∑
j=1

εjv
(j).

(3.3)

Next we recall that a Ld-measurable function f : Rd → C is called almost
polynomial of order M − 1 if ∆M

h f(x) = 0 for L2d-a.e. (x, h) ∈ R2d. It is a
result of Ger [27], which we use in its form presented in [39, Theorem 17.7.2],
that there exists a measurable function P : Rd → C such that f(x) = P (x) for
Ld-a.e. x and P is a function satisfying ∆M

h P (x) = 0, for all (h, x) ∈ Rd×Rd;
such functions are called “polynomial functions” in [27], [39].

We also use a result by Ciesielski [12] (see also [39, Theorem 15.5.2]) which
states that if a measurable function g : R → C satisfies ∆M

h g(x) ≥ 0 for
all x ∈ R and all h ∈ R then g is continuous; by an argument using weak
derivatives this implies that a polynomial function of order M − 1 on the real
line is actually a polynomial of degree at most M − 1. In proving Lemma 3.6
we could have used a d-dimensional version of this fact which could be derived
from an abstract result by Kuczma [38, Theorem 3]. However we prefer to
give a more direct argument based on induction on d.

Proof of Lemma 3.6. For d = 1 Lemma 3.6 is an immediate consequence
of the above mentioned theorems by Ciesielski and Ger. Let d ≥ 2 and
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as induction hypothesis, assume Lemma 3.6 in dimension d − 1. We split
variables as x = (x′, xd).

Let f : Rd → C be almost polynomial of order M − 1. By Ger’s theorem
there is a measurable function g : Rd 7→ C such that f = g Ld-a.e. and g is
a polynomial function of order M − 1. We therefore get ∆M

sed
g(x) = 0 for

all x ∈ Rd and all s ∈ R. Thus, for all x′ ∈ Rd−1 we get from Ciesielski’s
theorem that the function t 7→ g(x′, t) is a polynomial of degree at most
M − 1, i.e. we have

g(x′, xd) =
M−1∑
j=0

aj(x
′)xjd

for all x′ ∈ Rd−1 and every xd ∈ R. Since aj(x′) = j!( d
dxd

)jg(x′, xd)|xd=0

the coefficients aj can be realized as a pointwise limit of Ld−1-measurable
functions, and thus each aj is Ld−1-measurable. Since ∆M

h g(x) = 0 for all
(x, h) we also have by (3.3) that ∆M−k

(u,0) ∆k
sed
g(x) = 0, for all x ∈ Rd, u ∈ Rd−1

and s ∈ R. Letting s→ 0 (and using that xd 7→ g(x′, xd) is polynomial) this
implies that for k = 0, . . . ,M ,

0 = ∆M−k
(u,0)

( ∂

∂xd
)kg(x′, xd) =

M−1∑
j=k

∆M−k
u aj(x

′)cj,kx
j−k
d ,

with cj,k =
∏k
i=1(j − i + 1). This in turn implies ∆M−k

u ak(x
′) = 0 for

k = 0, . . . ,M , and all u ∈ Rd−1. Thus, by the induction hypothesis ak(x′) is
almost everywhere equal to a polynomial of degree at most M − k − 1, and
we deduce that g and thus f is Ld-a.e. equal to a polynomial of degree at
most M − 1. �

Lemma 3.7. Fix γ ∈ R, p ∈ (1,∞), r ∈ [1,∞]. Then, if K,L ∈ N are
sufficiently large, we have¨

|F (x, h)|min{|h|K , |h|−K}(1 + |x|)−L dx dh . ‖F‖Lp,r(νγ),

for all F ∈ Lp,r(νγ).

Proof. By interpolation it suffices to show this for r = p (possibly, after
increasingK). The desired bound follows if we can showK1, L ∈ N sufficiently
large, that

min{|h|K1 , |h|−K1}(1 + |x|)−L ∈ Lp′(νγ),

where p′ = p
p−1 . This however is elementary. �

Before we define the operator JM from Proposition 3.5, we introduce some
auxiliary operators. Let j ∈ Z, m ∈ C∞0 (Rd \ {0}), w ∈ Rd \ {0}, and
ε > 0 be such that Bd(w, ε) ⊂ {ξ : 1/2 < |ξ| < 2}. For ψ ∈ S∞(Rd), define
Γjm,w,εψ(x, h) by

(3.4)
[
Γjm,w,εψ

]∧
(ξ, h) := 2jdm(−2−jξ)ψ̂(ξ)1Bd(2−jw,2−jε)(h),
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where ∧ denotes the Fourier transform in the x→ ξ variable.

Lemma 3.8. Let Ω ⊂ S∞(Rd) be a bounded set. Then for all K,L ∈ N and
α ∈ Nd, there exists CK,L,α,Ω ≥ 0, which may depend on the fixed j,m,w and
ε, such that

|∂αxΓjm,w,εψ(x, h)| ≤ CK,L,α,Ω2−|j|min{|h|K , |h|−K}(1 + |x|)−L

for all ψ ∈ Ω.

Proof. Equivalently, we wish to show that the set{
max{|h|K , |h|−K}2|j|Γjm,w,εψ(·, h) : h ∈ Rd \ {0}, ψ ∈ Ω

}
is bounded in S(Rd). Since Γjm,w,εψ(x, h) = 0 unless |h| ≈ 2−j , it suffices to
show that {

2|j|(K+1)Γjm,w,εψ(·, h) : ψ ∈ Ω, h ∈ Rd \ {0}
}

is bounded in S(Rd). Taking the Fourier transform, this follows if we show
that {

2|j|(K+1)2jdm(−2−jξ)ψ̂(ξ) : ψ ∈ Ω
}

is bounded in S(Rd). Using that supp {m(2−j ·)} ⊂ {|ξ| ≈ 2j}, for m ∈
C∞0 (Rd \ {0}), and Ω ⊂ S∞(Rd) is a bounded set, this follows, completing
the proof. �

For b ∈ R, p ∈ (1,∞), r ∈ [1,∞], γ ∈ R, F ∈ Lp,r(νγ), and ψ ∈ S∞(Rd),
set

〈U b,jm,w,εF,ψ〉 :=

¨
|h|bF (x, h) Γjm,w,εψ(x, h) dx dh(3.5a)

〈U bm,w,εF,ψ〉 :=
∑
j∈Z
〈U b,jm,w,εF,ψ〉.(3.5b)

Lemma 3.9. For F ∈ Lp,r(νγ), the sums and integrals in (3.5) converge
absolutely and (3.5b) defines U bm,w,εF ∈ S ′∞(Rd).

Proof. By Lemmas 3.8 and 3.7, we have for any K,L ∈ N sufficiently large,∑
j∈Z

¨
|h|b|F (x, h)||Γjm,w,εψ(x, h)|dx dh

.K,L
∑
j∈Z

2−|j|
¨
|F (x, h)|min{|h|K , |h|−K}(1 + |x|)−L dx dh

.
∑
j∈Z

2−|j|‖F‖Lp,r(νγ) . ‖F‖Lp,r(νγ).

This shows the absolute convergence and defines U bm,w,εF in the algebraic
dual of S∞(Rd).
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To see that U bm,w,εF ∈ S ′∞(Rd), let ψk ∈ S∞(Rd) be such that ψk → ψ

in S∞(Rd). In particular, {ψk : k ∈ N} is a bounded set in S∞(Rd) and
therefore by Lemma 3.8,

|h|b
∣∣Γjm,w,εψk(x, h)

∣∣ . 2−|j|min
{
|h|K , |h|−K

}
(1 + |x|)−L,

with implicit constant independent of k. Combining this with Lemma 3.7,
the dominated convergence theorem shows 〈U bm,w,εF,ψk〉 → 〈U bm,w,εF,ψ〉,
completing the proof. �

Lemma 3.10. For b, γ ∈ R, p ∈ (1,∞), r ∈ [1,∞],

U bm,w,ε : Lp,r(νγ)→ Ḃb−γ/pp (γ, r)

is a bounded linear transformation.

Proof. This is an application of Lemma 2.4. From the definitions (3.4) and
(3.5a) we get

LkU
b,j
m,w,εF (x) = 2−jb

ˆ

|h−2−jw|≤ε2−j

(2j |h|)bϕ(2−kD)m(2−jD)[F (·, h)](x)
dh

2−jd

and thus LkU
b,j
m,w,ε = 0 when |k − j| ≥ 2. Then with V b,j

m,w,ε as in (2.7), we
get for n = −1, 0, 1,

(3.6) LkU
b,k+n
m,w,εF = 2−(k+n)bV b,k+n

m̃n,w,ε
F, with m̃n = ϕ(2n·)m,

and

P bU bm,w,εF (·, k) = 2kbLkU
b
m,w,εF =

1∑
n=−1

2−nbV b,k+n
m̃n,w,ε

F.

Hence

‖U bm,w,εF‖Ḃb−γ/pp (γ,r)
≤

1∑
n=−1

2−nb‖V b
m̃n,w,ε

F (·, ·+ n)‖Lp,r(µγ)

.b,γ

1∑
n=−1

‖V b
m̃n,w,ε

F‖Lp,r(µγ)

and since by Lemma 2.4 we have ‖V b
m̃n,w,ε

F‖Lp,r(µγ) . ‖F‖Lp,r(νγ) the proof
is complete. �

The following lemma has a dual version of formula (2.6) and an extension
to tempered functions.

Lemma 3.11. Let ψ ∈ S∞(Rd). Then

(3.7)
N∑
κ=1

ˆ
∆M
−hΓjmκ,wκ,εψ(x, h) dh = Ljψ(x).
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Moreover, for f ∈ T and ψ ∈ S∞(Rd),

(3.8)
N∑
κ=1

∑
j∈Z

¨
∆M
h f(x) Γjmκ,wκ,εψ(x, h) dhdx =

ˆ
f(x)ψ(x) dx.

Proof. We first check (3.7), which, after taking the Fourier transform, is
equivalent with

(3.9)
N∑
κ=1

ˆ
(ei〈ξ,−h〉 − 1)M

[
Γjmκ,wκ,εψ

]∧
(ξ, h) dh = ϕ(2−jξ)ψ̂(ξ).

Using (3.4) and (2.5a) we have
N∑
κ=1

ˆ (
ei〈ξ,−h〉 − 1

)M[
Γjmκ,wκ,εψ

]∧
(ξ, h) dh

=

N∑
κ=1

2jd
ˆ
|h−2−jwκ|<2−jε

(ei〈−ξ,h〉 − 1)Mmκ(−2−jξ)ψ̂(ξ) dh

= ϕ(−2−jξ)ψ̂(ξ) = ϕ(2−jξ)ψ̂(ξ),

here we used that ϕ is radial. This establishes (3.9) and thus (3.7).
We now prove (3.8). In the argument that follows all integrals and sums

converge absolutely by Lemmas 3.7 and 3.8. Using (3.7) we have
N∑
κ=1

∑
j∈Z

¨
∆M
h f(x) Γjmκ,wκ,εψ(x, h) dhdx

=
N∑
κ=1

∑
j∈Z

ˆ
f(x)

ˆ
∆M
−hΓjmκ,wκ,εψ(x, h) dhdx

=
∑
j∈Z

ˆ
f(x)Ljψ(x) dx =

ˆ
f(x)ψ(x) dx,

where the final equality uses f ∈ T and that
∑

j∈Z Ljψ = ψ, with convergence
in S∞(Rd), since ψ ∈ S∞(Rd). �

We are prepared to define JM . For f ∈ M with πMf ∈ BM,s,p(γ, r) we
set

〈JM (πMf), ψ〉 :=

N∑
κ=1

∑
j∈Z

¨
∆M
h f(x)Γjmκ,wκ,εψ(x, h) dx dh(3.10a)

=

N∑
κ=1

〈U bmκ,wκ,εFb, ψ〉 with Fb(x, h) =
∆M
h f(x)

|h|b
(3.10b)

where by Lemma 3.9 the sums and integrals in (3.10a) converge absolutely.
Note that the definition of JM depends on M , but not on s, γ, p, r, and that
(3.10b) holds for all b ∈ R. We shall later use this formula with b = s+ γ/p.
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When f ∈ T , Lemma 3.11 shows that 〈JM (πMf), ψ〉 is the standard pairing
of f ∈ T with a Schwartz function in S∞, i.e.

(3.11) 〈JM (πMf), ψ〉 =

ˆ
f(x)ψ(x) dx, ∀f ∈ T .

We need to show that JM is injective on BM,s,p(γ, r). For this, we will
need the following auxiliary lemma.

Lemma 3.12. Let p ∈ (1,∞), r ∈ [1,∞], and γ ∈ R. Suppose that F ∈
Lp,r(νγ) and η ∈ C∞c (Rd \ {0}) are such that

x 7→ Q(x) :=

ˆ
F (x, h)η(h) dh

is almost everywhere equal to a polynomial. Then Q(x) = 0 almost everywhere.

Proof. Let φ ∈ C∞c (Rd) be nonnegative and
´
φ = 1. We claim that, for all

G ∈ Lp,r(νγ),

(3.12) lim
|a|→∞

¨
G(x, h)η(h)φ(x− a) dhdx = 0

Observe that (3.12) follows by standard estimates whenever G ∈ Lq(νγ)
for any q ∈ (1,∞). It then also holds for G ∈ Lp,r(νγ) since Lp,r(νγ) ⊂
Lp1(νγ) + Lp2(νγ), with p1 < p < p2.

By (3.12) we have

0 = lim
|a|→∞

∣∣∣¨ F (x, h)η(h)φ(x− a) dhdx
∣∣∣ = lim

|a|→∞

∣∣∣ ˆ Q(x)φ(x− a) dx
∣∣∣

and the last expression is equal to |c| if Q(x) = c almost everywhere, and
equal to ∞ if Q is almost everywhere equal to a nonconstant polynomial. We
conclude that Q(x) = 0 almost everywhere. �

Lemma 3.13. For M ∈ N, s, γ ∈ R, p ∈ (1,∞), and r ∈ [1,∞], JM is
injective on BM,s,p(γ, r).

Proof. Suppose f ∈M is such that πMf ∈ BM,s,p(γ, r) and JMπMf = 0 as
an element of S ′∞(Rd). We wish to show f(x) = P (x), almost everywhere,
for some polynomial P (x) of degree ≤ M − 1. In this proof, all sums and
integrals converge absolutely by Lemmas 3.7 and 3.8.

Take ψ ∈ S∞(Rd) and η ∈ C∞c (Rd \ {0}). Then,
ˆ
η(h′)∆M

h′ ψ(x) dh′ ∈ S∞(Rd).
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Thus, we have, using (3.10a) and the definition of the translation invariant
operator Γjmκ,wκ,ε (see (3.4)),

0 =
〈
JMπMf,

ˆ
η(h′) ∆M

−h′ψ dh′
〉

=
N∑
κ=1

∑
j∈Z

˚
∆M
h f(x) η(h′) ∆M

−h′Γ
j
mκ,wκ,εψ(x, h) dx dhdh′

=
∑
j∈Z

¨
∆M
h′ f(x)η(h′)

N∑
κ=1

ˆ
∆M
−hΓjmκ,wκ,εψ(x, h) dhdx dh′

=
∑
j∈Z

¨
∆M
h′ f(x)η(h′) dh′ Ljψ(x) dx,

where the last equality uses (3.7). It follows from Lemma 3.7 and the fact
that η ∈ C∞c (Rd \ {0}) that

´
∆M
h′ f(·)η(h′) dh′ ∈ T . Since ψ ∈ S∞(Rd), we

have
∑

j∈Z Ljψ = ψ with convergence in S∞(Rd). Thus,

0 =
∑
j∈Z

¨
∆M
h′ f(x)η(h′) dh′Ljψ(x) dx

=

¨
∆M
h′ f(x) η(h′) dh′ψ(x) dx,

(3.13)

for arbitrary ψ ∈ S∞(Rd) and we can conclude thatˆ
∆M
h′ f(x)η(h′) dh′ = Q(x), a.e.

for some polynomial Q. By Lemma 3.12 it follows that Q = 0, henceˆ
∆M
h′ f(x)η(h′) dh′ = 0, a.e.

Since η ∈ C∞0 (Rd \ {0}) was arbitrary, this implies ∆M
h f(x) = 0 for almost

every (x, h) ∈ R2d. Lemma 3.6 shows f(x) = P (x), almost everywhere, for
some polynomial P (x) of degree ≤M − 1, completing the proof. �

Proof of Proposition 3.5. It follows immediately from the definitions that{
πMf 7→

(
(x, h) 7→ ∆M

h f(x)

|h|s+γ/p

)
BM,s,p(γ, r)→ Lp,r(νγ)

is bounded. Lemma 3.10 shows that U s+γ/pmκ,wκ,ε : Lp,r(νγ) → Ḃsp(γ, r) is
bounded. Composing these maps and using (3.10b) shows that

JM : BM,s,p(γ, r)→ Ḃsp(γ, r)

is bounded. JM is injective by Lemma 3.13. Finally, (3.2) follows from
(3.11). �
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Proof of Theorem 3.2, conclusion. By Proposition 3.3,

EM (Ḃsp(γ, r)) ⊆ TM ∩BM,s,p(γ, r),

and so by (3.2), JM
∣∣
EM (Ḃsp(γ,r))

= ιM
∣∣
EM (Ḃsp(γ,r))

. By Proposition 3.3, ιM is a

left inverse to EM , and we conclude JMEM is the identity map on Ḃsp(γ, r).
In particular, JM

∣∣
TM∩BM,s,p(γ,r)

: TM ∩BM,s,p(γ, r)→ Ḃsp(γ, r) is surjective.

Proposition 3.5 shows JM : BM,s,p(γ, r)→ Ḃsp(γ, r) is injective. We conclude

(3.14) TM ∩BM,s,p(γ, r) = BM,s,p(γ, r),

establishing part (i) of the theorem, and moreover that JM : BM,s,p(γ, r)→
Ḃsp(γ, r) is bijective with two-sided inverse EM . From (3.14) and (3.2) we see
that

JM : BM,s,p(γ, r)→ Ḃsp(γ, r)
agrees with ιM on all of BM,s,p(γ, r). Thus,

ιM
∣∣
BM,s,p(γ,r)

: BM,s,p(γ, r)→ Ḃsp(γ, r)

is a bounded bijective map with bounded inverse EM . This establishes parts
(ii) and (iii) of the theorem, completing the proof. �

4. Embeddings

The proof of the embeddings in Theorem 1.5 is reduced to inequalities for
the operator Ta defined on functions F : Rd × Z→ C by

(4.1) TaF (x, j) = 2jaFj(x),

with the parameters a = ±γ/p.

Lemma 4.1. The following hold for all γ ∈ R, 1 < p <∞.
(i) For p ≤ r ≤ ∞,

‖T−γ/pG‖`r(Lp,r) . ‖G‖Lp,r(µγ).

(ii) For 1 ≤ r ≤ p

‖Tγ/pF‖Lp,r(µγ) . ‖F‖`r(Lp,r).

Proof. Part (i) follows from the definitions of Lorentz spaces via the distribu-
tion function. We use a change of variable with subsequent interchange of
sum and integral to write

‖T−γ/pG‖`r(Lp,r) .
(∑

j

ˆ ∞
0

λr
[
meas{x : 2

−j γ
p |G(x, j)| > λ}

]r/p dλ

λ

)1/r

=
( ˆ ∞

0
βr
∑
j

[
2−jγmeas{x : |G(x, j)| > β}

]r/p dβ

β

)1/r
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and since r ≥ p we estimate an `r/p-norm by an `1-norm and see that the
last displayed expression is dominated by(ˆ ∞

0
βr
[∑

j

2−jγmeas{x : |G(x, j)| > β}
]r/p dβ

β

)1/r

=
( ˆ ∞

0
βr
[
µγ{(x, j) : |G(x, j)| > β}

]r/p dβ

β

) 1
r
. ‖G‖Lp,r(µγ).

For part (ii) we use that (Lp,r(µγ))∗ = Lp
′,r′(µγ), ([33]) and (`r(Lp,r))∗ =

`r
′
(Lp

′,r′). Observe that for 1 ≤ r ≤ p∣∣∣ˆ ∑
j

Tγ/pF (x, j)G(x, j)
dx

2jγ

∣∣∣ =
∣∣∣∑

j

ˆ
F (x, j)2−jγ/p

′
G(x, j) dx

∣∣∣
. ‖F‖`r(Lp,r)‖T−γ/p′G‖`r′ (Lp′,r′ ) . ‖F‖`r(Lp,r)‖G‖Lp′,r′ (µγ)

where we have used part (i) for the exponents p′ ≤ r′. The proof is completed
by taking the supremum over all G with ‖G‖Lp′,r′ (µγ) ≤ 1. �

Lemma 4.2. Let 1 < p <∞, γ 6= 0.
(i) For p ≤ r ≤ ∞,

‖Tγ/pF‖Lp,r(µγ) . ‖F‖Lp(`r).

(ii) For 1 ≤ r ≤ p,

‖T−γ/pG‖Lp(`r) . ‖G‖Lp,r(µγ)

Proof. The argument for part (i) has been used in proofs for endpoint multi-
plier theorems, our proof is essential the one from [41, Lemma 2.4] (see also
[41] for further references).

Let 0 ≤ θ ≤ 1 and 1/r = (1 − θ)/p. We use the complex interpolation
formulas

[Lp(`p), Lp(`∞)]θ = Lp(`r), [Lp(µγ), Lp,∞(µγ)]θ = Lp,r(µγ).

These imply that it suffices to prove the assertion for r = p and r =∞. For
r = p we have ‖Tγ/pF‖Lp(µγ) = ‖F‖Lp(`p).

For r =∞ the conclusion Tγ/p : Lp(`∞)→ Lp,∞(µγ) follows from

µγ{(x, j) : |Tγ/pF (x, j)| > λ} =

ˆ
Rd

∑
j:

2jγ/p|Fj(x)|>λ

2−jγ dx

≤
ˆ
Rd

∑
j:

2−jγ/p<λ−1 supk |Fk(x)|

2−jγ dx .
ˆ
Rd

(supk |Fk(x)|)p

λp
dx;

here we used γ 6= 0.
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For part (ii) we use that (Lp,r(µγ))∗ = Lp
′,r′(µγ), see [33] and (Lp(`r))∗ =

Lp
′
(`r
′
). Observe that for F ∈ Lp′(`r′)ˆ ∑

j

2−jγ/pGj(x)Fj(x) dx =

ˆ ∑
j

Gj(x)Tγ/p′F (x, j)2−jγ dx

. ‖G‖Lp,r(µγ)‖Tγ/p′F‖Lp′,r′ (µγ) . ‖G‖Lp,r(µγ)‖F‖Lp′ (`r′ )

where we have used part (i). Now part (ii) follows by taking the sup over all
F with ‖F‖Lp′ (`r′ ) ≤ 1. �

Proof of Theorem 1.5. Apply Lemma 4.1 and Lemma 4.2 with F (x, j) =

2jsLjf(x) and G(x, j) = 2
j(s+ γ

p
)
Ljf(x). �

5. Non-embeddings

We prove Theorem 1.6. Proposition 5.1 covers part (i) and (ii) of the
theorem, in the range γ ≥ −d, and Proposition 5.2 covers the same parts
for the range γ < −d. Proposition 5.3 covers part (iii) of Theorem 1.6. We
begin with some definitions to build the examples.

If γ ≥ −d and k > 0, or if γ < −d and k < 0, define

Nγ(k) := b2k(d+γ)c.

Let {ni,k} be a double indexed set in Z, with 1 ≤ i ≤ Nγ(k), which is
separated in the sense that for every k

i1 6= i2 =⇒ |ni1,k − ni2,k| ≥ 210|k|.

Let η ∈ S such that

|η(x)| ≈ 1 for |x| ≤ 1.(5.1a)

supp (η̂) ⊂
{
ξ ∈ R̂d :

15

16
≤ |ξ| ≤ 17

16

}
(5.1b)

and let

(5.2) ηi,k(x) = η(2k(x− ni,ke1)).

By (1.2) we have

(5.3a) ηi,k = Lkηi,k

and

(5.3b) L`ηi,k = 0 if ` 6= k.

Define for k ∈ Z

(5.4) fγ,k(x) = 2−kγ/p
Nγ(k)∑
i=1

ηi,k.
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Proposition 5.1. Let fγ,k be as in (5.4). Let s ∈ R. Assume γ ≥ −d, and
define2

(5.5) Fγ,N (x) =
2N∑

k=N+1

2−ksfγ,k(x).

(i) Then 1 < p ≤ r ≤ ∞

‖Fγ,N‖Ḃsp(γ,∞) = ‖Fγ,N‖Bsp(γ,∞) & N
1/p(5.6)

‖Fγ,N‖Ḃsp(β,r) = ‖Fγ,N‖Bsp(β,r) . N
1/r, for β 6= γ,(5.7)

‖Fγ,N‖Ḃsp,r = ‖Fγ,N‖Bsp,r . N
1/r(5.8)

(ii) If p < ∞ then Fγ =
∑

`≥1 `2
−`/pFγ,2` belongs to

⋂
r>p Ḃ

s
p,r and to⋂

r>p
β 6=γ
Ḃsp(β, r), but not to Ḃsp(γ,∞).

Also Fγ belongs to
⋂
r>pB

s
p,r and to

⋂
r>p
β 6=γ
Bsp(β, r), but not to Bsp(γ,∞).

Proof. Let r ≥ p. We begin with the upper bound for the Ḃsp(β, r) quasi-norm
of Fγ,N for β 6= γ. Let

Eγ,β,k(λ) =
{
x ∈ Rd :

∣∣∣Nγ(k)∑
i=1

ηi,k(x)
∣∣∣p > λp2k(γ−β)

}
.

Note that from (5.3a) we get

‖Fγ,N‖Ḃsp(β,r) =
(
r

ˆ ∞
0

[ 2N∑
k=N+1

λp2−kβmeasEγ,β,k(λ)
]r/p dλ

λ

)1/p
.

In what follows we will use, for M > d+ |γ|, the estimate

(5.9) |η(x)| ≤ CM (1 + |x|)−M .

Split ηi,k = ϑi,k + εi,k where

ϑi,k = ηi,k1{|x−ni,ke1|≤2k}, εi,k = ηi,k − ϑi,k.

Note for later reference ‖εi,k‖p .M 2
−k d

p 2
2k( d

p
−M) and therefore

(5.10)
∥∥∥Nγ(k)∑

i=1

εi,k

∥∥∥
p
. 2k(d+γ)2

−k d
p 2

2k( d
p
−M)

.

2The definitions in (5.5), (5.14) depend on s but we do not include the subscript s to
keep the notation as simple as possible.
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Let

E
(1)
γ,β,k(λ) =

{
x ∈ Rd :

∣∣∣Nγ(k)∑
i=1

ϑi,k(x)
∣∣∣p > (

λ

2
)p2k(γ−β)

}

E
(2)
γ,β,k(λ) =

{
x ∈ Rd :

∣∣∣Nγ(k)∑
i=1

εi,k(x)
∣∣∣p > (

λ

2
)p2k(γ−β)

}
.

Then

Eγ,β,k(λ) ⊂ E(1)
γ,β,k(λ) ∪ E(2)

γ,β,k(λ).(5.11)

Finally set, for i = 1, . . . ,Nγ(k),

E
(1,i)
γ,β,k(λ) = {x ∈ Rd : |ϑi,k(x)|p > (

λ

2
)p2k(γ−β)}.

Observe that for fixed k the sets supp (ϑi,k) are disjoint and therefore the
sets E(1)

γ,β,k(λ) are the disjoint union of the sets E(1,i)
γ,β,k(λ), i = 1, . . . ,Nγ(k).

Now from (5.9) we get

E
(1,i)
γ,β,k(λ) ⊂

{
x : |x− ni,ke1| ≤ 2−k

( 2pCpM
λp2k(γ−β)

) 1
Mp
}

and therefore we get for the Lebesgue measure

measE(1)
γ,β,k(λ) ≤ cdNγ(k)2−kd

( 2pCpM
λp2k(γ−β)

) d
Mp
.

Hence, using the definition of Nγ(k)

λp2−kβmeasE(1)
γ,β,k(λ) ≤ cd(2CM )

d
M (λp2k(γ−β))

1− d
Mp

Using (5.9) we also see that for k = N + 1, . . . , 2N

E
(1)
γ,β,k(λ) = ∅ for (λ/2)p2k(γ−β) > 2CpM .

Hence we get, for γ > β and r <∞,( ˆ ∞
0

[ ∑
N+1≤k≤2N

λp2k(γ−β)≤2CpM

λp2−kβmeasE(1)
γ,β,k(λ)

]r/p dλ

λ

)1/r
≤ I + II

where

I =
(ˆ CM (2−2N(γ−β))1/p

0

[ ∑
N+1≤k≤2N

C̃M (λp2k(γ−β))
1− d

Mp

]r/p dλ

λ

)1/r

II =
(ˆ 2CM (2−N(γ−β))1/p

CM (2−2N(γ−β))1/p

[ ∑
N+1≤k≤2N

λp2k(γ−β)≤2pCpM

C̃M (λp2k(γ−β))
1− d

Mp

]r/p dλ

λ

)1/r
.
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We estimate

I .
(ˆ CM (2−2N(γ−β))1/p

0
(λp22N(γ−β))

(1− d
Mp

) r
p

dλ

λ

)1/r
. 1

II .
(ˆ 2CM (2−N(γ−β))1/p

CM (2−2N(γ−β))1/p

dλ

λ

)1/r
. N1/r

and it follows that ‖FN,γ‖Ḃsp(β,r) . N
1/r provided that β < γ.

The calculation for γ < β is very similar, except the integration is over
λ ∈ [0, CM (21+2N(β−γ))1/p] and the corresponding integrals for the parts I
and II are extended from 0 to CM (2N(β−γ))1/p and from CM (2N(β−γ))1/p

to CM (21+2N(β−γ))1/p, respectively. Again the first term gives an O(1)

contribution and the second one an O(N1/r) contribution. Summarizing we
get (ˆ ∞

0

[ ∑
N<k≤2N

λp2−kβmeasE(1)
γ,β,k(λ)

]r/p dλ

λ

)1/r
. N1/r.(5.12)

A similar (and easier) calculation shows that one has the corresponding bound
when r =∞ as long as β 6= γ. We now estimate the error term; we show in
fact the stronger inequality( ˆ ∞

0

[ ∑
N<k≤2N

λp2−kβmeasE(2)
γ,β,k(λ)

]r/p dλ

λ

)1/r
. 2−N(5.13)

for r ≥ p. We discretize the integral in λ, use the embedding `p ↪→ `r, then
the change of variables σ = λ2k(γ−β)/p and then the formula for the Lp-norm
via the distribution function to estimate the left hand side of (5.13) by

.
( ∑
N<k≤2N

ˆ ∞
0

λp2−kβmeasE(2)
γ,β,k(λ)

dλ

λ

)1/p

.
( ∑
N<k≤2N

ˆ ∞
0

2−kγσpmeas
{
x : |

Nγ(k)∑
i=1

εi,k(x)| > σ
} dσ

σ

)1/p

.
( ∑
N<k≤2N

2−kγ
∥∥∥Nγ(k)∑

i=1

εi,k

∥∥∥p
p

)1/p
. 2−N ,

here we used (5.10) with M large. This finishes the proof of ‖Fγ,N‖Ḃsp(γ,r) .

N1/r and since the Fourier transform of Fγ,N is supported where |ξ| � 1

we may replace Ḃsp(β, r) with Bsp(γ, r). Thus (5.7) is now proved, and this
inequality also yields ‖Fγ‖Ḃsp(β,r) . 1.
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We now give the proof of (5.8). The proof is similar to the above but
simpler. We use (5.3a) to write

‖Fγ,N‖Ḃsp,r =
( 2N∑
k=N+1

‖fγ,k‖rp
)1/r

= I1 + II1

where

I1 =
( 2N∑
k=N+1

∥∥∥2−kγ/p
Nγ(k)∑
i=1

ϑi,k

∥∥∥r
p

)1/r

II1 .
( 2N∑
k=N+1

∥∥∥2−kγ/p
Nγ(k)∑
i=1

εi,k

∥∥∥r
p

)1/r

Using the disjointness of support property of the ϑi,k we have

‖2−kγ/p
Nγ(k)∑
i=1

ϑi,k‖p ≈ 1, N < k ≤ 2N

and hence I1 ≈ N1/r (with the obvious modification if r =∞). For II1 we
use (5.10) for sufficiently large M and see that |II1| . 2−N , and (5.8) follows.
We also have ‖Fγ‖Ḃsp,r . 1.

We conclude by proving the lower bound (5.6). We have for λ� 1

‖Fγ,N‖pḂsp(γ,∞)
≥

∑
N<k≤2N

λp2−kγmeas
{
x :
∣∣Nγ(k)∑
i=1

ηi,k(x)
∣∣ > λ

}
≥ Ip2 − II

p
2

where

Ip2 = λp
∑

N<k≤2N

2−kγmeas
{
x :
∣∣Nγ(k)∑
i=1

ϑi,k(x)
∣∣ > 2λ

}

IIp2 = λp
∑

N<k≤2N

2−kγmeas
{
x :
∣∣Nγ(k)∑
i=1

εi,k(x)
∣∣ > λ

}
.

By the support properties of the ϑi,k and by (5.1a) we have for sufficiently
small λ

meas
{
x :
∣∣Nγ(k)∑
i=1

ϑi,k(x)
∣∣ > 2λ

}
& Nγ(k)2−kd ≈ 2kγ

and hence I2 & N1/p. By (5.10) and Chebyshev’s inequality

IIp2 .
∑

N<k≤2N

2−kγ
∥∥∥Nγ(k)∑

i=1

εi,k

∥∥∥p
p
. 2−N

and combining the two estimates we get for sufficiently large N the desired
lower bound ‖Fγ,N‖Ḃsp(γ,∞) ≥ cN

1/p .
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Finally

‖Fγ‖Ḃsp(γ,∞) & sup
λ>0

λ
(∑
`≥1

∑
2`<k≤2`+1

2−kγmeas
{
`2−`/p

∣∣Nγ(k)∑
i=1

ηi,k
∣∣ > λ

})1/p

≥ sup
`≥1

`2−`/p sup
σ>0

σ
( ∑

2`<k≤2`+1

2−kγmeas
{∣∣Nγ(k)∑

i=1

ηi,k
∣∣ > σ

})1/p

& sup
`≥1

`2−`/pσ0(2`)1/p =∞

for sufficiently small σ0 � 1, and we see that Fγ /∈ Ḃsp(γ,∞). �

The counterpart of Proposition 5.1 in the range γ < −d is as follows.

Proposition 5.2. Let fγ,k be as in (5.4). Let s ∈ R. Assume γ < −d and
define

(5.14a) Fγ,N (x) =
∑

−2N<k≤−N
2−ksfγ,k(x)

and

(5.14b) Gγ,N (x) = 2
3N( d

p
−s)

Fγ,N (23Nx).

(i) Then for 1 < p ≤ r ≤ ∞,

‖Gγ,N‖Bsp(γ,∞) = ‖Fγ,N‖Ḃsp(γ,∞) & N
1/p,

‖Gγ,N‖Bsp(β,r) = ‖Fγ,N‖Ḃsp(β,r) ≈ N
1/r, for β 6= γ,

‖Gγ,N‖Bsp,r = ‖Fγ,N‖Ḃsp,r ≈ N
1/r.

(ii) If p < ∞, then F =
∑

`≥1 `2
−`/pFγ,2` belongs to

⋂
r>p Ḃ

s
p,r and to⋂

r>p
β 6=γ
Ḃsp(β, r) but not to Ḃsp(γ,∞).

(iii) If p < ∞, then Gγ =
∑

`≥1 `2
−`/pGγ,2` belongs to

⋂
r>pB

s
p,r and to⋂

r>p
β 6=γ
Bsp(β, r) but not to Bsp(γ,∞).

Sketch of proof. The proof of the bounds for Fγ,N is exactly analogous to
the corresponding arguments in Proposition 5.1. Observe that the param-
eter k now varies between −2N and −N and since γ < −d we now have
Nγ(k) = b2k(d+γ)c = b2|k||d+γ|c ≥ 1. Also notice that the Fourier transform
of Gγ,N is supported on large frequencies and therefore the homogeneous and
inhomogeneous Besov type norms for Gγ,N coincide.

To pass from estimates for Fγ,N to estimates for Gγ,N we just use the
dilation formulas

2
n( d
p
−s)‖f(2n·)‖Ḃsp(γ,r) = ‖f‖Ḃsp(γ,r),

2
n( d
p
−s)‖f(2n·)‖Ḃsp,r = ‖f‖Ḃsp,r . �
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The following two lemmas show that the assumption γ 6= 0 in part (ii)
of Theorem 1.5 cannot be removed. A combination of these lemmas gives a
proof of Theorem 1.7.

Lemma 5.3. Let s ∈ R, and 1 < p <∞. There exists f ∈
⋂
r>p Ḟ

s
p,r which

does not belong to Ḃsp(0,∞).

Proof. Let η◦ be a Schwartz function such that η◦(x) > 1 for |x| < 1 and η̂◦
is supported in {ξ : |ξ| ≤ 2−5}. For k > 2 let

fk(x) = η◦(x)ei2
kx1 log k

k1/p

and f(x) =
∑

k>2 2−ksfk(x). Then Lkf = 2−ksfk and thus(∑
k>2

2ksr|Lkf(x)|r
)1/r

=
(∑
k>2

|fk(x)|r
)1/r

. |η◦(x)|
(∑
k>2

k−r/p| log k|r
)1/r
. C(p, r)|η◦(x)|

with C(p, r) <∞ for r > p. Hence f ∈ Ḟ sp,r for all r > p.
For λ� 1 we have

λµ0{(x, k) : |P sf(x, k)| > λ}1/p

≥ λ
( ∑

k>2
k−1/p log k>λ

meas{x : |x| < 1/4}
)1/p

≥ cλ
( ∑

2<k<c( log λ−1

λ
)p

1
)1/p

≥ c log λ−1

so that f does not belong to Ḃsp(0,∞). �

Lemma 5.4. Let s ∈ R, and 1 < p < ∞. There exists g ∈ Ḃsp(0, 1) which
does not belong to

⋃
r<p Ḟ

s
p,r.

Proof. As in the proof of Lemma 5.3 let η◦ be a Schwartz function such that
η◦(x) > 1 for |x| < 1 and η̂◦ is supported in {ξ : |ξ| ≤ 2−5}. For k > 2 let

gk(x) =
η◦(x)ei2

kx1

k1/p[log k]2

and g(x) =
∑

k>2 2−ksgk(x). Then Lkg = 2−ksgk and thus( ∑
2<k≤2N

2ksr|Lkg(x)|r
)1/r

=
( ∑

2<k≤2N

|gk(x)|r
)1/r

≥ |η◦(x)|
( ∑
N≤k≤2N

k−r/p| log k|−2r
)1/r ≥ C(p, r)N1−r/p(logN)−2|η◦(x)|
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with C(p, r) > 0 and 1 − r
p > 0 for r < p. Integrating its p-th power over

{x : |x| ≤ 1/2} and letting N →∞ we see that f /∈ Ḟ sp,r for all r < p.
Now let,

E`,m = {(x, k) : 2`−1 ≤ |x| < 2`, 2m−1 ≤ k < 2m}, for (`,m) ∈ N2,

E0,m = {(x, k) : |x| < 1, 2m−1 ≤ k < 2m}, for m ∈ N.

Then µ0(E`,m) ≈ 2m+`d and

|gk(x)| .N 2−m/pm−22−`N if (x, k) ∈ E`,m,

for any (`,m) ∈ (N ∪ {0})× N. Therefore

|P sg(x, k)| = |gk(x)| .N
∞∑
`=0

∞∑
m=1

2−`(N−d/p)m−2
1E`,m(x, k)

µ0(E`,m)1/p
.

Choosing N > d/p we see that P sg ∈ Lp,1(µ0) and since ĝ(ξ) = 0 for |ξ| ≤ 1

we obtain g ∈ Ḃsp(0, 1). �

6. Proof of Theorem 1.9

We use a result in [10], namely for γ ∈ R \ [−1, 0]

(6.1) [Q1,1+γf ]L1,∞(νγ) . ‖f‖ ˙BV (Rd).

Since |Q1,(1+γ)/pf |p ≤ |Q1,1+γf | (2‖f‖V∞)p−1, we have

‖f‖Ḃ1/pp (γ,∞)
' [Q1, 1+γ

p
f ]Lp,∞(νγ) . ‖f‖

1− 1
p

V∞ [Q1,1+γf ]
1
p

L1,∞(νγ)
,

which combined with (6.1) gives

(6.2) ‖f‖Ḃ1/pp (γ,∞)
. ‖f‖

1− 1
p

V∞ ‖f‖
1
p

˙BV

for every γ ∈ R \ [−1, 0] and 1 < p <∞.
We can interpret inequality (6.2) as an imbedding result for the real

interpolation space [V∞, ˙BV ]θ,1 with θ = 1
p , and get

(6.3) ‖f‖Ḃ1/pp (γ,∞)
. ‖f‖[V∞, ˙BV ] 1

p ,1
.

Indeed if, for f ∈ V∞ ∩ ˙BV , we set J(f, t) = max{‖f‖V∞ , t‖f‖ ˙BV } we have

‖f‖
1− 1

p

V∞ ‖f‖
1
p

˙BV
≤ t−

1
pJ(f, t) for all t. Hence if f ∈ V∞ ∩ ˙BV and f =

∑
ν fν

where fν ∈ V∞ ∩ ˙BV (with the sum converging in V∞ + ˙BV ), then we
get from (6.2) ‖f‖Ḃ1/pp (γ,∞)

.
∑

ν ‖fν‖Ḃ1/pp (γ,∞)
≤
∑

ν 2−ν/pJ(fν , 2
ν) and by

taking the inf over all such decompositions and applying the equivalence of
the Kθ,1 and Jθ,1 methods of interpolation ([4, Theorem 3.3.1]) we obtain
(6.3). �
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Remark. Concerning Remark 1.14, by the reiteration theorem ([4, Theorem
3.5.3]) we have

[
[V∞, ˙BV ] 1

p0
,1, [V

∞, ˙BV ] 1
p1
,1

]
θ,∞ = [V∞, ˙BV ] 1

p
,∞, provided

that 1 < p0 < p < p1 <∞ and 1
p = 1−θ

p0
+ θ

p1
. Hence [V∞, ˙BV ] 1

p
,∞ embeds

only into [Ḃ1/p0
p0 (γ,∞), Ḃ1/p1

p1 (γ,∞)]θ,∞ (a weaker conclusion than embedding
into Ḃ1/p

p (γ,∞)).

7. Harmonic and caloric extensions

In what follows let ψ be a sufficiently well behaved integrable function
with

´
ψ(x) dx = 0, specifically we will take ψ as one of ψ(1), ψ(2,j), ψ(3),

ψ(4,j) where

(7.1)
ψ̂(1)(ξ) = |ξ|e−|ξ|, ψ̂(2,j)(ξ) = iξje

−|ξ|,

ψ̂(3)(ξ) = −|ξ|2e−|ξ|2 , ψ̂(4,j)(ξ) = iξje
−|ξ|2 ,

or we could also take ψ = ψ(5) = ∂
∂s [s

−dφ(s−1·)]|s=1 for any φ ∈ S(Rd). Let
ψt = t−dψ(t−1·). Classical results on characterizations of Besov spaces ([55],
[53, Chapter V.5, Proposition 7’], [57, Chapter 1.8]) yield the inequality

(7.2)
¨

R2
+

t−sp|ψt ∗ f(x)|p dx
dt

t
. ‖f‖p

Ẇ s,p

for f ∈ Ẇ s,p, 1 ≤ p <∞ and 0 < s < 1.
With ψ, ψt as above, define, for f ∈ Ḃsp(γ, r) with 0 < s < 1,

Kbf(x, t) = t−bψt ∗ f◦(x)

where f◦ is any representative of f modulo constants. Recall from (1.15) that
dλγ(x, t) = tγ−1 dt dx.

Proposition 7.1. Let 0 < s < 1, 1 < p, r < ∞ and γ ∈ R. The operator
Ks+

γ
p is bounded from Ḃsp(γ, r) to Lp,r(λγ).

Proof. We take (s0, p0), (s1, p1) and θ such that (1.17) and (1.18) holds, and
0 < s0 < 1, 0 < s1 < 1, 1 < p0 <∞ and 1 < p1 <∞. Recall s+ γ

p = si + γ
pi
,

and observe that for f ∈ Ḃsi
pi,pi ,¨

R2
+

|Ks+
γ
p f(x, t)|pi
t1−γ

dx dt =

¨
R2
+

t−sipi |ψt ∗ f◦(x)|pi dx
dt

t
.

where f◦ ∈ Ẇ si,pi is a representative of f modulo constants. It follows
from (7.2) that Ks+

γ
p is bounded from Ḃsi

pi,pi to Lpi(λγ). The conclusion
then follows by interpolation, in view of Theorem 1.15 and of the classical
characterization of Lorentz spaces as interpolation spaces. �

Corollary 7.2. Let 1 < p <∞, γ ∈ R \ [−1, 0]. Then

K
γ+1
p : [V∞, ˙BV ] 1

p
,1 → Lp,∞(λγ)
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is bounded.

Proof. Combine Proposition 7.1 for s = 1/p with Theorem 1.9. �

7.1. Harmonic extensions: Proof of Corollary 1.10. From [54, Lemma 1.17]
we recall that P̂f(ξ, t) = e−t|ξ|f̂(ξ) and therefore we are led to use the function
ψ(1) and ψ(2,ν) for ν = 1, . . . , d in (7.1), for formulas for t ∂∂tPf and t ∂

∂xν
Pf ,

respectively. We let Kbf(x, t) = t1−b∇Pf(x, t) and apply Corollary 7.2 to
obtain

‖K
γ+1
p f‖Lp,∞(λγ) . ‖f‖[V∞, ˙BV ] 1

p ,1

and the proof of the first inequality in Corollary 1.10 is complete. For the
proof of the second inequality choose γ = 1 and p = 2, which is the unique
choice of p, γ where K

γ+1
p becomes ∇P and λγ becomes Lebesgue measure

on Rd+1
+ . �

7.2. Caloric extensions: Proof of Corollary 1.12. Note that r ∂∂r [Ûf(ξ, r2)]

equals 2|rξ|2e−|rξ|2 f̂(ξ), and taking ψ = ψ(3) in the definition of Kb ≡ Kbd+1,
we get

2Kbd+1f(x, r) = r1−b ∂

∂r
[Uf(x, r2)] = 2t1−

b
2
∂

∂t
Uf(x, t)

∣∣∣
t=r2

= 2H
b/2
d+1f(x, r2).

We apply Corollary 7.2 with γ = 2β and observe that

λ2β({(x, r) : |K
2β+1
p

d+1 f(x, r)| > α}) =
1

2
λβ({(x, t) : H

2β+1
2p

d+1 f(x, t) > α}).

For 2β /∈ [−1, 0] the operator K
2β+1
p maps [V∞, ˙BV ]1/p,1 to Lp,∞(λ2β), and

hence H
2β+1
2p

d+1 maps [V∞, ˙BV ]1/p,1 to Lp,∞(λβ).
For j = 1, . . . , d we argue similar, taking ψ = ψ(4,j) in the definition

of Kb ≡ Kbj . We then have Kbjf(x, r) = r1−b ∂
∂xj

Uf(x, r2) and again apply
Corollary 7.2 with γ = 2β. Now for j = 1, . . . , d,

Kbjf(x, r) = t
1−b
2

∂

∂xj
Uf(x, t)

∣∣∣
t=r2

= H
b/2
j f(x, r2),

and again we see that H
2β+1
2p

j maps [V∞, ˙BV ]1/p,1 to Lp,∞(λβ). This finishes
the proof of part (i) of the corollary. For part (ii) we need dλβ = dxdt

so that we put β = 1. We then apply part (i), for the operator ∂U
∂t with

p = 3/2 (so that 2β+1
2p = 1), and for the operators ∂U

∂xj
with p = 3 (so that

2β+1
2p = 1

2). �
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8. Interpolation: Proof of Theorem 1.15

We use the standard retraction-coretraction argument (see [4, §6.4]). Recall
that if X = (X0, X1) and Y = (Y0, Y1) are couples of compatible normed
spaces then P : X → Y is a morphism of couples if P is a linear operator
mapping X0 + X1 to Y0 + Y1, such that P : Xν → Yν is a bounded linear
operator for ν = 0 and ν = 1.

If P : X → Y , R : Y → X are be morphisms of couples such that
R ◦ P : X → X = Id, the identity operator on X then X is called a retract
of Y ; R is a retraction and P is a co-retraction.

Y

X X

RP

id

Lemma 8.1. [4] Let X = (X0, X1), Y = (Y0, Y1) be a couples of compatible
normed spaces such that X is a retract of Y with co-retraction P : X → Y
and retraction R then

[X0, X1]θ,r = {f ∈ X0 +X1 : Pf ∈ [Y0, Y1]θ,r}

and we have the equivalence of norms, ‖f‖[X0,X1]θ,r ≈ ‖Pf‖[Y0,Y1]θ,r .

Lemma 8.2. Suppose 1 ≤ p0 < p1 ≤ ∞, and γ, b ∈ R. Then there are
bounded morphisms of couples

P b : (Ḃ
b− γ

p0
p0,p0 , Ḃ

b− γ
p1

p1,p1 )→ (Lp0(µγ), Lp1(µγ))

Rb : (Lp0(µγ), Lp1(µγ))→ (Ḃ
b− γ

p0
p0,p0 , Ḃ

b− γ
p1

p1,p1 )

Proof. The definitions of P b, Rb will be independent of p0, p1 and thus one
can reduce to checking the boundedness of

P b : Ḃ
b− γ

p
p,p → Lp(µγ)(8.1)

Rb : Lp(µγ)→ Ḃ
b− γ

p
p,p(8.2)

for 1 ≤ p ≤ ∞.
Recall Lk = ϕ(2−kD), L̃k = ϕ̃(2−kD) with ϕ as in (1.2) and ϕ̃ as in

(2.2), satisfying L̃k = L̃kLk = LkL̃k. Let P b be as in Definition (1.1). For
F ∈ Lp,r(µγ) define Fk(x) := F (x, k) and RbF (x) =

∑∞
k=0 2−kbL̃kFk(x).

Note that P b : Ḃ
b−γ/p
p,p → Lp(µγ) is an isometric embedding, for 1 ≤ p ≤ ∞;

moreover RbP b is the identity on Ḃ
b− γ

p
p,p . It remain to show that Rb maps

Lp(µγ) boundedly to Ḃ
b− γ

p
p,p . Indeed we have LkL̃k+j = 0 for |j| > 2 and thus

2kbLkRbF (x) = 2kb
1∑

j=−1

2−(k+j)bLkL̃k+jFk+j(x)
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and, defining TjF (x, k) = LkL̃k+jFk+j(x) for j = −1, 0, 1, we see that

‖RbF‖
Ḃ
b− γp
p,p

.
1∑

j=−1

‖TjF‖Lp(µγ).

and the boundedness of Rb follows from

‖TjF‖Lq(µγ) =
(∑
k∈Z
‖LkL̃k+jFk+j‖qLq2

−kγ
)1/q

.
(∑
k∈Z
‖Fk+j‖qLq2

−(k+j)γ
)1/q

. ‖F‖Lq(µγ), j = −1, 0, 1. �

Proof of Theorem 1.15, conclusion. Our choice of γ allows us to define

b := s0 +
γ

p0
= s1 +

γ

p1
.

We apply Lemma 8.1 with Xν = Ḃ
b−γ/pν
pν ,pν , Yν = Lpν ,r(µγ), ν = 0, 1 and

P = P b, R = Rb, as in Lemma 8.2. We then use the standard interpolation
formula [Lp0 , Lp1 ]θ,r = Lp,r for (1 − θ)/p0 + θ/p1 = 1/p, see [4], and the
definition Ḃs

p(γ, r) via the operator Pb. �

Proof of Corollary 1.16. (1.20a) follows from Theorem 1.15 by the reiteration
theorem for the real method. (1.20b) for general q0, q1 follows since for
1 ≤ ri ≤ ∞ and γ 6= 0 given by (1.17) we have by part (ii) of Theorem 1.5

Ḃsipi(γ, 1) ↪→ Ḟ sipi,1 ↪→ Ḟ sipi,ri ↪→ Ḟ sipi,∞ ↪→ Ḃsipi(γ,∞). �

Remark. Asekritova and Kruglyak [2] obtained real interpolation results
for triples of the Besov spaces (Bs0

p0,p0 , B
s1
p1,p1 , B

s2
p2,p2)~θ,r, with

∑2
i=0 θi = 1 (or

more generally (`+ 1)-tuples of such spaces with ` ≥ 2). Under the crucial
additional assumption that the three points points ( 1

pi
, si), i = 0, 1, 2 do not

lie on a line the interpolation spaces is identified with the Besov-Lorentz
space Bs

r(L
p,r) where (1

p , s) =
∑2

i=0 θi(
1
pi
, si). The result for triples does not

seem to have an implication on the interpolation of couples of Besov spaces
(see also [1]).

Remark. One could also use more directly results on real interpolation of
weighted spaces, namely the identification of [Lp0(w0), Lp1(w1)]θ,q in work by
Freitag [26] and by Lizorkin [42].

9. Interpolating Besov spaces through differences

In this section we provide a direct proof of (1.19) in the case M = 1,
which is directly based on the characterization using first differences. Suppose
0 < s < 1, 1 < p <∞, 1 ≤ r ≤ ∞, for p0 < p < p1 so that si := s+ γ(1

p −
1
pi

)
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satisfy 0 < si < 1 for i = 0, 1, and θ ∈ (0, 1) such that 1−θ
p0

+ θ
p1

= 1
p . We will

prove that for all functions f : Rd → C in Ẇ s0,p0 + Ẇ s1,p1 ,

(9.1) ‖Q1,s+ γ
p
f‖Lp,r(νγ) ≈ ‖f‖[Ẇ s0,p0 ,Ẇ s1,p1 ]θ,r

The alternative proof goes by a retraction argument based on differences.
One uses Lemma 8.1 once the following proposition is established.

Proposition 9.1. Let b ∈ R with 0 < b − γ/p < 1. There is a bounded
operator Ab : Lp(νγ)→ Ẇ

b− γ
p
,p such that AbQ1,b is the identity on Ẇ b− γ

p
,p
.

That is, we have the following retract diagram

Lp(νγ)

Ẇ
b− γ

p
,p

Ẇ
b− γ

p
,p

AbQ1,b

id

The proof of the proposition is inspired by the metric characterization of
sums Ẇ s0,p0 + Ẇ s1,p1 due to Rodiac and the fourth named author [49].

Fix γ ∈ R and 1 ≤ p < ∞. Fix φ ∈ C∞c (Rd) with
´
φ = 1 and support

inside B1/2(0) and let

ψ(y) := −φ(y)d− 〈y,∇φ(y)〉.

Integration by parts shows that
´
ψ(y) dy = 0. For t > 0 define φt(y) :=

1
td
φ(yt ) and ψt(y) := 1

td
ψ(yt ); one verifies that for all t > 0

(9.2) ψt(y) = t
d

dt
φt(y).

In what follows we set

(9.3) ϑt(z, y) := φt(z)ψt(y).

Suppose that F ∈ Lp(νγ) is compactly supported in Rd × (Rd \ {0}). We
then define

(9.4) Ab,εF (x) =

ˆ 1/ε

ε

ˆ
Rd

ˆ
Rd
F (y, h)|h|bϑt(x − y − h, x − y) dhdy

dt

t
.

Since ϑ is supported in B1/2(0)×B1/2(0) it is clear that for ε > 0 and for F
with the above support property the integral in (9.4) converges absolutely,
and defines Ab,εF as a smooth function. Under the additional restriction
0 < b− γ

p < 1 the following result extends Ab,ε to all of Lp(νγ) and establishes
the existence of the limit Ab = limε→0Ab,ε in the strong operator topology.

Lemma 9.2. Let b ∈ R with 0 < b− γ
p < 1. Then the following holds.

(i) For ε > 0, the maps Ab,ε extend to bounded operators

Ab,ε : Lp(νγ)→ Ẇ
b− γ

p
,p
,

with operator norm uniformly bounded in ε.
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(ii) The operators Ab,ε converge to a bounded operator

Ab : Lp(νγ)→ Ẇ
b− γ

p
,p
,

in the sense that limε→0 ‖Ab,εF −AbF‖
Ẇ
b− γp ,p

= 0 for all F ∈ Lp(νγ).

Proof. Let F ∈ Lp(νγ) and assume in addition that assume that F ∈ Lp(νγ)

is compactly supported in Rd × (Rd \ {0}). Set
∆h,hϑt(u, v) = ϑt(u+ h, v + h)− ϑt(u, v).

Then

∆hAb,εF (x) =

ˆ 1/ε

ε

¨
R2d

F (y, z)|z|b∆h,hϑt(x− y − z, x− y) dz dy
dt

t

and we estimate

|∆hAb,εF (x)| ≤ I(x, h) + II(x, h) + III(x, h)

where

I(x, h) :=

ˆ ∞
|h|

¨
R2d

|F (y, z)||z|b|∆h,hϑt(x− y − z, x− y)| dz dy
dt

t

II(x, h) :=

ˆ |h|
0

¨
R2d

|F (y, z)||z|b|ϑt(x+ h− y − z, x+ h− y)|dz dy
dt

t

III(x, h) :=

ˆ |h|
0

¨
R2d

|F (y, z)||z|b|ϑt(x− y − z, x− y)| dz dy
dt

t
.

Setting

(9.5) Jp(t) =
( 1

td

ˆ
Rd

ˆ
|z|≤t
|F (y, z)|p|z|bp dz dy

)1/p

we estimate, using Minkowski’s inequality,

‖I(·,h)‖p ≤
ˆ ∞
|h|

|h|
t2

∥∥∥ 1

t2d

ˆ
|x+h−y|≤2t

ˆ
|z|≤t
|F (y, z)||z|b dz dy

∥∥∥
Lp( dx)

dt

≤
ˆ ∞
|h|

|h|
t2

∥∥∥( 1

t2d

ˆ
|x+h−y|≤2t

ˆ
|z|≤t
|F (y, z)|p|z|bp dz dy

)1/p∥∥∥
Lp( dx)

dt

.
ˆ ∞
|h|

|h|
t2
Jp(t) dt.

Similarly we get

‖II(·, h)‖p + ‖III(·, h)‖p .
ˆ |h|

0

1

t
Jp(t) dt.

We then have, uniformly in ε ∈ (0, 1),
‖Ab,εF‖

Ẇ
b− γp ,p

= ‖Q1,bAb,εF‖Lp(νγ)

≤
(ˆ [

|h|−b
ˆ ∞
|h|

|h|
t2
Jp(t) dt+ |h|−b

ˆ |h|
0

1

t
Jp(t) dt

]p dh

|h|d−γ
)1/p
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which we estimate (using Hardy’s inequalities) by(ˆ ∞
0

(ˆ ∞
r

Jp(t)

t2
dt
)p dr

r
1+(b− γ

p
−1)p

) 1
p

+
(ˆ ∞

0

(ˆ r

0

Jp(t)

t
dt
)p dr

r
1+(b− γ

p
)p

) 1
p

.
(ˆ ∞

0

(Jp(t)
t2

)p
tp

dt

t
1+(b− γ

p
−1)p

) 1
p

+
(ˆ ∞

0

(
Jp(t)

t

)p
tp

dt

t
1+(b− γ

p
)p

) 1
p

'
(ˆ ∞

0
Jp(t)

p dt

t
1+(b− γ

p
)p

) 1
p

=

(ˆ
Rd

ˆ
Rd
|F (y, z)|p|z|bp

ˆ ∞
|z|

dt

t
1+(b− γ

p
)p+d

dz dy

) 1
p

' ‖F‖Lp(νγ).

This establishes part (i) of the lemma, first for F compactly supported in
Rd× (Rd \{0}) and then, by a density argument, for general F ∈ Lp(νγ). The
above argument also shows that ‖Ab,ε1F −Ab,ε2F‖Ẇ b− γp ,p

→ 0 as ε1, ε2 → 0

and thus Ab,εF converges in Ẇ b− γ
p
,p to a limit Ab,0F ; moreover Ab defines a

bounded operator Lp(νγ)→ Ẇ
b− γ

p
,p. �

The proof of Proposition 9.1 is now completed by the following lemma.

Lemma 9.3. Let b ∈ R with 0 < b − γ
p < 1. Then AbQ1,bf = f , for all

f ∈ Ẇ b− γ
p
,p.

Proof. Note that Q1,b : Ẇ
b− γ

p
,p → Lp(νγ) is an isometry. As Ab : Lp(νγ)→

Ẇ
b− γ

p
,p is bounded, by Lemma 9.2, and since C∞c (Rd) is dense in Ẇ b−γ/p,p,

it suffices to prove AbQ1,bf = f , for all f ∈ C∞c (Rd).
By (9.2) and (9.3) we get for each x ∈ Rd

Ab,εQ1,bf(x) = A0,εQ1,0f(x)

=

ˆ 1/ε

ε

ˆ
Rd

ˆ
Rd

(f(y + h)− f(y))φt(x− y − h)
d

dt
[φt(x− y)] dhdy dt

=

ˆ 1/ε

ε

ˆ
Rd

ˆ
Rd

(f(z)− f(y))φt(x− z)
d

dt
[φt(x− y)] dz dy dt

= 0−
ˆ 1/ε

ε

ˆ
Rd

ˆ
Rd

ˆ
Rd
f(y)φt(x− z)

d

dt
[φt(x− y)] dz dy dt

where we used
´
Rd

d
dt [φt(x− y)] dy = d

dt

´
Rd φt(x− y) dy = 0 to integrate the

term involving f(z). We may now integrate in z and t in the last display,
using that

´
φt = 1 to obtain for f ∈ C∞c (Rd)

Ab,εQ1,bf(x) =

ˆ
Rd
f(y)

(
φε(x− y)− φ1/ε(x− y)

)
dy .

Letting ε→ 0 we obtain AbQ1,bf = f for f ∈ C∞c (Rd). �
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