MAXIMAL FUNCTIONS ASSOCIATED WITH FAMILIES OF HOMOGENEOUS CURVES: L ${ }^{\text {p }}$ BOUNDS FOR p ≤ 2

SHAOMING GUO JORIS ROOS ANDREAS SEEGER PO-LAM YUNG

Abstract

Let $M^{(u)}, H^{(u)}$ be the maximal operator and Hilbert transform along the parabola $\left(t, u t^{2}\right)$. For $U \subset(0, \infty)$ we consider L^{p} estimates for the maximal functions $\sup _{u \in U}\left|M^{(u)} f\right|$ and $\sup _{u \in U}\left|H^{(u)} f\right|$, when $1<p \leq 2$. The parabolae can be replaced by more general nonflat homogeneous curves.

1. Introduction and statement of results

Let $b>1, u>0$, and $\gamma_{b}: \mathbb{R} \rightarrow \mathbb{R}$ homogeneous of degree b, i.e. $\gamma_{b}(s t)=$ $s^{b} \gamma_{b}(t)$ for $s>0$. Also suppose $\gamma_{b}(\pm 1) \neq 0$. For a Schwartz function f on \mathbb{R}^{2} we let

$$
\begin{aligned}
M^{(u)} f(x) & =\sup _{R>0} \frac{1}{R} \int_{0}^{R}\left|f\left(x-\left(t, u \gamma_{b}(t)\right)\right)\right| d t, \\
H^{(u)} f(x) & =\text { p.v. } \int_{\mathbb{R}} f\left(x-\left(t, u \gamma_{b}(t)\right)\right) \frac{d t}{t},
\end{aligned}
$$

denote the maximal function and Hilbert transform of f along the curve $\left(t, u \gamma_{b}(t)\right)$. For an arbitrary nonempty $U \subset(0, \infty)$ we consider the maximal functions

$$
\begin{equation*}
\mathcal{M}^{U} f(x)=\sup _{u \in U} M^{(u)} f(x), \quad \mathcal{H}^{U} f(x)=\sup _{u \in U}\left|H^{(u)} f(x)\right| . \tag{1.1}
\end{equation*}
$$

For $2<p<\infty$ the operators \mathcal{M}^{U} are bounded on $L^{p}\left(\mathbb{R}^{2}\right)$ for all U; this was shown by Marletta and Ricci [8]. For the operators \mathcal{H}^{U} a corresponding satisfactory theorem was proved in a previous paper [6] of the authors. To describe the result let

$$
\mathfrak{N}(U)=1+\#\left\{n \in \mathbb{Z}:\left[2^{n}, 2^{n+1}\right] \cap U \neq \emptyset\right\} .
$$

[^0]Then, for $2<p<\infty, \mathcal{H}^{U}$ is bounded on $L^{p}\left(\mathbb{R}^{2}\right)$ if and only if $\mathfrak{N}(U)$ is finite, and we have the equivalence

$$
c_{p} \leq \frac{\left\|\mathcal{H}^{U}\right\|_{L^{p} \rightarrow L^{p}}}{(\log \mathfrak{N}(U))^{1 / 2}} \leq C_{p}, \quad 2<p<\infty
$$

with nonzero constants c_{p}, C_{p}. Moreover, for all $p>1$ we have the lower bound $\left\|\mathcal{H}^{U}\right\|_{L^{p} \rightarrow L^{p}} \gtrsim \sqrt{\log \mathfrak{N}(U)}$. The consideration of such results in [6] was motivated by results in [5], [4], and by the analogous questions for Hilbert transform along straight lines. See [7] for lower bounds, [3] for upper bounds, and the bibliography of [6] for a list of related works.

In this paper we seek to find efficient upper bounds for the operator norms of \mathcal{M}^{U} and \mathcal{H}^{U} in the case $1<p \leq 2$. As pointed out in [6] with reference to [10], L^{p} boundedness for $p \leq 2$ fails, for both \mathcal{M}^{U} and \mathcal{H}^{U}, when $U=[1,2]$; therefore some additional sparseness condition needs to be imposed. To formulate such results let, for each $r>0$

$$
U^{r}=r^{-1} U \cap[1,2]=\{\rho \in[1,2]: r \rho \in U\} .
$$

For $0<\delta<1$ we let $N\left(U^{r}, \delta\right)$ the δ-covering number of U^{r}, i.e. the minimal number of intervals of length δ needed to cover U^{r}. It is obvious that $\sup _{r>0} N\left(U^{r}, \delta\right) \lesssim \delta^{-1}$. Define

$$
\begin{equation*}
\mathcal{K}_{p}(U, \delta)=\delta^{1-\frac{1}{p}} \sup _{r>0} N\left(U^{r}, \delta\right)^{\frac{1}{p}} . \tag{1.2}
\end{equation*}
$$

These definitions, and the results below are motivated by considerations for spherical maximal functions in [11] (see also [12], [10). Define

$$
\begin{equation*}
p_{\text {cr }}(U)=1+\limsup _{\delta \rightarrow 0+} \frac{\sup _{r>0} \log N\left(U^{r}, \delta\right)}{\log \left(\delta^{-1}\right)} \tag{1.3}
\end{equation*}
$$

Notice that $1 \leq p_{\mathrm{cr}}(U) \leq 2$, and that $p_{\mathrm{cr}}(U)=1$ for lacunary U. We have $p_{\text {cr }}(U)=2$ if U contains any intervals. Moreover if $p_{\text {cr }}(U)<p<2$ there exists an $\varepsilon=\varepsilon(p, U)>0$ such that $\sup _{0<\delta<1} \delta^{-\varepsilon} \mathcal{K}_{p}(U, \delta)<\infty$. If $1<p<p_{\mathrm{cr}}(U)$ then there is $\varepsilon^{\prime}=\varepsilon^{\prime}(p, U)>0$ and a sequence $\delta_{n} \rightarrow 0$ such that $\lim \sup _{n} \delta_{n}^{\varepsilon^{\prime}} \mathcal{K}_{p}\left(U, \delta_{n}\right)>0$.
Theorem 1.1. Let $1<p \leq 2$ and $p_{\text {cr }}(U)$ as in (1.3).
(i) If $p_{\mathrm{cr}}(U)<p \leq 2$ then \mathcal{M}^{U} is bounded on $L^{p}\left(\mathbb{R}^{2}\right)$.
(ii) If $1<p<p_{\mathrm{cr}}(U)$ then \mathcal{M}^{U} is not bounded on $L^{p}\left(\mathbb{R}^{2}\right)$.
(iii) For every $\varepsilon>0$ we have

$$
c_{p} \sup _{\delta>0} \mathcal{K}_{p}(U, \delta) \leq\left\|\mathcal{M}^{U}\right\|_{L^{p} \rightarrow L^{p}} \leq C_{\varepsilon, p} \sup _{\delta>0} \delta^{-\varepsilon} \mathcal{K}_{p}(U, \delta) .
$$

Here $c_{p}, C_{p, \varepsilon}$ are constants only depending on p or p, ε, respectively.
Theorem 1.2. Let $1<p \leq 2$ and $p_{\text {cr }}(U)$ as in (1.3).
(i) If $p_{\mathrm{cr}}(U)<p \leq 2$ then \mathcal{H}^{U} is bounded on $L^{p}\left(\mathbb{R}^{2}\right)$ if and only if $\mathfrak{N}(U)<\infty$.
(ii) If $1<p<p_{\text {cr }}(U)$ then \mathcal{H}^{U} is not bounded on $L^{p}\left(\mathbb{R}^{2}\right)$.
(iii) For every $\varepsilon>0$ we have

$$
\left\|\mathcal{H}^{U}\right\|_{L^{p} \rightarrow L^{p}} \leq C_{p} \sqrt{\log (\mathfrak{N}(U))}+C_{\varepsilon, p} \sup _{\delta>0} \delta^{-\varepsilon} \mathcal{K}_{p}(U, \delta) .
$$

and

$$
c_{p}\left(\sqrt{\log (\mathfrak{N}(U))}+\sup _{\delta>0} \mathcal{K}_{p}(U, \delta)\right) \leq\left\|\mathcal{H}^{U}\right\|_{L^{p} \rightarrow L^{p}} .
$$

Here $c_{p}, C_{p}, C_{p, \varepsilon}$ are constants only depending on p or p, ε, respectively.
We note that part (i), (ii) of the theorems follow immediately from part (iii) of the respective theorem. The term $C_{\varepsilon, p} \delta^{-\varepsilon}$ can be replaced by a logarithmic dependence, namely $C_{p}[\log (2 / \delta)]^{A}$ for $A>14 / p-6$. More precisely, we have the following
Theorem 1.3. Let $1<p \leq 2$. Then there is C independent of p and U so that

$$
\begin{equation*}
\left\|\mathcal{M}^{U}\right\|_{L^{p} \rightarrow L^{p}} \leq C \sum_{\ell \geq 1} \vartheta_{p, \ell} \mathcal{K}_{p}\left(U, 2^{-\ell}\right), \tag{1.4}
\end{equation*}
$$

where $\vartheta_{p, \ell}=(p-1)^{3-\frac{10}{p}} \mathbb{1}_{\ell \leq(p-1)^{-1}}+\ell^{7\left(\frac{2}{p}-1\right)} \mathbb{1}_{\ell>(p-1)^{-1}}$ and

$$
\begin{equation*}
\left\|\mathcal{H}^{U}\right\|_{L^{p} \rightarrow L^{p}} \leq C(p-1)^{-7} \sqrt{\log (\mathfrak{N}(U))}+C(p-1)^{-2} \sum_{\ell \geq 1} \vartheta_{p, \ell} \mathcal{K}_{p}\left(U, 2^{-\ell}\right) . \tag{1.5}
\end{equation*}
$$

Structure of the paper. In $\$ 2$ we decompose the operators $\mathcal{M}^{U}, \mathcal{H}^{U}$ in the spirit of [6] in order to prepare for the proof of Theorem 1.3. The proof of Theorem 1.3 is then completed in $\S 3$ and $\$ 4$. Finally, the lower bounds claimed in Theorem 1.1 and Theorem 1.2 are addressed in $\$ 5$.

2. Basic reductions

We recall some notation and basic reductions from [6]. By the assumption of homogeneity and $\gamma_{b}(\pm 1) \neq 0$ there are $c_{ \pm} \neq 0$ such that $\gamma_{b}(t)=c_{+} t^{b}$ for $t>0$, and $\gamma_{b}(t)=c_{-}(-t)^{b}$ for $t<0$, and finally $\gamma_{b}(0)=0$. We note that by scaling we may always assume that $c_{-}=1$. Let $\chi_{+} \in C_{c}^{\infty}$ be supported in $(1 / 2,2)$ such that

$$
\sum_{j \in \mathbb{Z}} \chi_{+}\left(2^{j} t\right)=1 \text { for } t>0 .
$$

Let $\chi_{-}(t)=\chi_{+}(-t)$ and $\chi_{=} \chi_{+}+\chi_{-}$. We define measures $\tau_{0}, \sigma_{0}, \sigma_{ \pm}$by

$$
\begin{aligned}
\left\langle\tau_{0}, f\right\rangle & =\int f\left(t, \gamma_{b}(t)\right) \chi_{+}(t) d t \\
\left\langle\sigma_{ \pm}, f\right\rangle & =\int f\left(t, \gamma_{b}(t)\right) \chi_{ \pm}(t) \frac{d t}{t} \\
\sigma_{0} & =\sigma_{+}+\sigma_{-}
\end{aligned}
$$

Let, for $j \in \mathbb{Z}$, the measures $\tau_{j}^{u}, \sigma_{j}^{u}$ be defined by

$$
\begin{aligned}
\left\langle\tau_{j}^{u}, f\right\rangle & =\int f\left(t, u \gamma_{b}(t)\right) 2^{j} \chi+\left(2^{j} t\right) d t \\
\left\langle\sigma_{j}^{u}, f\right\rangle & =\int f\left(t, u \gamma_{b}(t)\right) \chi\left(2^{j} t\right) \frac{d t}{t}
\end{aligned}
$$

By homogeneity of γ_{b} we have $\tau_{j}^{u}=2^{j(1+b)} \tau_{0}^{u}\left(\delta_{2 j}^{b}\right)$ with $\delta_{t}^{b} x=\left(t x_{1}, t^{b} x_{2}\right)$, as well as the analogous relation between σ_{j}^{u} and σ_{0}^{u}. We note that the τ_{j}^{u} are positive measures and the σ_{j}^{u} have cancellation.

For Schwartz functions f the Hilbert transform along Γ_{b}^{u} can be written as

$$
H^{(u)} f=\sum_{j \in \mathbb{Z}} \sigma_{j}^{u} * f .
$$

For the maximal function it is easy to see that there is the pointwise estimate

$$
\begin{equation*}
M^{(u)} f(x) \leq C \sup _{j \in \mathbb{Z}} \tau_{j}^{u} *|f| . \tag{2.1}
\end{equation*}
$$

Following [6, §2] we further decompose σ_{0} and τ_{0}. Choose Schwartz function η_{0}, supported in $\{|\xi| \leq 100\}$ and equal with $\eta_{0}(\xi)=1$ for $|\xi| \leq 50$. Let $\varsigma_{+} \in C_{c}^{\infty}(\mathbb{R})$ be supported in $\left(b(1 / 4)^{b-1}, b 4^{b-1}\right)$ and equal to 1 on $\left[b(2 / 7)^{b-1}, b(7 / 2)^{b-1}\right]$. Let $\varsigma_{-} \in C_{c}^{\infty}(\mathbb{R})$ be supported on $\left(-b 4^{b-1},-b(1 / 4)^{b-1}\right)$ and equal to 1 on $\left[-b(7 / 2)^{b-1},-b(2 / 7)^{b-1}\right]$.

One then decomposes

$$
\begin{aligned}
\sigma_{0} & =\phi_{0}+\mu_{0,+}+\mu_{0,-} \\
\tau_{0} & =\varphi_{0}+\rho_{0}
\end{aligned}
$$

where ϕ_{0}, φ_{0} are given by

$$
\begin{aligned}
\widehat{\phi_{0}}(\xi)=\eta_{0}(\xi) \widehat{\sigma}_{0}(\xi) & +\left(1-\eta_{0}(\xi)\right)\left(1-\varsigma_{-}\left(\frac{\xi_{1}}{c_{+} \xi_{2}}\right)\right) \widehat{\sigma}_{+}(\xi) \\
& +\left(1-\eta_{0}(\xi)\right)\left(1-\varsigma_{+}\left(\frac{\xi_{1}}{c_{-} \xi_{2}}\right)\right) \widehat{\sigma}_{-}(\xi)
\end{aligned}
$$

and

$$
\widehat{\varphi_{0}}(\xi)=\eta_{0}(\xi) \widehat{\tau_{0}}(\xi)+\left(1-\eta_{0}(\xi)\right)\left(1-\varsigma_{-}\left(\frac{\xi_{1}}{c_{+} \xi_{2}}\right)\right) \widehat{\tau}(\xi)
$$

The measures and $\mu_{0, \pm}$ and ρ_{0} are given via the Fourier transform by

$$
\begin{aligned}
& \widehat{\mu}_{0,+}(\xi)=\left(1-\eta_{0}(\xi)\right) \varsigma_{-}\left(\frac{\xi_{1}}{c_{+} \xi_{2}}\right) \widehat{\sigma}_{+}(\xi), \\
& \widehat{\mu}_{0,-}(\xi)=\left(1-\eta_{0}(\xi)\right) \varsigma_{+}\left(\frac{\xi_{1}}{c_{-} \xi_{2}}\right) \widehat{\sigma}_{-}(\xi)
\end{aligned}
$$

and

$$
\begin{equation*}
\widehat{\rho}_{0}(\xi)=\left(1-\eta_{0}(\xi)\right) \varsigma_{-}\left(\frac{\xi_{1}}{c_{+} \xi_{2}}\right) \widehat{\tau}_{0}(\xi) . \tag{2.2}
\end{equation*}
$$

As in Lemma 2.1 of [6], the functions φ_{0}, ϕ_{0} are Schwartz functions. In addition we have $\widehat{\phi}_{0}(0)=0$.

Define, for $j \in \mathbb{Z}, \varphi_{j}$ and ϕ_{j} by scaling via $\widehat{\varphi}_{j}(\xi)=\widehat{\varphi}_{0}\left(2^{-j} \xi_{1}, 2^{-j b} \xi_{2}\right) \widehat{f}(\xi)$ and $\widehat{\phi}_{j}(\xi)=\widehat{\phi}_{0}\left(2^{-j} \xi_{1}, 2^{-j b} \xi_{2}\right) \widehat{f}(\xi)$. Define $A_{j, 0}^{u} f$ by

$$
\widehat{A_{j, 0}^{u}} f(\xi)=\widehat{\varphi}_{j}\left(\xi_{1}, u \xi_{2}\right) \widehat{f}(\xi)
$$

and let $\mathcal{M}_{0} f(x)=\sup _{j \in \mathbb{Z}} \sup _{u \in \mathbb{R}}\left|A_{j, 0}^{u} f(x)\right|$. Let

$$
\widehat{S^{(u)} f}(\xi)=\sum_{j \in \mathbb{Z}} \widehat{\phi}_{j}\left(\xi_{1}, u \xi_{2}\right) \widehat{f}(\xi)
$$

Let $M^{\text {str }} f$ denote the strong maximal function of f. For $p \in(1,2]$ we have

$$
\begin{equation*}
\left\|M^{\mathrm{str}}\right\|_{L^{p} \rightarrow L^{p}} \leq C(p-1)^{-2} \tag{2.3}
\end{equation*}
$$

Lemma 2.1. There exists a constant C such that for all $p \in(1,2]$,
(i)

$$
\left\|\mathcal{M}_{0} f\right\|_{p} \leq C(p-1)^{-2}\|f\|_{p}
$$

$$
\begin{equation*}
\left\|\sup _{u \in U}\left|S^{(u)} f\right|\right\|_{p} \leq C(p-1)^{-7} \sqrt{\log \mathfrak{N}(U)}\|f\|_{p} \tag{ii}
\end{equation*}
$$

Proof. Part (i) follows from the estimate

$$
\begin{equation*}
\left|A_{j, 0}^{u} f(x)\right| \leq C M^{\mathrm{str}} f(x) \tag{2.4}
\end{equation*}
$$

Part (ii) is more substantial and relies on the Chang-Wilson-Wolff bounds for martingales, [2]. This is the subject of Theorem 2.2 in [6]. The dependence on p was not specified there, but can be obtained by a literal reading of the proof provided in [6, §4]. We remark that the exponent 7 can likely be improved, but it is satisfactory for our purposes here.

We also decompose $\widehat{\rho_{0}}$ and $\widehat{\mu_{0, \pm}}$ further by making an isotropic decomposition for large frequencies. Let $\zeta_{0} \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$ supported in $\{\xi:|\xi|<2\}$ and such that $\zeta_{0}(\xi)=1$ for $|\xi| \leq 5 / 4$. For $\ell=1,2,3, \ldots$ let

$$
\zeta_{\ell}(\xi)=\zeta_{0}\left(2^{-\ell} \xi\right)-\zeta_{0}\left(2^{1-\ell} \xi\right)
$$

Then for $\ell>0, \zeta_{\ell}$ is supported in the annulus $\left\{\xi: 2^{\ell-1}<|\xi|<2^{\ell+1}\right\}$ and we have $1=\sum_{\ell>0} \zeta_{\ell}(\xi)$ for ξ in the support of $\widehat{\rho_{0}}, \widehat{\mu_{0, \pm}}$.

Define operators $A_{j, \ell}^{u}$ and $T_{j, \ell, \pm}^{u}$ by

$$
\begin{align*}
\widehat{A_{j, \ell}^{u} f}(\xi) & =\zeta_{\ell}\left(2^{-j} \xi_{1}, 2^{-j b} u \xi_{2}\right) \widehat{\rho_{0}}\left(2^{-j} \xi_{1}, 2^{-j b} u \xi_{2}\right) \widehat{f}(\xi) \tag{2.5}\\
\widehat{T_{j, \ell, \pm}^{u} f}(\xi) & =\zeta_{\ell}\left(2^{-j} \xi_{1}, 2^{-j b} u \xi_{2}\right) \widehat{\mu_{0, \pm}}\left(2^{-j} \xi_{1}, 2^{-j b} u \xi_{2}\right) \widehat{f}(\xi) \tag{2.6}
\end{align*}
$$

We shall show
Proposition 2.2. There is $C>0$ such that for each $\ell>0, p \in(1,2]$ we have

$$
\begin{equation*}
\left\|\sup _{u \in U} \sup _{j \in \mathbb{Z}}\left|A_{j, \ell}^{u} f\right|\right\|_{p} \leq C \vartheta_{p, \ell} \mathcal{K}_{p}\left(U, 2^{-\ell}\right)\|f\|_{p} \tag{2.7}
\end{equation*}
$$

where $\vartheta_{p, \ell}=(p-1)^{3-\frac{10}{p}} \mathbb{1}_{\ell \leq(p-1)^{-1}}+\ell^{7\left(\frac{2}{p}-1\right)} \mathbb{1}_{\ell>(p-1)^{-1}}$ and

$$
\begin{equation*}
\left\|\sup _{u \in U}\left|\sum_{j \in \mathbb{Z}} T_{j, \ell, \pm}^{u} f\right|\right\|_{p} \leq C(p-1)^{-2} \vartheta_{p, \ell} \mathcal{K}_{p}\left(U, 2^{-\ell}\right)\|f\|_{p} \tag{2.8}
\end{equation*}
$$

We claim that Proposition 2.2 implies Theorem 1.3. Indeed, we have for non-negative f,

$$
\mathcal{M}^{U} f \lesssim \mathcal{M}_{0} f+\sum_{\ell>0} \sup _{u \in U} \sup _{j \in \mathbb{Z}}\left|A_{j, \ell}^{u} f\right|
$$

and thus (1.4) follows from part (i) of Lemma 2.1 and 2.7 . It remains to show (1.5). But in view of the decomposition,

$$
H^{(u)}=S^{(u)}+\sum_{ \pm} \sum_{\ell>0} \sum_{j \in \mathbb{Z}} T_{j, \ell, \pm}^{u},
$$

this follows from part (ii) of Lemma 2.1 and (2.8). This finishes the proof of Theorem 1.3 ,

We conclude this section with some estimates that will be used in the proof of Proposition 2.2. We will harvest the required decay in ℓ from the following simple estimate. For $p \in[1,2], \ell>0, j \in \mathbb{Z}, u \in(0, \infty)$ we have

$$
\begin{equation*}
\left\|A_{j, \ell}^{u} f\right\|_{p} \leq C 2^{-\ell(1-1 / p)}\|f\|_{p} \tag{2.9}
\end{equation*}
$$

Indeed, the endpoint $p=2$ is a consequence of Plancherel's theorem and van der Corput's lemma, while $p=1$ follows because the convolution kernel of $A_{j, \ell}^{u} f$ is L^{1}-normalized. Another key ingredient will be the following pointwise estimate. From the definition of $A_{j, \ell}^{u}$ in (2.5) we have for $\ell>0$, $j \in \mathbb{Z}, u \in(0, \infty)$ that

$$
\begin{equation*}
\left|A_{j, \ell}^{u} f\right| \leq C M^{\operatorname{str}}\left(\tau_{j}^{u} *|f|\right) . \tag{2.10}
\end{equation*}
$$

This follows because we have

$$
A_{j, \ell}^{u} f=\left(f * \tau_{j}^{u}\right) * \kappa_{j, \ell}^{u},
$$

with $\kappa_{j, \ell}^{u}$ certain Schwartz functions that can be read off from the definitions (2.2), (2.5) and satisfy $\left|f * \kappa_{j, \ell}^{u}\right| \leq C M^{\text {str }} f$ with $C>0$ not depending on j, ℓ, u.

We also need to introduce appropriate Littlewood-Paley decompositions. Let $\chi^{(1)}$ be an even C^{∞} function supported on

$$
\left\{\xi_{1}:\left|c_{+}\right| b 2^{-3 b-1} \leq\left|\xi_{1}\right| \leq\left|c_{+}\right| b 2^{3 b+1}\right\}
$$

and equal to 1 for $\left|c_{+}\right| b 2^{-3 b} \leq\left|\xi_{1}\right| \leq\left|c_{+}\right| b 2^{3 b}$. Let $\chi^{(2)}$ be an even C^{∞} function supported on

$$
\left\{\xi_{2}: 2^{-2 b-1} \leq\left|\xi_{2}\right| \leq 2^{2 b+1}\right\}
$$

and equal to 1 for $2^{-2 b} \leq\left|\xi_{2}\right| \leq 2^{2 b}$. Define $P_{k_{1}, \ell}^{(1)}, P_{k_{2}, \ell, b}^{(2)}$ by

$$
\begin{aligned}
\widehat{P_{k_{1}, \ell}^{(1)} f(\xi)} & =\chi^{(1)}\left(2^{-k_{1}-\ell} \xi_{1}\right) \widehat{f}(\xi) \\
\widehat{P_{k_{2}, \ell, b}^{(2)}} f(\xi) & =\chi^{(2)}\left(2^{-k_{2} b-\ell} \xi_{2}\right) \widehat{f}(\xi)
\end{aligned}
$$

Then for $s \in\left[1,2^{b}\right]$,

$$
\begin{equation*}
A_{j, \ell}^{2^{b n} s}=A_{j, \ell}^{2^{b n} s} P_{j-n, \ell, b}^{(2)} P_{j, \ell}^{(1)}=P_{j, \ell}^{(1)} P_{j-n, \ell, b}^{(2)} A_{j, \ell}^{2^{b n} s} \tag{2.11}
\end{equation*}
$$

For $p \in(1,2]$ we have the Littlewood-Paley inequalities

$$
\begin{equation*}
\left\|\left(\sum_{k_{1} \in \mathbb{Z}} \sum_{k_{2} \in \mathbb{Z}}\left|P_{k_{1}, \ell}^{(1)} P_{k_{2}, \ell, b}^{(2)} f\right|^{2}\right)^{1 / 2}\right\|_{p} \leq C(p-1)^{-2}\|f\|_{p} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\sum_{k_{1} \in \mathbb{Z}} \sum_{k_{2} \in \mathbb{Z}} P_{k_{1}, \ell}^{(1)} P_{k_{2}, \ell, b}^{(2)} f_{k_{1}, k_{2}}\right\|_{p} \leq C(p-1)^{-2}\left\|\left(\sum_{k_{1} \in \mathbb{Z}} \sum_{k_{2} \in \mathbb{Z}}\left|f_{k_{1}, k_{2}}\right|^{2}\right)^{1 / 2}\right\|_{p} \tag{2.13}
\end{equation*}
$$

which also hold for Hilbert space valued functions.

3. A Positive bilinear operator

In this section we are given for every $n \in \mathbb{Z}$ an at most countable set

$$
\mathfrak{S}(n)=\left\{s_{n}(i): i=1,2, \ldots\right\} \subset\left[1,2^{b}\right]
$$

Proposition 3.1. There is a constant C independent of the choice of the sets $\mathfrak{S}(n)=\left\{s_{n}(i)\right\}, n \in \mathbb{N}$, such that for $1<p \leq 2$ and $\ell>0$,

$$
\begin{aligned}
&\left\|\left(\sum_{j, n \in \mathbb{Z}} \sum_{i \in \mathbb{N}}\left|w_{n}(i) \mathcal{A}_{j, \ell}^{2^{b n} s_{n}(i)} f\right|^{2}\right)^{1 / 2}\right\|_{p} \\
& \leq C(p-1)^{3-\frac{10}{p}} 2^{-\ell(p-1) / 2} \sup _{n \in \mathbb{Z}}\left\|w_{n}\right\|_{\ell^{p}}\|f\|_{p}
\end{aligned}
$$

for all functions f and $w_{n}: \mathbb{N} \rightarrow \mathbb{C}$. This holds for $\mathcal{A}_{j, \ell}^{2^{b n} s_{n}(i)}$ being any one of the following:

$$
A_{j, \ell}^{2^{b n} s_{n}(i)},\left.2^{-\ell} \frac{d}{d s} A_{j, \ell}^{2^{b n} s}\right|_{s=s_{n}(i)}, T_{j, \ell, \pm}^{2^{b n} s_{n}(i)},\left.2^{-\ell} \frac{d}{d s} T_{j, \ell, \pm}^{2^{b n} s}\right|_{s=s_{n}(i)}
$$

We will only detail the proof in the case $\mathcal{A}_{j, \ell}^{2^{b n} s_{n}(i)}=A_{j, \ell}^{2^{b n} s_{n}(i)}$. The other cases follow mutatis mutandis. To this end note that the corresponding variants of the main ingredients $2.9,2.20$, 2.11) also hold for each of the other cases, the underlying reasoning being identical in each case.

In the proof of the proposition we use a bootstrapping argument by Nagel, Stein and Wainger [9] in a simplified and improved form given in unpublished work by Christ (see [1] for an exposition).

We first introduce an auxiliary maximal operator. For $R \in \mathbb{N}$ let

$$
\mathfrak{M}_{R}[f, w](x)=\sup _{-R \leq j, n \leq R} \sup _{i \in \mathbb{N}}\left|w_{n}(i) \tau_{j}^{2^{b n} s_{n}(i)} * f(x)\right|
$$

We let $B_{p}(R)$ be the best constant C in the inequality

$$
\left\|\mathfrak{M}_{R}[f, w]\right\|_{p} \leq C \sup _{n \in \mathbb{Z}}\left\|w_{n}\right\|_{\ell p}\|f\|_{p}
$$

that is,

$$
\begin{equation*}
B_{p}(R)=\sup \left\{\left\|\mathfrak{M}_{R}[f, w]\right\|_{p}:\|f\|_{p} \leq 1, \sup _{n \in \mathbb{Z}}\left\|w_{n}\right\|_{\ell^{p}} \leq 1\right\} \tag{3.1}
\end{equation*}
$$

The positive number $B_{p}(R)$ is finite, as from the uniform L^{p}-boundedness of the operator $f \mapsto \tau_{j}^{u} * f$ we have $B_{p}(R) \leq C(2 R+1)^{2 / p}$. It is our objective to show that $B_{p}(R)$ is independent of R. More precisely, we claim that there is a constant C independent of the choice of the sets $\mathfrak{S}(n)$, such that for $1<p \leq 2$,

$$
\begin{equation*}
B_{p}(R) \leq C(p-1)^{2-10 / p} \tag{3.2}
\end{equation*}
$$

We begin with an estimate for a vector-valued operator.
Lemma 3.2. Let $1<p \leq 2, p \leq q \leq \infty$. Then

$$
\begin{align*}
& \left\|\left(\sum_{-R \leq j, n \leq R} \sum_{i \in \mathbb{N}}\left|w_{n}(i) A_{j, \ell}^{2^{b n} s_{n}(i)} g_{j, n}\right|^{q}\right)^{1 / q}\right\|_{p} \tag{3.3}\\
\leq & C(p-1)^{-2\left(1-\frac{p}{q}\right)} B_{p}(R)^{1-\frac{p}{q}} 2^{-\ell\left(1-\frac{1}{p}\right) \frac{p}{q}} \sup _{n \in \mathbb{Z}}\left\|w_{n}\right\|_{\ell p}\left\|\left(\sum_{j, n \in \mathbb{Z}}\left|g_{j, n}\right|^{q}\right)^{1 / q}\right\|_{p}
\end{align*}
$$

Proof. The case $q=p$ of (3.3) follows from 2.9 . For $q=\infty$ we use (2.10) to estimate

$$
\begin{aligned}
& \left\|\sup _{-R \leq j, n \leq R} \sup _{i \in \mathbb{N}}\left|w_{n}(i) A_{j, \ell}^{2^{b n} s_{n}(i)} g_{j, n}\right|\right\|_{p} \\
& \leq C \| \sup _{-R \leq j, n \leq R} \sup _{i \in \mathbb{N}}\left|w_{n}(i)\right| M^{\operatorname{str}}\left[\tau_{j}^{2^{b n} s_{n}(i)} *\left|g_{j, n}\right|| | \|_{p}\right. \\
& \leq C\left\|M^{\operatorname{str}}\left[\sup _{-R \leq j, n \leq R} \sup _{i \in \mathbb{N}}\left|w_{n}(i)\right| \tau_{j}^{2^{b n} s_{n}(i)} *\left(\sup _{j^{\prime}, n^{\prime} \in \mathbb{Z}}\left|g_{j^{\prime}, n^{\prime}}\right|\right)\right]\right\|_{p}
\end{aligned}
$$

where we have used the positivity of the operators $f \mapsto \tau_{j}^{u} * f$. By (2.3) we can dominate the last displayed expression by

$$
\begin{aligned}
& C^{\prime}(p-1)^{-2}\left\|\sup _{-R \leq j, n \leq R} \sup _{i \in \mathbb{N}}\left|w_{n}(i)\right| \tau_{j}^{2^{b n} s_{n}(i)} *\left[\sup _{j^{\prime}, n^{\prime} \in \mathbb{Z}}\left|g_{j^{\prime}, n^{\prime}}\right|\right]\right\|_{p} \\
& \lesssim(p-1)^{-2} B_{p}(R) \sup _{n \in \mathbb{Z}}\left\|w_{n}\right\|_{\ell^{p}}\left\|\sup _{j^{\prime}, n^{\prime} \in \mathbb{Z}} \mid g_{j^{\prime}, n^{\prime}}\right\| \|_{p}
\end{aligned}
$$

which establishes the case $q=\infty$. The case $p<q<\infty$ follows by interpolation.

Proof of Proposition 3.1. We use the decomposition $\tau_{j}^{u} * f=\sum_{\ell=0}^{\infty} A_{j, \ell}^{u} f$. By (2.4) we get

$$
\left\|\sup _{j, n \in \mathbb{Z}} \sup _{i \in \mathbb{N}}\left|w_{n}(i) A_{j, 0}^{2^{b n} s_{n}(i)} f\right|\right\|_{p} \lesssim(p-1)^{-2} \sup _{n \in \mathbb{Z}}\left\|w_{n}\right\|_{\ell \infty}\|f\|_{p} .
$$

For $\ell>0$ we have,

$$
\left\|\sup _{-R \leq j, n \leq R} \sup _{i \in \mathbb{N}}\left|w_{n}(i) A_{j, \ell}^{2^{b n} s_{n}(i)} f\right|\right\|_{p} \leq\left\|\left(\sum_{-R \leq j, n \leq R} \sum_{i \in \mathbb{N}}\left|w_{n}(i) A_{j, \ell}^{2^{b n} s_{n}(i)} f\right|^{2}\right)^{1 / 2}\right\|_{p}
$$

and, by (2.11) and Lemma 3.2 for $q=2$, and (2.12),

$$
\begin{align*}
& \left\|\left(\sum_{-R \leq j, n \leq R} \sum_{i \in \mathbb{N}}\left|w_{n}(i) A_{j, \ell}^{2^{b n} s_{n}(i)} f\right|^{2}\right)^{1 / 2}\right\|_{p} \tag{3.4}\\
& \lesssim(p-1)^{-2\left(1-\frac{p}{2}\right)} B_{p}(R)^{1-\frac{p}{2}} 2^{-\ell\left(1-\frac{1}{p} \frac{p}{2}\right.} \sup _{n \in \mathbb{Z}}\left\|w_{n}\right\|_{\ell^{p}}\left\|\left(\sum_{j, n \in \mathbb{Z}}\left|P_{j-n, \ell, b}^{(2)} P_{j, \ell}^{(1)} f\right|^{2}\right)^{1 / 2}\right\|_{p} \\
& \lesssim(p-1)^{p-4} 2^{-\ell(p-1) / 2} B_{p}(R)^{1-p / 2} \sup _{n \in \mathbb{Z}}\left\|w_{n}\right\|_{\ell^{p}}\|f\|_{p} .
\end{align*}
$$

This implies, for $1<p \leq 2$

$$
\begin{aligned}
B_{p}(R) & \lesssim\left[(p-1)^{-2}+\sum_{\ell>0}(p-1)^{p-4} 2^{-\ell(p-1) / 2} B_{p}(R)^{1-p / 2}\right] \\
& \lesssim(p-1)^{-2}+(p-1)^{p-5} B_{p}(R)^{1-p / 2}
\end{aligned}
$$

which leads to

$$
B_{p}(R) \lesssim(p-1)^{2-10 / p}
$$

If we use this inequality in (3.4) and observe

$$
p-4+(2-10 / p)(1-p / 2)=3-10 / p,
$$

then the claimed inequality in Proposition 3.1 follows by the monotone convergence theorem.

4. Proof of Proposition 2.2

For $n \in \mathbb{Z}$ let $U_{n} \subset\left[1,2^{b}\right]$ be defined by

$$
U_{n}=\left\{2^{-b n} u: u \in\left[2^{b n}, 2^{b(n+1)}\right] \cap U\right\}
$$

and let

$$
\mathcal{N}_{n, \ell}(U)=\#\left\{k:\left[2^{-\ell} k, 2^{-\ell}(k+1)\right) \cap U_{n} \neq \emptyset\right\} .
$$

Then we have

$$
2^{-\ell\left(1-\frac{1}{p}\right)} \sup _{n \in \mathbb{Z}} \mathcal{N}_{n, \ell}(U) \approx \mathcal{K}_{p}\left(U, 2^{-\ell}\right)
$$

We cover each set U_{n} with dyadic intervals of the form

$$
I_{k, \ell}=\left[k 2^{-\ell},(k+1) 2^{-\ell}\right)
$$

where $k \in \mathbb{N}$. Denote by $\mathfrak{S}_{n, \ell}$ the left endpoints of these intervals and note $\mathcal{N}_{n, \ell}(U)=\# \mathfrak{S}_{n, \ell}$. We label the set of points in $\mathfrak{S}_{n, \ell}$, by $\left\{s_{n, \ell}(i)\right\}_{i=1}^{\mathcal{N}_{n, \ell}(U)}$ and write

$$
\begin{aligned}
& \sup _{j \in \mathbb{Z}} \sup _{u \in U}\left|A_{j, \ell}^{u} f(x)\right|=\sup _{j \in \mathbb{Z}} \sup _{n \in \mathbb{Z}} \sup _{s \in U_{n}}\left|A_{j, \ell}^{2^{n b} s} f(x)\right| \\
& \leq \sup _{j, n \in \mathbb{Z}} \sup _{i=1, \ldots \mathcal{N}_{n, \ell}(U)}\left|A_{j, \ell}^{2^{n b} s_{n, \ell}(i)} f(x)\right| \\
& \quad+\sup _{j, n \in \mathbb{Z}} \sup _{i=1, \ldots \mathcal{N}_{n, \ell}(U)} \int_{0}^{2^{-\ell}}\left|\frac{d}{d \alpha} A_{j, \ell}^{2^{n b}\left(s_{n, \ell}(i)+\alpha\right)} f(x)\right| d \alpha .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left\|\sup _{j \in \mathbb{Z}} \sup _{u \in U}\left|A_{j, \ell}^{u} f\right|\right\|_{p} & \leq\left\|\left(\sum_{j, n \in \mathbb{Z}} \sum_{i=1}^{\mathcal{N}_{n, \ell}(U)}\left|A_{j, \ell}^{2^{n b} s_{n, \ell}(i)} f\right|^{2}\right)^{1 / 2}\right\|_{p} \\
& +\int_{0}^{2^{-\ell}}\left\|\left(\sum_{j, n \in \mathbb{Z}} \sum_{i=1}^{\mathcal{N}_{n, \ell}(U)}\left|\frac{d}{d \alpha} A_{j, \ell}^{2^{n b}\left(s_{n, \ell}(i)+\alpha\right)} f\right|^{2}\right)^{1 / 2}\right\|_{p} d \alpha
\end{aligned}
$$

and by part (ii) of Proposition 3.1 both expressions on the right hand side can be estimated by

$$
\begin{equation*}
C(p-1)^{3-10 / p} 2^{-\ell(p-1) / 2} \sup _{n \in \mathbb{Z}} \mathcal{N}_{n, \ell}(U)^{1 / p}\|f\|_{p} \tag{4.1}
\end{equation*}
$$

This estimate is efficient for $1<p<1+\ell^{-1}$. Note that in this range $2^{-C \ell(1-1 / p)} \approx 1$ and $\mathcal{N}_{n, \ell}(U)^{1 / p} \approx \mathcal{K}_{p}\left(U, 2^{-\ell}\right)$. For $p=2$ we have the inequality

$$
\begin{align*}
& \left\|\left(\sum_{j, n \in \mathbb{Z}} \sum_{i=1}^{\mathcal{N}_{n, \ell}(U)}\left|A_{j, \ell}^{2^{n b} s_{n, \ell}(i)} f\right|^{2}\right)^{1 / 2}\right\|_{2} \tag{4.2}\\
& \quad+\int_{0}^{2^{-\ell}}\left\|\left(\sum_{j, n \in \mathbb{Z}} \sum_{i=1}^{\mathcal{N}_{n, \ell}(U)}\left|\frac{d}{d \alpha} A_{j, \ell}^{2^{n b}\left(s_{n, \ell}(i)+\alpha\right)} f\right|^{2}\right)^{1 / 2}\right\|_{2} d \alpha \\
& \lesssim 2^{-\ell / 2} \sup _{n \in \mathbb{Z}} \mathcal{N}_{n, \ell}(U)^{1 / 2}\|f\|_{2} .
\end{align*}
$$

For $p_{\ell}:=1+\ell^{-1}<p<2$ we use the Riesz-Thorin interpolation theorem (together with the fact that $\left(p_{\ell}-1\right)^{C / \ell} \approx_{C} 1$ and $\left(p_{\ell}-1\right)^{-A}=\ell^{A}$). We then
obtain for $p_{\ell}<p<2$

$$
\begin{align*}
& \left\|\left(\sum_{j, n \in \mathbb{Z}} \sum_{i=1}^{\mathcal{N}_{n, \ell}(U)}\left|A_{j, \ell}^{2^{n b} s_{n, \ell}(i)} f\right|^{2}\right)^{1 / 2}\right\|_{p} \\
& \quad+\int_{0}^{2^{-\ell}}\left\|\left(\sum_{j, n \in \mathbb{Z}} \sum_{i=1}^{\mathcal{N}_{n, \ell}(U)}\left|\frac{d}{d \alpha} A_{j, \ell}^{2^{n b}\left(s_{n, \ell}(i)+\alpha\right)} f\right|^{2}\right)^{1 / 2}\right\|_{p} d \alpha \\
& \lesssim 2^{-\ell\left(1-\frac{1}{p}\right)} \sup _{n \in \mathbb{Z}} \mathcal{N}_{n, \ell}(U)^{1 / p} \ell^{7\left(\frac{2}{p}-1\right)}\|f\|_{p} . \tag{4.3}
\end{align*}
$$

Thus we have established (2.7). The proof of (2.8) is similar but the reduction to a square-function estimate requires one more use of a LittlewoodPaley estimate. We have, using the analogue of (2.11) for $T_{j, \ell,+}^{2 b n}$

$$
\left.\left.\begin{array}{l}
\left\|\sup _{n \in \mathbb{Z}} \sup _{u \in U \cap\left[2^{n b}, 2^{(n+1) b}\right]}\left|\sum_{j \in \mathbb{Z}} T_{j, \ell,+}^{u} f\right|\right\|_{p} \\
\leq \|\left(\sum_{n \in \mathbb{Z}} \sum_{i=1}^{\mathcal{N}_{n, \ell}} \mid \sum_{j \in \mathbb{Z}} P_{j, \ell}^{(1)} P_{j-n, \ell, b}^{(2)} T_{j, \ell,+}^{2 b^{n b}} s_{n, \ell}(i)\right.
\end{array}\right|^{2}\right)^{1 / 2} \|_{p} .
$$

which by (2.13) is bounded by

$$
\begin{aligned}
C(p-1)^{-2} & {\left[\left\|\left(\sum_{n \in \mathbb{Z}} \sum_{i=1}^{\mathcal{N}_{n, \ell}(U)} \sum_{j \in \mathbb{Z}}\left|T_{j, \ell,+}^{2^{n b} s_{n, \ell}(i)} f\right|^{2}\right)^{1 / 2}\right\|_{p}\right.} \\
& \left.+\int_{0}^{2^{-\ell}}\left\|\left(\sum_{n \in \mathbb{Z}} \sum_{i=1}^{\mathcal{N}_{n, \ell}(U)} \sum_{j \in \mathbb{Z}}\left|\frac{d}{d \alpha} T_{j, \ell,+}^{2^{n b}\left(s_{n}, \ell(i)+\alpha\right)} f\right|^{2}\right)^{1 / 2}\right\|_{p} d \alpha\right] .
\end{aligned}
$$

From here on the estimation is exactly analogous to the previous square function - just replace $A_{j, \ell}^{u}$ with $T_{j, \ell,+}^{u}$. The arguments for the corresponding terms with $T_{j, \ell,-}^{u}$ are similar (or could be reduced to the previous case by a change of variable, and curve). This concludes the proof of Theorem 2.2.

5. LOWER BOUNDS FOR $p \leq 2$

As mentioned before the lower bound $(\log \mathfrak{N}(U))^{1 / 2}$ for $\left\|\mathcal{H}^{U}\right\|_{L^{p} \rightarrow L^{p}}$, based on ideas of Karagulyan [7], was established in [6]. We now show the easier lower bound in terms of the quantity $\sup _{\delta>0} \mathcal{K}_{p}(U, \delta)$ (where we only have to consider the cases $\delta<1$). The same calculation gives the same type of lower bound for $\left\|\mathcal{M}^{U}\right\|_{L^{p} \rightarrow L^{p}}$.

By rescaling in the second variable and reflection we may assume that $c_{+}=1$. For $u \in U$ and $\delta \in(0,1)$ we define

$$
V_{\delta}(u)=\left\{\left(x_{1}, x_{2}\right): 1 \leq x_{1} \leq 2,\left|x_{2}-u x_{1}^{b}\right| \leq \delta / 4\right\}
$$

and let f_{δ} be the characteristic function of the ball of radius δ centered at the origin. Observe that for $1 \leq x_{1}, u \leq 2, \varepsilon<1$ and $x_{1} \leq t \leq x_{1}+\varepsilon \delta$ we have $u\left(t^{b}-x_{1}^{b}\right) \leq 2 b \cdot 3^{b-1} \varepsilon \delta$. Thus for $\varepsilon_{b}=\left(8 b \cdot 3^{b-1}\right)^{-1}$ we get $f_{\delta}\left(x_{1}-t, x_{2}-u t^{b}\right)=$ 1 and thus

$$
H^{(u)} f_{\delta}(x) \geq \frac{1}{3} \int_{x_{1}}^{x_{1}+\varepsilon_{b} \delta} f_{\delta}\left(x_{1}-t, x_{2}-u t^{b}\right) d t \geq \frac{\varepsilon_{b}}{3} \delta, \quad x \in V_{\delta}(u)
$$

By rescaling in the second variable we have for every $r>0$ that

$$
\left\|\mathcal{H}^{U}\right\|_{L^{p} \rightarrow L^{p}} \geq\left\|\mathcal{H}^{U^{r}}\right\|_{L^{p} \rightarrow L^{p}}
$$

where $U^{r}=r^{-1} U \cap[1,2]$. Let $U^{r}(\delta)$ be a maximal $2^{b} \delta$-separated subset of U^{r}, then $\# U^{r}(\delta) \gtrsim N\left(U^{r}, \delta\right)$. This implies

$$
\mathcal{H}^{U^{r}(\delta)} f_{\delta}(x) \gtrsim \delta \text { for } x \in V_{r, \delta}:=\bigcup_{u \in U^{r}(\delta)} V_{\delta}(u)
$$

For different $u_{1}, u_{2} \in U^{r}(\delta)$ the sets $V_{\delta}\left(u_{1}\right)$ and $V_{\delta}\left(u_{2}\right)$ are disjoint and therefore we have $\operatorname{meas}\left(V_{r, \delta}\right) \gtrsim \delta \#\left(U_{r}(\delta)\right)$. Hence we get

$$
\left\|\mathcal{H}^{U^{r}(\delta)} f_{\delta}\right\|_{p} \geq c \delta^{1+1 / p} \#\left(U_{r}(\delta)\right)^{1 / p}
$$

Since also $\left\|f_{\delta}\right\|_{p} \lesssim \delta^{2 / p}$ we obtain

$$
\left\|\mathcal{H}^{U}\right\|_{L^{p} \rightarrow L^{p}} \geq\left\|\mathcal{H}^{U^{r}(\delta)}\right\|_{L^{p} \rightarrow L^{p}} \gtrsim \delta^{1-\frac{1}{p}} \#\left(U^{r}(\delta)\right)^{\frac{1}{p}} \gtrsim \delta^{1-\frac{1}{p}} N\left(U^{r}, \delta\right)^{\frac{1}{p}}
$$

which gives the uniform lower bound

$$
\begin{equation*}
\left\|\mathcal{H}^{U}\right\|_{L^{p} \rightarrow L^{p}} \gtrsim \mathcal{K}_{p}(U, \delta) \tag{5.1}
\end{equation*}
$$

for sufficiently small δ.

References

[1] Anthony Carbery. Differentiation in lacunary directions and an extension of the Marcinkiewicz multiplier theorem. Ann. Inst. Fourier (Grenoble) 38 (1988), no. 1, 157-168.
[2] S.-Y. A. Chang; J.M. Wilson; T.H. Wolff. Some weighted norm inequalities concerning the Schrödinger operators. Comment. Math. Helv. 60 (1985), no. 2, 217-246.
[3] Ciprian Demeter; Francesco Di Plinio. Logarithmic L ${ }^{p}$ bounds for maximal directional singular integrals in the plane. J. Geom. Anal. 24 (2014), no. 1, 375-416.
[4] Francesco Di Plinio; Shaoming Guo; Christoph Thiele; Pavel Zorin-Kranich. Square functions for bi-Lipschitz maps and directional operators. J. Funct. Anal. 275 (2018), no. 8, 2015-2058.
[5] Shaoming Guo; Jonathan Hickman; Victor Lie; Joris Roos. Maximal operators and Hilbert transforms along variable non-flat homogeneous curves. Proc. Lond. Math. Soc. (3) 115 (2017), no. 1, 177-219.
[6] Shaoming Guo; Joris Roos; Andreas Seeger; Po-Lam Yung. A maximal function for families of Hilbert transforms along homogeneous curves. Preprint, arXiv:1902.00096.
[7] G.A. Karagulyan, On unboundedness of maximal operators for directional Hilbert transforms. Proc. Amer. Math. Soc. 135 (2007), no. 10, 3133-3141.
[8] Gianfranco Marletta; Fulvio Ricci. Two-parameter maximal functions associated with homogeneous surfaces in \mathbb{R}^{n}. Studia Math. 130 (1998), no. 1, 53-65.
[9] Alexander Nagel; Elias M. Stein; Stephen Wainger. Differentiation in lacunary directions. Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 3, 1060-1062.
[10] Andreas Seeger; Terence Tao; James Wright. Endpoint mapping properties of spherical maximal operators. J. Inst. Math. Jussieu 2 (2003), no. 1, 109-144.
[11] Andreas Seeger; Stephen Wainger; James Wright. Pointwise convergence of spherical means. Math. Proc. Cambridge Philos. Soc. 118 (1995), no. 1, 115-124.
[12] . Spherical maximal operators on radial functions. Math. Nachr. 187 (1997), 241-265.

Shaoming Guo: Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Dr, Madison, WI-53706, USA

Email address: shaomingguo@math.wisc.edu
Joris Roos: Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Dr, Madison, WI-53706, USA

Email address: jroos@math.wisc.edu
Andreas Seeger: Department of Mathematics, University of WisconsinMadison, 480 Lincoln Dr, Madison, WI-53706, USA

Email address: seeger@math.wisc.edu
Po-Lam Yung: Department of Mathematics, The Chinese University of Hong Kong, Ma Liu Shui, Shatin, Hong Kong

Email address: plyung@math.cuhk.edu.hk

[^0]: 2010 Mathematics Subject Classification. 42B15, 42B20, 42B25, 44A12.
 S.G. supported in part by NSF grant 1800274. A.S. supported in part by NSF grant 1764295. P.Y. was partially supported by a General Research Fund CUHK14303817 from the Hong Kong Research Grant Council, and a direct grant for research from the Chinese University of Hong Kong (4053341).

